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Abstract: The Double-Double (DD) laminate family allows for simplification in the context of buck-
ling analysis. Stacking-sequence discussions, known from conventional-laminate optimization, made
from 0◦, ±45◦, 90◦ plies, omit for DD. The recently presented DD-specific buckling relation is applied
in this article to the 18-panel, ‘horse-shoe’ laminate blending reference case. The use case addresses
the challenge of identifying a compatible group of laminates for differently loaded, adjacent regions,
as it is a common scenario in wing covers and fuselage skins. The study demonstrates how the
novel DD-laminate buckling relation simplifies the process of determining a buckling optimum for
a group of laminates. The process of determining the optimum blended DD panel is presented.
Its determined mass is compared with minimum masses, presented in earlier studies, which fo-
cus on stacking optimization and blending for more conventional ply orientations and laminate
stacking conventions.

Keywords: composite design; Double-Double; buckling; optimization; laminate blending; zone-based
design

1. Introduction

Laminate blending denotes the process of defining compatible stacking-sequences for
adjacent laminate zones of different thicknesses. ‘Compatible’ denotes here that a laminate
of one zone can be transferred to another zone laminate by dropping a single or a group
of plies in order to assure manufacturability. Aerospace parts usually have high-load and
moderate-load areas. Figure 1 shows a schematic of a wing. It indicates how selected local
loads, due to slats or trailing-edge devices, for example, drive the local laminate thicknesses
of the cover.

Figure 1. Wing cover schematic—local load introductions drive local laminate thicknesses. Colors
indicate selected regions.

The local laminate thicknesses in a cover deviate drastically and considerable effort
is mandatory to define zone-to-zone transitions, which meet established laminate design
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requirements. At the same time, the deduced stacking sequences directly affect the zones’
resistance against buckling, which is a critical design driver for thin-walled composite
structures. The Dij coefficients of the [D] matrix from the classical laminate theory (CLT)
(see Nettles [1]) are stacking-dependent. The Dij are dominant parameters in Equation (1),
which describes the buckling of uni- and bi-axially loaded rectangular plates (see [2,3]). The
high number of stacking permutations makes the design process challenging, in particular
when laminate thickness and the number of plies in the laminate increases. Designers face
the following challenges simultaneously:

• Assuring manufacturability (→ define compatible zone laminates); MDPI: Please
check if some contents are missing here.

• Fulfilling the buckling load requirements at the minimum structural weight (→ identi-
fying the stacking sequence with the highest buckling load within the design space).

Soremekun et al. [4] proposed an 18-panel reference example, which addresses the
aforementioned scenario directly. The example addresses the aspects of laminate blending
and buckling-load requirements. The reference is also denoted as the ‘horse-shoe’ use
case in the literature. It features 18 individual, simply supported rectangular panels. All
panels are subject to bi-axial compression, while no interaction of neighbouring panels
is considered.

Figure 2 shows the use case, which is explained in detail in Section 2. Multiple re-
searcher groups [5–13] use Soremekun’s example as a reference and provide individual op-
timal stackings and corresponding minimal masses for blended panels. All those studies fo-
cus on more conventional ply orientations, with plies aligned in [0◦,±15◦,±30◦,±45◦,±60◦,
±75◦, 90◦], and symmetric laminate architecture (even or odd symmetry).

Figure 2. The 18-panel ‘horse-shoe’ use case. Note that all forces represent compression loads.

The present study adds the first Double-Double solution for Soremekun’s example,
by applying the results of the recently published article on buckling of simply supported
rectangular DD laminates [14].

The present study demonstrates the finding of the DD buckling optimum for the
18-panel reference example. The determination process is outlined and the determined
total mass is compared with results presented in earlier studies. Thus, the article quantifies
the effect of DD’s design-space limitation in terms of structural weight for the first time.
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1.1. Buckling of Simply Supported Rectangular Laminates

Buckling of simply supported rectangular composite laminates for uni- and biaxial
compression is well described in the literature (see Reddy [2], for example). The Equation

N0(m, n) =
π2

a2 ·
D11m4 + 2(D12 + 2D66)m2n2

(
a2

b2

)
+ D22n4

(
a4

b4

)
m2 + k · n2

(
a2

b2

) (1)

= λ(m, n) · Nx . (2)

describes the relation between the critical buckling load, the panel dimensions and the
bending–stiffness properties. The parameter k = Ny/Nx represents a load factor, with
(k = 0) being the special case of uni-axial compression in x-direction. The parameters
a, b refer to the panel dimensions in the x and y directions, respectively. The Dij refer to
ij-coefficient of the bending stiffness matrix [D], which are obtained using classical lami-
nation theory (CLT) (see, for example, [1,15,16]). The parameter λ(m, n) is denoted as the
buckling factor (see [10], for example), with m, n being the number of half waves along
the x and y directions, respectively (see section Appendix A.1 in the Appendix for the
definition). The effects of D16 and D26 are usually assumed to be small (see [4]) or zero
(see [9]). This is also adopted for the present article and the assumption is substantiated by
the fact that DD’s repeat parameter r ≥ 4 is found as the lower threshold of building block
repeats, which further minimizes D16 and D26.

1.2. Double-Double Laminate Family Basics

The present article is focused on the family of Double-Double (DD) laminates. A
DD laminate is defined by only two individual ply angles φ and Ψ, which are combined
(each positive and negative) in a balanced four-ply building block (BB), for example,
[φ,−Ψ,−φ, Ψ]. Those BBs are simply stacked on each other, while the laminate symmetry
requirement is omitted. The number of BBs is described by the repeat parameter r, leading
to an example laminate [φ,−Ψ,−φ, Ψ]rT . The index T denotes ‘total’, which follows
the convention of Nettles [1] and the aforementioned publications in the context of DD.
Thickness-normalized descriptions are usually used in the context of DD (see [17,18]).
Those are deduced from the CLT’s basic relation, as shown hereafter.(

{N}
{M}

)
=

[
[A] [B]
[B] [D]

]
·
({

ε0}
{κ}

)
︸ ︷︷ ︸

CLT

→
({

σ0}{
σ f
}) =

[
[A∗] [B∗]
3[B∗] [D∗]

]
·
({

ε0}{
ε f
})

︸ ︷︷ ︸
Normalized format

(3)

Stresses and strains are {σ0} = 1
tlam

· {N}, {σ f } = 6
t2
lam

{M} and {ε f } = tlam
2 {κ}. This

thickness normalization leads to the fact that all matrices have the same unit, MPa. The
publication [14] shows that Equation (1) can be considerably simplified for DD laminates.
The normalized bending–stiffness matrix [D∗] plays a key role for the simplification. It is
defined as

[D] =
t3
lam
12

· [D∗] =
16 · r3 · t3

ply

3
· [D∗] . (4)

Reformulating Equation (1) with use of the D∗
ij coefficients, leads to

N0(m, n) = r3 ·
16 · t3

ply

3
· π2
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)
m2n2

(
a2

b2
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(
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) , (5)
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which can be solved for the BB repeat parameter r (see section Appendix A.2 in the
Appendix for a direct thickness calculation).

r =
3√a2

tply

3
√

N0(m, n) · 3

√
3

16π2 · 3

√√√√√ m2 + k · n2
(

a2

b2

)
D∗

11m4 + 2
(

D∗
12 + 2D∗

66
)
m2n2

(
a2

b2

)
+ D∗

22n4
(

a4

b4

) (6)

While the Dij coefficients in the CLT depend on the specific stacking sequence, it is observed
for DD laminates that the considered D∗

ij coefficients are independent of r, as the matrix
population shows the following scheme.

[D∗] =

 ���f (r) ���f (r) 1
r2 · (. . .)

���f (r) ���f (r) 1
r2 · (. . .)

1
r2 · (. . .) 1

r2 · (. . .) ���f (r)

 . (7)

As a consequence, the term 3

√
m2+k·n2

(
a2
b2

)
D∗

11m4+2(D∗
12+2D∗

66)m2n2
(

a2
b2

)
+D∗

22n4
(

a4

b4

) in Equation (6) is

independent from r. It only depends on the half-wave pattern, defined by m and n. As the

other factors
3√a2

tply
and 3

√
3

16π2 are constant for a specific panel, one finds the proportionality

r ∝ 3
√

N0 . (8)

This remarkable observation changes the whole procedure of laminate optimization
for buckling. Determining the minimum laminate thickness is transferred to determining
the minimum number of BB repeats. Both are proportional (tlam = 4 · r · tply), but focusing
on repeats is more convenient, as the DD laminate concept features full building blocks only.

Identifying the best DD laminate for a certain panel, defined by its dimensions (a, b), a
load scenario (defined by Nx and k) and the material-specific ply thickness (tply), is carried
out by executing the following procedure (note that 1◦ angle-increments for Ψ and φ are
considered hereafter): The full DD design space is visualized in Figure 3. Equation (6) is
evaluated for each of the 4186 building block combinations, while for each combination
multiple, half-wave cases are examined in order to identify the most critical case.

Figure 3. DD design space with n2 = 912 = 8281 combinations, which reduce to n(n + 1)/2 = 4186
combinations due to symmetry.

For an assumed half-wave range of m = n = [1, 2, 3] this leads to nine individual
case-specific results for r for each design point. The highest out of those nine r-values is
the relevant one, as it directly refers to the most critical buckling case. Equation (6) usually
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provides a positive real-type number. This does not comply with the integer type of the
repeat parameter r, which refers to full four-ply BBs. Thus, the determined real-type r
value must be rounded up to the next higher integer to determine the feasible minimum
DD laminate thickness.

The outlined procedure is hereafter applied to the 18-panel ‘horse-shoe’ use case,
which has been intensively investigated by multiple researcher groups [4–13], which all
focus on blending of conventional, non-DD laminates.

2. The 18-Panel ‘Horse-Shoe’ Use Case

Figure 2 shows the ‘horse-shoe’ use case, which consists of 18 rectangular panels. Each
panel is considered as simply supported at all four edges. Mechanical panel interaction is
not considered. The example consists of panels with the two aspect ratios a/b = [3/4, 5/3].
All panels experience bi-axial compression, with the loading parameter k = Ny/Nx being
in the range of k = [0.444, . . . , 2.033]. Figure A1 in the Appendix A summarizes additional
panel-specific geometrical and load details. All the available studies refer to Hexcel’s
IM7/8552 unidirectional prepreg [19], which is a carbon fibre epoxy resin material. The
relevant prepreg data is provided in Table 1 (note that Seresta et al. [10] provide a density
of ρ = 0.0055 lb/in3, which is slightly lower than the value of 0.0057 lb/in3 provided in the
IM7/8552 data sheet [19]).

Table 1. IM7/8552 prepreg. Density of cured ply from data sheet [19].

Property E1 E2 ν12 G12 tply ρ

Unit GPa GPa GPa mm g/cm3

Value 141.0 9.03 0.32 4.27 0.191 1.57

Comparisons between the available solutions based on ply count or on the mass Mi of
the i-th panel, respectively. The latter is simply calculated based on the panel-specific areas
Ai, the local laminate thickness and the material’s density ρ.

Mi = Vi · ρ

= Ai · ti · ρ = Ai · nply,i · tply · ρ

= Ai · 4 · ri · tply · ρ (for DD) (9)

For studies, in which ply counts are provided only (for example, [8]), the individual panel
weights are determined here for the sake of comparability, based on the specific panel areas
and the material parameters in Table 1.

Summary of Previous Studies

Soremekun’s reference case has been in focus of various studies. Each of those articles
provides a stacking optimum, which leads to individual panel masses and the total mass of
the blended panel. The present article aims to compare those results with the DD solution
presented hereafter in Section 3.

A detailed discussion of the pursued optimization procedures and approaches pre-
sented in earlier studies is beyond the scope of the present article. The following comparison
utilizes the final results/masses of the available studies only to assess the DD solution,
presented in this article. A detailed discussion of the available optimization approaches
can be found in Xu et al. [20] and Nikbakt et al. [21].

The individual studies show differences in terms of allowed ply angles and considered
laminate stacking rules. Those differences determine the design space and therefore they
affect the group of feasible laminate solutions. In the context of panel optimization, more
constraints will usually lead to heavier structures. Table 2 provides an overview of the
deviating aspects between the studies and outlines the related consequences.
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Table 2. Comments of important differences between the available studies.

ID Comment Consequence

#1 Ply orientation angles (±) are allowed to
vary from 0◦ to 90◦ in 15◦ increments [4–10]

Each ply can have 12 different orienta-
tions, which enlarges the design space con-
siderably, compared to laminates used in
aerospace practice, which are often com-
posed of 0◦, ±45◦, 90◦ plies only. DD also
features only four-ply orientations.

#2
Some authors allow for odd ply counts
(center-ply symmetry) [4,11], while others
enforce even ply counts per panel

This aspect is a potentially disadvantageous
aspect for DD laminates, which always fea-
ture even ply counts. Moreover, DD ply
counts are always multiples of 4 plies, due
to the BB architecture. In case a conven-
tional laminate has an optimum at 21 plies,
for example, a DD substitute would have
24 plies, leading to an extra mass of
3 plies, when performance equivalence
is presumed.

#3

Shvarts and Gubarev [12] consider 0◦, ±45◦,
90◦ ply angles only, combined with a set of
laminate design guidelines known in prac-
tice today, such as stacking symmetry, bal-
ance and the 8% orientation-percentages
rule, for example

Ply-orientation selection as well as laminate
design rules match industry standards. A
laminate is composed of only four-ply an-
gles, which is similar to DD.

The laminate constraints considered by Shvarts and Gubarev [12], in particular the
limitation to 0◦, ±45◦, 90◦ plies combined with both the symmetry and the balance require-
ment, are close to aerospace standards, such as, for example, shown in context of CFRP
frame components [22,23]. In fact, the widely used notation [%0◦ , %±45◦ , %90◦ ] represents
another indicator for the relevance of the ply orientation selection. A DD laminate basis
on only four-ply angles as well. Thus, its design space is smaller compared to the studies
presented above [4–10].

All cited studies pursue a comparable general study concept. First, all of the 18 panels
are optimized individually, followed by the second analysis step, in which all panel lami-
nates are considered simultaneously. The same procedure is adopted in the present article
for the DD case.

Table 3 summarizes the provided panel-weight optima of the previous individual
studies. The table focuses on the data of the second analysis step, in which all 18 pan-
els are considered simultaneously, as it refers to the technically relevant scenario of the
blended panel.

Table 3. Weight of 18-panel use case provided in previous studies.

Source Year Panel Weight Comments

Soremekun et al. [4] 2002 29.207 kg

Adams et al. [5,6] 2004 28.630 kg Authors presented multiple solutions
with identical weight

Seresta et al. [10] 2009 28.760 kg
IJsselmuiden et al. [8] 2009 29.412 kg
Irisarri et al. [7] 2014 28.799 kg
Yang et al. [11] 2016 28.910 kg

Shvarts and Gubarev [12] 2017 31.890 kg Limited to 0◦, ±45◦, 90◦ ply orientation
and considering industry stacking rules

Zeng et al. [13] 2019 28.208 kg Optimum features half ply (=odd lami-
nate ply count for full plies)
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One can see that the additional constraints, considered by Shvarts and Gubarev [12],
lead to the highest panel mass.

3. DD Application to the 18-Panel Use Case

The set of only three parameters φ, Ψ, r, describe a DD laminate. This allows for a
particularly simple illustration of the whole design space. As a similar illustration is not
possible for conventional laminates, and therefore quite uncommon, a brief introduction is
provided hereafter.

3.1. A Comment on Illustrating DD Results

Figure 4 shows an example. It refers to the distinct load scenario of panel 1, which is
presented hereafter.

Figure 4. Example graph for panel 1 with highlighted information.

The plot covers the whole design space of conceivable DD laminates for the particular
load scenario. Each coloured region refers to a specific number of building block repeats.
Thus, a coloured area illustrates laminates of the same thickness and weight. The iso-lines
refer to BB repeat thresholds. The yellow region, for example, captures all feasible laminate
configurations, which require more than 8 BB but less than 10 repeats. All DD laminates
in this region have the same weight. They can sustain the defined load. However, they
are four plies thicker than the best laminates, which are indicated by the green region.
Laminates close to the iso-line repeated nine times will show smaller load-increase margins
than laminates which are close to the threshold repeated eight times.

The plot provides the input buckling load Ncr = Nx with Ny = k · Nx in the lower left
corner. Figure 5 shows the corresponding graphs for all 18 DD panels. Each plot shows
two coloured circles, Those refer to the 18-panel example analysis, which reveals only two
individual ‘best’ BB selections for the group of all 18 panels. For panel 1, [±35,±35] is
identified as the best building block. The configuration is located close to the centre of
the green-marked region (in Figure 4), which captures all laminates that can sustain the
required loads with eight BB repeats. The star in Figure 4 indicates an arbitrary example
laminate with a [60,−20,−60, 20] building block. The particular laminate requires nine BB
repeats to sustain the defined load of panel 1. The normalized bending stiffness matrix for
the star laminate is given by

[D∗
[60,−20,−60,20]9T

] =

65716.9 21537.4 240.8
21537.4 48046.1 223.2
240.8 223.2 22898.7

N/mm2. (10)
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Inserting the D∗
ij coefficients in Equation (1) leads to

N0(m, n) = 729 · 0.01394 mm3 · 4.726 · 10−5 · 1/mm2

·
(

65716.9+2(21537.4+2·22898.7)·(9/16)+48046.1·(81/256)
1+0.571·(9/16)

)
N

mm2

= 151.82 N
mm

= 1.238 · Nx → 23.8% margin, with Nx = 700·175.1
1000

N
mm

(11)

for the m = n = 1 case. The laminate can sustain the panel 1 load case. It shows a 23.8%
margin for load increase, which is a consequence of the full building block concept and the
related up rounding.

(a) Panel 1 (b) Panel 2 (c) Panel 3 (d) Panel 4

(e) Panel 5 (f) Panel 6 (g) Panel 7 (h) Panel 8

(i) Panel 9 (j) Panel 10 (k) Panel 11 (l) Panel 12

(m) Panel 13 (n) Panel 14 (o) Panel 15 (p) Panel 16

Figure 5. Cont.
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(q) Panel 17 (r) Panel 18

Figure 5. Minimum-repeat plots for the 18 panels. The red and blue dots refers to [±35,±35],
[±75,±75] building block angles, respectively.

3.2. The DD ‘Horse-Shoe’ Results

The DD study comprises the individual analysis of all 18 panels at first, followed
by the ‘blended’ analysis, which simultaneously regards all 18 panels. In both cases the
buckling term requirement, from Equation (2), is λ ≥ 1, as in all other studies.

Table 4 summarizes the results of both steps of the study. The first four columns of
Table 4 refer to the individual panel analysis. The sum of the individual panel weights is
28.835 kg. The analysis reveals only two different building block optima, with φ = Ψ = 35◦

and φ = Ψ = 75◦. It is found that the identified optimum angles correlate with the panel
dimensions. φ = Ψ = 35◦ is obtained for the panels 1, 2, 9, 10, 11 and 12 (all 18′′× For all
other panels (a/b = 5/3) φ = Ψ = 75◦ is obtained. The blended DD panel has a mass of
29.393 kg, which is 2% more than the sum from the individual panel analysis.

Table 4. DD optima—individual panel analysis and blended analysis.

Panel Individual Blended
Stacking Total Plies Weight (kg) Stacking Total Plies Weight (kg) Margin (%)

1 [±35,±35]8T 32 2.675 [±43,±44]8T 32 2.675 0.0
2 [±35,±35]7T 28 2.341 [±43,±44]7T 28 2.341 7.4
3 [±75,±75]5T 20 0.929 [±43,±44]6T 24 (+4) 1.115 42.3
4 [±75,±75]5T 20 0.929 [±43,±44]5T 20 0.929 19.9
5 [±75,±75]4T 16 0.743 [±43,±44]4T 16 0.743 1.3
6 [±75,±75]6T 24 1.115 [±43,±44]6T 24 1.115 27.9
7 [±75,±75]5T 20 0.929 [±43,±44]5T 20 0.929 3.6
8 [±75,±75]6T 24 1.115 [±43,±44]7T 28 (+4) 1.301 37.0
9 [±35,±35]10T 40 3.344 [±43,±44]10T 40 3.344 25.7
10 [±35,±35]9T 36 3.009 [±43,±44]9T 36 3.009 17.1
11 [±35,±35]8T 32 2.675 [±43,±44]8T 32 2.675 38.1
12 [±35,±35]7T 28 2.341 [±43,±44]7T 28 2.341 6.9
13 [±75,±75]6T 24 1.115 [±43,±44]6T 24 1.115 33.8
14 [±75,±75]5T 20 0.929 [±43,±44]5T 20 0.929 27.1
15 [±75,±75]6T 24 1.115 [±43,±44]7T 28 (+4) 1.301 32.9
16 [±75,±75]8T 32 1.487 [±43,±44]8T 32 1.487 10.1
17 [±75,±75]5T 20 0.929 [±43,±44]5T 20 0.929 17.7
18 [±75,±75]6T 24 1.115 [±43,±44]6T 24 1.115 16.0

28.835 29.393

Figure 5 shows the panel-specific minimum-repeats over the DD design space. The
aforementioned set of the two optimum solutions (35◦, 75◦) from the individual analysis is
provided in the plots as red and blue circle, respectively.

Figure 6 visualizes the results of the individual panel analysis. Each colour refers to a
particular number of repeats.
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Figure 6. DD results—individual panel analysis. Panel colours refer to particular repeat values.

As different panel-specific optima are obtained, the BB angles for the blended configu-
ration will be ‘in-between’ the two optima determined from the individual panel analysis.
Minimizing the summed mass of all 18 panels was pursued initially to identify the best
laminate. The analysis reveals seven solutions in the design space, all with the same total
mass of 29.394 kg. Figure 7 shows the seven results as black dots in the centre of the green
illustrated 30.0 kg weight region. The green area covers 431 solutions in total with a total
mass of ≤30.0 kg.

Figure 7. Seven solutions are identified. All lead to the minimum weight of 29.394 kg. The solutions
are plotted as black dots in the green region, which covers all laminates below 30.0 kg.

From a weight perspective, all solutions are equivalent. An additional criterion is
needed to identify the best solution from the set of seven. Assessing panel-specific load-
increase margins can be such an additional criterion. One finds that the summed margins
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slightly differ for the seven cases, with a maximum for the [±43,±44] building block.
Figure 8 shows the corresponding result, with the corresponding margins.

Figure 8. DD combined—selection: Highest total margin, unweighted.

It can be seen that panel 1 is at its load limit, which is indicated by the margin 0.0%.
Other panels show higher margins. Thus, panel 1 acts as the driving panel. This observation
leads to a potential alternative selection criterion, which focuses on maximizing the margin
of the most critical panel 1. Thus, when the solution with the highest margin for panel 1
is selected, the BB [±43,±43] is identified as the best choice, leading to a slightly higher
margin of 0.4%. Figure 9 shows the corresponding solution with a focus on the critical
panel 1.

Figure 9. DD combined—angle selection focuses on increasing the margin of panel 1.
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However, while the margin of panel 1 is increased, it is found that the specific selection
reduces the margin of panel 5, for example, from 1.3% to 0.4%. The final decision requires
engineering the judgement and it needs to consider all aspects of the case at hand.

3.3. A Comment on Ply-Angle Increments

As the number of BB repeats is proportional to the laminate thickness, volume and
mass, additional plotting options arise. One can directly plot the total mass of all 18 panels
over the BB design space, as shown above in Figure 7. The previous DD analysis considers
1◦ ply angle increments, which is considered a reasonable selection from a manufacturing
perspective. Thus, 91 ply angles are covered for φ and Ψ. The weight-iso-lines in Figure 7
show ragged shapes, which are in fact a result of the selected ply angle incrementation.
It shall be noted that the 1◦-step selection is not a limitation of DD. Finer increments are
conceivable. They will lead to smoother iso-lines in the Ψ − φ plots, as it has also been
shown in [24]. Figure 10 shows the effect of reducing the incrementation from 1◦ to 1/3◦.

(a) 1◦ resolution (b) 1/3◦ resolution

Figure 10. Total weight of all panels over DD design space for different ply angle incrementation.

4. Assessment of DD Results

Table 5 contrasts the DD panel results, presented in Section 3, with the results of the
other available studies. The blended optimum DD panel is determined with a weight of
29.394 kg. Other studies provide solutions which are up to 3.8% lighter (−1.1 kg), which
suggests a little disadvantage for DD. Even though the direct comparison is straightforward,
one must consider that most of the cited studies examine considerably larger design
spaces, which allow individual ply orientations [0◦,±15◦,±30◦,±45◦,±60◦,±75◦, 90◦].
This multitude of ply orientations increases the number of feasible solutions drastically.
The large design space is far away from laminates used in industry, which are most often
composed of only four discrete ply orientations [0◦,±45◦, 90◦]. Thus, it is questionable
whether those solutions can act as an industry-relevant reference,

The building block of the DD laminates, in contrast, is defined by only four angles.
Thus, the DD laminate design space is remarkably smaller, which is a potential reason for
the observed weight penalty.

Shvarts and Gubarev, consider a smaller design space as well. They limit ply orien-
tations to the four angles [%0◦, % ± 45◦,±90◦]. The authors further consider constraints
such as laminate symmetry and laminate balance, which is considered composite design
practice in industry today.

When the result of Shvarts and Gubarev is considered the baseline, the comparison of
the DD result reveals a weight advantage of 7.8%, which is equivalent to 2.5 kg for the case
at hand.
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Table 5. Results at a glance.

Weight Source Comment

29.39 kg DD configuration [±φ,±Ψ]rT , full building blocks only, thus total plies al-
ways multiples of 4 (22 plies = infeasible)

31.89 kg Shvarts and Gubarev [12] Limited to [0◦,±45◦, 90◦] plies, considering industrial lam-
inate design rules, as symmetry or 8% rule (among others)

Note: studies hereafter allow a substantially larger design space

29.21 kg Soremekun et al. [4] [0◦,±15◦,±30◦,±45◦,±60◦,±75◦, 90◦] plies are allowed

29.41 kg IJsselmuiden et al. [8] Final balanced-blended configuration, [0◦,±15◦,±30◦,
±45◦,±60◦,±75◦, 90◦] plies are allowed

28.63 kg Adams et al. [6] [0◦,±15◦,±30◦, ±45◦, ±60◦,±75◦, 90◦] plies are allowed
28.28 kg Zeng et al. [13] [0◦,±15◦,±30◦,±45◦,±60◦,±75◦, 90◦] plies are allowed
28.76 kg Seresta et al. [10] [0◦,±15◦,±30◦,±45◦,±60◦,±75◦, 90◦] plies are allowed

5. Conclusions

Results of the author’s recent work, on buckling of simply supported rectangular
Double-Double (DD) laminates, are applied in this article to the 18-panel laminate blending
reference use case, which is also denoted as a ‘horse-shoe’ example. The use case, presented
by Soremekun et al. in 2002, is a standard in the context of laminate optimization and
laminate blending, which has been examined by multiple research groups in the last two
decades. The present article provides a first DD optimum solution for the ‘horse-shoe’ use
case, in order to contrast it with the results of earlier studies.

The determined total mass of the blended DD panel is compared to the optimum
masses presented. The blended DD panel offers 7.8% weight reduction, compared to an
optimum panel presented by Shvarts and Gubarev, who examined a similar-size design
space. Compared to other studies, which examine larger design spaces, the blended DD
panel is found up to 3.8% heavier.

Simplicity is a remarkable advantage of DD. While conventional laminate stackings re-
quire comprehensive optimization frameworks, to handle millions of conceivable stacking-
sequence combinations and their zone-to-zone compatibility in the multi-panel scenario,
the best DD solution can directly be determined from a set of analytical calculations. For
the 18-panel problem at hand, the set is created in seconds on a conventional desktop PC.

Beyond the panel-weight assessment, the present study demonstrates DD’s unique
illustration options. The number of BB repeats, the panel masses and also the total mass
of the whole 18-panel use case can be plotted over DD’s design space, which is defined
by only two ply angles φ and Ψ. Similar graphics do not exist for conventional laminates.
They are considered valuable for designers in the DD-laminate design process.
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Abbreviations
The following abbreviations are used in this manuscript:

BB Building block
CFRP Carbon-fiber-reinforced plastics
CLT Classical laminate theory
DD Double-Double

Appendix A. Panel Facts

Appendix A.1. Margin Definition

Buckling factor definition

λ(m, n) = π2 · D11(m/a)4 + 2(D12 + 2D66)(m/a)2(n/b)2 + D22(n/b)4

(m/a)2Nx + (n/b)2Ny

=
π2

a2 · D11m4 + 2(D12 + 2D66)(m2n2)(a/b)2 + D22n4(a/b)4

m2Nx + n2(a/b)2Ny

=
π2

a2
1

Nx
· D11m4 + 2(D12 + 2D66)(m2n2)(a/b)2 + D22n4(a/b)4

m2 + n2k(a/b)2

leads to: N0(m, n) = Nx · λ(m, n)

λ(m, n) =
N0(m, n)

Nx
(A1)

Margin is defined as λ − 1

Appendix A.2. Direct Thickness Calculation

tlam = r · 4 · tply

=
3√a2 3

√
N0(m, n) · 3

√
12
π2 · 3

√√√√√ m2 + k · n2
(

a2

b2

)
D∗

11m4 + 2
(

D∗
12 + 2D∗

66
)
m2n2

(
a2

b2

)
+ D∗

22n4
(

a4

b4

)

Figure A1. Panel facts.
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