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Abstract: Carbon fiber-reinforced polymer (CFRP) composites are highly functional composites
which comprise two major components: the polymer matrix and the carbon fiber. Lightweight and
having high strength, CFRPs have been used heavily in various industries such as wind, aerospace
and automobile. The increasing demand and extensive use led to a huge quantum of CFRP waste
from both end-of-life and during manufacturing. Out of this waste, only 2% is recycled, the rest
are disposed of via incineration and/or landfill. This has raised significant environmental and
sustainability concerns. The current state-of-the-art way of recycling CFRPs is by pyrolysis. However,
through the pyrolysis process, the polymer used in the CFRPs, which accounts for around 65–75 wt.%,
cannot be recovered and reused. In most publications, the focus on CFRP recycling was on the
recovering of the more valuable carbon fiber. The polymer matrix is mostly burnt off, in the case of
pyrolysis, or disposed. To obtain full circularity, recovering and reusing both the carbon fiber and
polymer is necessary. In this paper, we primarily focus on the recovered bisphenol-A type of epoxy
polymer (REP) obtained from solvolysis digestion of CFRP and explore the feasibility of reusing
this REP by blending it with pristine epoxy in various compositions to create new materials. The
physical and mechanical properties, including decomposition temperatures (Td), glass transition
temperatures (Tg), storage modulus, loss modulus, flexural and tensile strength, were characterized
using thermal gravity analyzer (TGA), differential scanning calorimetry (DSC), dynamic mechanical
analyzer (DMA) and Instron universal tester. The results indicate a decrease in glass transition and
decomposition temperature, and mechanical properties as the blending composition increases. This
suggests that the total blending composition should not exceed 10 wt.%, with an optimal range
potentially falling between 5 to 6 wt.%.

Keywords: thermoset polymer; epoxy; reuse; recycle

1. Introduction

Carbon fiber reinforced polymer (CFRP) composites are highly functional compos-
ites comprised of two major components: the polymer matrix and the carbon fiber [1–3].
Depending on the intended application, CFRP may consist of a thermoplastic or a ther-
moset matrix [4,5]. Thermoplastic based CFRP allows for material remelting and multiple
reshaping opportunities [6–8], thereby simplifying the recycling process. In contrast, ther-
mosetting polymers, which are renowned for their superior properties such as excellent
mechanical strength, chemical resistance and dimensional stability [9,10], present significant
recycling challenges. Unlike thermoplastics, thermosets cannot be remelted or reshaped
once curing occurred due to their three-dimensional crosslinking network structure [11,12].
Consequently, most end-of-life CFRP thermosets are subjected to traditional disposal meth-
ods such as landfilling or incineration [8,13]. Incineration method results in large pollutant
emissions and toxins [14], while landfilling has a detrimental impact on water, soil, and
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air quality [15]. With the growing demand for CFRP and the increasing waste output,
conventional disposal methods pose a severe environmental and sustainability threat [16].

With the recently growing environmental concerns as well as social pressures, sub-
stantial effort has been focused on addressing recycling of thermoset CFRP wastes. These
efforts generally fall into three categories: mechanical recycling, thermal recycling, and
chemical recycling methods. Mechanical recycling involves crushing, shredding, grinding
and/or milling CFRP waste into fine particles for filler applications [17]. However, due to
inconsistent fiber size, significant strength reduction, and poor fiber-matrix bonding, repur-
posing for high load applications is not recommended [18]. Thermal recycling methods
focus mainly on the recovery of carbon fibers by breaking down the polymer matrix [17,19].
A common thermal processing method is pyrolysis, which retains the carbon fiber me-
chanical properties to some extent. However, such method demands substantial energy
consumption to maintain temperatures above 500 ◦C. Moreover, sustainability problems
would arise due to the emitted gases and the open-loop nature where polymer matrix
recovery is neglected. The chemical recycling route (solvolysis) utilizes a solvent to degrade
the polymer matrix to separate the components of the composite where a good retainment
of fibers has been obtained [17]. In comparison to thermal and mechanical processing,
chemical recycling can be a closed-loop process, allowing the recovery of both the fibers
and the degraded polymer matrix [20], as well as reusing the solvent involved.

There is a plethora of literature that highlights and focuses on the recycling of compos-
ites. Asmatula, Twomey and Overcash [21] provided an analysis of composite recycling
through mechanical, chemical, and thermal processing methods as well as including the
new concept of “direct structural composite recycling” and the reutilization of the products
into the same applications. Wang and his team [22] investigate the chemical recycling of
epoxy resin CFRP composite through selective cleaving of the C-N bonds. Pickering [23]
provides an overview of current recycling processes for thermoset composites. Morici and
Dintcheva [24] investigate the recycling of thermoset materials and composites through
thermal, chemical, and mechanical methods, highlighting a new approach of altering the
organic matrix of thermosets with chemical linkers, making them easier to break them
down while retaining mechanical properties.

While existing literature predominantly focuses on recovering valuable carbon fiber
from CFRP, this paper takes a distinctive approach. It seeks to diverge from the mainstream
by concentrating on the recovered epoxy polymer (REP) obtained from the peracetic acid
digestion method. Epoxy is a widely recognized thermosetting polymer known for its
excellent mechanical, thermal, and chemical properties when cured. Its application ex-
tends across a broad spectrum of high-performance uses, including structural applications,
the aerospace industry, and the production of body armor. To enhance or modify these
properties to meet the requirements of specific applications, the method of blending epoxy
polymers with other substances is a method employed to create new materials. There
are various research studies that explore epoxy polymer blending, which incorporates
different materials into the epoxy polymers. Robert and team [25] have studies of blending
a bisphenol A-based epoxy and various multifunctional epoxies cured with anhydride
hardener. In their study, the mechanical properties, fracture mechanics and thermal proper-
ties of the modified polymers were investigated. It was found that only a small quantity
of multifunctional epoxy systems is required to improve the tensile strength of a neat
bisphenol-A/anhydride epoxy system without affecting its other mechanical properties,
such as glass transition temperature and elastic modulus. A study in bio-phenolic resin
with epoxy resin system was reported by Hassan et al. [26]. In this study, the mechanical
and morphological properties of the bio-phenolic/epoxy polymer blends in different load-
ings were analyzed. Their results showed that the mechanical properties of the polymer
blends perform better as compared to neat epoxy and phenolic. Moreover, there was no
sign of phase separation being observed. Wilson and team [27] did a comparative study on
bio-epoxy composites containing various amounts of graphene oxide (GO) fillers with the
pure bio-epoxy. The tensile and flexural properties of the epoxy blends were evaluated and
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was found that just a low amount of GO (less than 0.6 wt.%) was sufficient to improve the
performance. Aniskevich and team [28] incorporate three additives containing core–shell
rubber (CSR) nanoparticles into the epoxy resin. The tensile properties, fracture toughness
and glass transition temperature of the epoxy and epoxy-based CFRP were then investi-
gated. It was found that with the addition of 4 wt.% of CSR nanoparticles, the fracture
toughness of the epoxy was significantly improved by 60–108%. In addition, the effect
of adding CSR nanoparticles also lead to a substantial improvement in the interlaminar
fracture toughness of the CFRP by 32–53%.

However, the recovery and potential reuse of the thermoset matrix from amine-cured
composites remains a relatively unexplored field that requires further investigation. This
paper explored the feasibility of incorporating recovered epoxy polymer (REP) into pristine
epoxy resin by optimizing the blending parameters, creating new materials, and contribut-
ing to the sustainability and eco-friendliness of materials recycling. The reuse of the REP
together with the recovery of carbon fibers and solvent achieved the closed loop process of
CFRP composite waste treatments.

2. Materials and Methods
2.1. Material

The DER-332® epoxy resin was purchased from Sigma-Aldrich, Singapore. The curing
agent, LC-100, a modified polymeric tertiary amine was purchased from ACCI Specialty
Materials (AC Catalysts). The 3-ply CFRP composite used for recycling purposes was made
in-house. The virgin carbon fibers utilized in the CFRP composite were purchased from
Hexcel. All other chemicals used were bought from Sigma-Aldrich without further treatment.

2.2. Procedures
2.2.1. Sample Preparation

A 3-ply carbon fiber-reinforced polymer (CFRP) was fabricated using the epoxy im-
pregnated method. Then, the 3-ply CFRP was digested using the reported method [29],
resulting in the recovery of carbon fibers, and a mixture of solvent and recovered epoxy
polymer (REP). The REP was separated from the solvent using rotary evaporation. Then,
the viscous liquid obtained was filtered and further dried under vacuum at 70 ◦C overnight,
resulting in a solid material. Subsequently, a re-blending process was carried out using
a solvent where REP was dissolved in acetone at a ratio of 1.05 g to 1.5 mL. Following
complete dissolution, the mixture was added into the degassed mixture of DER-332 and
LC-100 to obtain a homogeneous mixture. REP was blended with pristine epoxy at mass
ratio of 1, 3, 5 and 10 wt.%. Then, this mixture was poured into a silicone mold and placed
in a vacuum oven. The temperature profile was set as follows: 70 ◦C for 2 h, followed by
120 ◦C for 1 h and finally 180 ◦C for 3 h. The fully cured specimens were then used for
further testing.

2.2.2. Physical and Chemical Characterization

The FTIR spectrum was obtained using Bruker Vertes 80 V Fourier Transform Infrared
(FTIR) Spectroscopy analyzer in ATR mode. GPC data was obtained using Agilent 1260 In-
finity II GPC/SEC System with THF as the mobile phase. Thermal analysis equipment used
in this work is from TA Instruments. Thermo-gravimetric Analyzer TGA Q500 was used to
determine the thermal stability of the material. The temperature was increased from room
temperature to 800 ◦C with a ramp rate of 20 ◦C/min in air. Photo Differential Scanning
Calorimeter (PDSC) Q100 was used to determine the heat flow and Tg. The temperature
was increased from room temperature to 200 ◦C, with a ramp rate of 10 ◦C/min. Dynamic
Mechanical Analyzer DMA Q800 was used to investigate the thermo-mechanical properties
of cured specimens. The temperature range was set from 30 ◦C to 200 ◦C with a ramp rate
of 3 ◦C/min. For the measurement of loss modulus (G’) and tan δ, the frequency was fixed
at 1.0 Hz. The initial pre-load force and amplitude were 0.01 N and 10 µm, respectively.
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Tensile and flexural tests of the REP were conducted on Instron Universal Tester Double
column 5569 following the ASTM D638 and ASTM D790, respectively.

3. Results and Discussion
3.1. Blending and Curing Process

Gel permeation chromatography (GPC) analysis was initially conducted to confirm the
degradation of the epoxy. The recovered epoxy polymer had a molecular weight (Mw) and
molecular number (Mn) of 787 g/mol and 733 g/mol, respectively, and a polydispersity
index (PDI) of 1.074, indicating complete degradation.

It was observed that solid REP neither dissolves nor distributes evenly in pristine
epoxy. It tends to settle at the bottom of the pristine epoxy during the degassing process at
room temperature, or it causes the whole mixture to solidify at around 70 ◦C. To address
this problem, acetone was chosen as the solvent to dissolve the REP before blending. The
optimized and minimal solvent amount was found to be 1.5 mL of acetone per 1.05 g of
REP. To achieve homogenously fully cured re-blended epoxy, a series of curing steps were
incorporated into the curing profile to optimize the process. The specimens were initially
heated at 70 ◦C for 2 h, then at 120 ◦C for 1 h and finally at 180 ◦C for 3 h. Figure 1 gives
the image of re-blended epoxy with different REP compositions. When increasing the
amount of REP added, the color of the re-blended epoxy changed from light yellow to a
progressively darker shade of brown.
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Figure 1. Image of bar shape (ASTM D790) of re-blended epoxy with different REP compositions.

3.2. Chemical Characterizations of the Re-Blended Epoxy
FTIR

The FTIR spectrum was given in Figure 2. Given that the blending mass ratio of REP
was less than 10%, the differences in FTIR spectrum were not notably significant. The peaks
around 2900 cm−1 correspond to the stretching C-H bonds that are present in both the
pristine epoxy resin and the re-blended epoxy resin. The peak at 915 cm−1 is assigned
as the vibration C-O bonds of the oxirane ring in the epoxy polymer. The presence of
peaks between 1625 cm−1 and 1600 cm−1 indicates stretching C=C bonds of the aromatic
rings, while the presence of a band at 1500 cm−1 corresponds to stretching C-C bonds
belonging to the aromatic ring. The presence of a peak at 1240 cm−1 corresponds to the
stretching C-N band. Additionally, bands between 1100 cm−1 and 1000 cm−1 correlate to
the ether linkages. Peaks at 1000 cm−1 and 800 cm−1 indicate the presence of C=C bending
bonds [30].
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3.3. Thermal Characterization of the Re-Blended and Pristine Epoxy
3.3.1. TGA

The decomposition temperatures (Td) of each blend and the pristine epoxy resin sam-
ples were determined at 95 wt%, as seen from Figure 3a. The decomposition temperatures
for the pristine resin and the blends containing 1, 3, 5, and 10% REP were 398, 396, 397, 393,
and 375 ◦C, respectively. It is worth nothing that re-blending REP into the pristine epoxy
resin resulted in a slight decrease in the Td. This can be attributed to the increased content of
non-reactive small molecules, along with the possibility of some trapped solvent within the
REP. In comparison to the pristine epoxy resin, the thermal stability of REP is significantly
lowered, with an observed Td of 155 ◦C, which is a decrease of approximately 61.1%. How-
ever, this decrease is expected since the polymer matrix underwent degradation during
the initial solvolysis process. With this degradation, the morphology of the REP changes,
where the resin was broken down into lower molecular weight products. Therefore, less
energy is required to overcome the weak forces between these small molecules, resulting in
a lower decomposition temperature as compared to the larger molecules within the pristine
epoxy resin, where greater intermolecular forces exist between the longer polymer chains.
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In summary, the effect of incorporating REP into pristine epoxy resin has a relatively
minor impact on the Td. The most substantial reduction amounting to 23 ◦C (equivalent to
5.78%) for the 10% blend remains well within acceptable limits.

3.3.2. DSC

The glass transition temperatures (Tg) of the re-blended epoxy were determined from
the DSC plot as shown in Figure 4. It reveals a decrease from 183 ◦C to 171 ◦C when
compared with pristine epoxy. The decrease in Tg for re-blended epoxy ranging from 1
to 5 wt.% REP is around 7%. However, when the wt.% of REP was increased to 10 wt.%,
there is a substantial 20% drop in Tg. This indicates a significant disruption of the polymer
network structure [31] with the addition of a higher amount of REP. Such disruption may
increase the mobility of the molecules, thus reducing the polymer’s strength. This trend
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also aligns with the mechanical properties’ results, which will be discussed below. The
presence of solvent within the polymer could be another factor contributing to the reduction
in Tg. When solvent is introduced during the re-blending process, it can permeate between
the polymer chains and weaken the intermolecular forces. This, in turn, increases the free
volume within the polymer and results in a reduction of the polymer’s Tg [32]. Therefore,
as the amount of solvent increases with the REP wt.%, a more drastic decrease in Tg was
observed for the 10 wt.%. Although a decreasing trend in Tg was observed, the Tg up to
5 wt.% blend still remain relatively high and is comparable to that of pristine epoxy resin.
In addition, re-blended epoxy with 6 wt.% REP was also produced and tested to have a
Tg of 168 ◦C, which was quite close to that of 5 wt.% sample. Based on these findings, it is
reasonable to conclude that in order to maintain the mechanical properties of polymer, the
re-blend weight percentages should not exceed 5–6 wt.%.
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Figure 4. DSC plot of epoxy with different wt.% of REP.

3.3.3. DMA

The dynamic mechanical analysis plot is given in Figure 5. The DMA results of pristine
epoxy are consistent with the reference data [33]. The re-blending of REP into pristine
epoxy resin naturally leads to variations in the Tg. Similar to the DSC results, when the
re-blend percentage reaches 10%, there is a substantial 20% drop in Tg. As the wt.% of
REP increases, the interactions between the REP and the pristine epoxy may become less
favorable and reduce the cross-linking density. This reduced cross-linking density may
increase polymer mobility, allowing for more free volume within the material [34,35],
and ultimately results in a decrease in Tg. However, it is interesting to note that there
is an increase in Tg of the epoxy when 1 wt.% re-blended epoxy (REP) is added. This
observation might seem unexpected, but it could be due to the potential modification of the
polymer structure, making it more ordered or crystalline. This explanation may align with
the idea that the REP might be introducing specific interactions or alignment within the
polymer matrix, enhancing its rigidity. This shows that small amounts of REP may enhance
the material’s properties, but at higher percentages, the effects may become detrimental.
Further testing and in-depth analysis may be necessary to confirm the actual structural and
molecular changes occurring in the epoxy due to the presence of REP and to gain a deeper
understanding of these complex interactions and their impact on Tg.
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In Figure 5a, the storage modulus (G) reflects the polymers degree of elasticity as
depicted by the black lines. The red lines which represent the loss modulus (G’) reflects the
polymers’ ability to dissipate energy. Tan delta of damping is related to the ability of the
polymer to absorb and disperse energy. Both loss and storage modulus of the blends at
room temperature (30 ◦C) are relatively comparable and similar to that of pristine epoxy
resin. Compared to the pristine epoxy resin, Table 1 shows that the Tan delta values for
blends below 5 wt.% show a slight decrease. This suggests that the samples were less
efficient in energy absorption and dispersion. In contrast, the Tan Delta value for the
10 wt.% blend is increased, indicating that this sample is more elastic when compared to
blends of lower weight percentages.

Table 1. Storage and Loss modulus and Tan Delta.

Blend G at RT
(GPa)

G at 80 ◦C
(GPa)

G’ at RT
(MPa)

G’ at 80 ◦C
(MPa) Tan Delta

0% 1.96 1.69 42.0 32 0.692
1% 1.97 1.58 37.5 30 0.592
3% 2.00 1.75 35.0 27 0.680
5% 1.91 1.68 31.0 34 0.617
10% 2.03 1.76 37.5 31 0.873

3.4. Mechanical Properties Characterization of the Re-Blended and Pristine Epoxy

The mechanical test results, which provide insights into the tensile and flexural prop-
erties of the re-blended epoxy, can be seen in Figures 6 and 7. The error bars represent the
standard deviations. For the tensile stress and strain depicted in Figure 6a,b, a decreasing
trend as the blend composition increases is shown. The tensile stress and strain of the
pristine epoxy (0%) was recorded to be 76 ± 2.2 MPa and 3.2 ± 0.60%, respectively. For the
1, 3, and 5 wt.% blends, a reduction of 31.5, 52.3, and 81.3% in tensile stress can be observed,
respectively. Similarly, the drop in tensile strain for these blends as depicted in Figure 6b
shows a decline of 35.6, 65.0, and 83.3%, respectively, as compared to pristine epoxy resin
(0%). The largest decline occurred for 5 wt.% REP blend, where the tensile stress decreased
from 76 ± 2.2 MPa to 14 ± 6.5 MPa, and the tensile strain from 3.2 ± 0.60% to 0.54 ± 0.10%.
This indicates that the polymer’s ability to elongate under tensile stress decreases as the
REP content increases. Lastly, it is worth noting that the tensile modulus for the REP
blended epoxy is about 20% higher than the pristine epoxy resin. The tensile modulus for
5 wt.% REP blend increases to 3.9 ± 0.31 GPa from the original value of 3.2 ± 0.34 GPa
observed for pristine epoxy, suggesting that the re-blended epoxy polymers exhibit greater
stiffness than the pristine epoxy resin.
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The flexural strength reflects the amount of flexural stress required for the samples
to break and is shown in Figure 7. The flexural stress and modulus measurements of the
pristine epoxy were 117 ± 17.1 MPa and 2.4 ± 0.31 GPa, respectively. As observed, there is
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a large reduction in flexural stress of 33.9, 55.1, and 68.9% for the 1%, 3%, and 5% blends,
respectively when compared to the pristine epoxy. The most significant drop was at 5 wt.%
blending, where the flexural stress decreased to 36 ± 8.9 MPa. This decrease is expected as
when the proportion of REP increases, the degree of disruption in the polymer network
also increases. However, it is worth mentioning that the re-blended epoxy polymer’s ability
to withstand deformation under bending forces remains fairly consistent. The flexural
modulus across all the blends (from 0 to 5%) has a variation of only 1.55%. From the data
in Figures 6 and 7, the most significant trade-off when re-blending REP into pristine epoxy
resin is evident in the context of tensile and flexural stress properties where the decline in
strength is largely attributed to the reduced crosslinking density.

4. Conclusions

An ideal recycling process should prioritize environmental friendliness, sustainability,
safety and cost-effectiveness. Without an efficient recycling method, the challenge of waste
treatment for CFRP recyclates persists. Moreover, the continued demand and preference
for thermoset CFRP over conventional materials like wood and steel, despite their limited
recyclability, pose a substantial threat to the composite industry and its overall sustainability.
The effective recovery of the degraded polymer matrix under relatively mild conditions
while retaining the key properties of both the polymer matrix and reclaimed carbon fibers
emphasizes the potential for achieving a zero-waste outcome and closing the recycling
loop for CFRP through ongoing advancements in recycling methods. This approach not
only adds value compared to the losses associated with conventional disposal methods
for end-of-life CFRP, but also advocates a more sustainable and environmentally friendly
approach to managing these materials. While extensive research has been conducted on
the recovery of carbon fibers from CFRP, the recovery and potential reuse of the thermoset
matrix from amine-cured composites remains a relatively unexplored field that requires
further investigation. This paper explored the feasibility of incorporating recovered epoxy
polymer (REP) into pristine epoxy resin by optimizing the blending parameters. Following
this, a series of characterizations including TGA, DSC, DMA, FTIR, GPC and mechanical
tests were performed to evaluate the properties of the re-blended polymers. The findings
suggest that the optimal re-blending composition should be in the range of 5 to 6 wt.%,
without significantly compromising the polymer’s properties. This study provides a strong
foundation for further research efforts aimed at achieving a complete closure of the recycling
loop for CFRP materials and striving toward the goal of zero waste.
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