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Abstract: In this paper, LixCa(;_,)Cu3Ti4O12 (LCCTO) solid solutions were successfully synthesized.
XRD diagrams showed that dopant acceptor Li* cations, in a concentration range of x = 0.01-0.10,
were successfully merged into CCTO structure. It was found that doping with low concentrations of
lithium (x < 0.05) inhibited grain growth during annealing; however, for x > 0.05, the grain growth
process resumed. Permittivity and dielectric losses of obtained LCCTO ceramics were analyzed by
the means of impedance spectroscopy in a frequency range from 10~ to 10® Hz. It was revealed that
acceptor doping with lithium at an appropriate concentration of x = 0.05 allowed to obtain ceramics
with a permittivity level of ¢’ =3 x 10* and low dielectric losses tan < 0.1 at 1 kHz. Further addition
of lithium in a concentration range of x = 0.075-0.10 led to a sharp decline in permittivity and an
increase in dielectric losses. It was discovered that lithium addition to CCTO ceramics drastically
decreased grain boundary resistivity from 115 MQ-cm to 5-40 MQ-cm at x = 0.01-0.10. Using
Havriliak-Negami equation, the relaxation times for grain dipoles and grain boundary dipoles were
found to be ranging from 0.8 x 107% to 1.7 x 107¢ s and from 0.4 x 107* to 7.1 x 10~* s, respectively.
The developed materials can be used in the manufacture of Multilayer Ceramic Capacitors (MLCC)
as a dielectric.

Keywords: CaCu3TisO1p; permittivity; dielectric losses; internal barrier layer capacitance (IBLC);
electron-pinned defect dipoles (EPDD); Havriliak-Negami equation; impedance

1. Introduction

Ongoing development of various technological equipment implicates increasing de-
mand for materials with high permittivity to be used in different electronic devices, mainly
energy storage and energy conversion fields [1-9]. The designing of materials with high
permittivity that can outperform existing ones allows for the requirements for device minia-
turization to be met, and directly improves the capacity to effectively decrease the size of
electronic components. Hence, research into dielectrics has become more relevant in recent
years. Known ceramic materials of various chemical composition and structure, in particular
lead-based ceramics, PbZrOs-based ceramics, BaTiO3-based ceramics, SrTiO3-based ceram-
ics, Ko 5Nag5NbO;3-based ceramics, BiFeOs-based ceramics, Nag 5Big 5TiO3-based ceramics,
AgNbOs-based ceramics, and NaNbO3-based ceramics, regardless of the chemical nature of
the doping element, method, and place of doping, have reached the limit of permittivity [10].
Of the above, as is well-known, materials based on BaTiO3, SrTiO3, and TiO, are used for di-
electric purposes in the modern electronics industry [11-15]. Nevertheless, the permittivity
of these materials cannot always be sufficient to meet miniaturization requirements.

In addition to existing dielectric materials, calcium-copper-titanate-based CaCusTisO13
(CCTO) ceramics are being investigated as promising candidates for these applications due
to giant permittivity levels (¢/~10*) [16-18]. CCTO-based ceramics comprise semiconductor
grains, the boundaries of which are separated by a thin insulator layer; said combination
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leads to high permittivity. This particular structure is described as an internal barrier layer
capacitor (IBLC) [19], where semiconductor grains act as capacitor electrodes and grain
boundaries act as the capacitor layer. According to the IBLC model, the properties of CCTO-
based ceramics can be influenced by improving the electrical properties of semiconductor
grains and the insulating phase. However, despite their high permittivity, CCTO-based
ceramic materials demonstrate high dielectric losses (tand ~ 0.2), which lead to relatively
large energy losses in practical use and limit the application range. Therefore, it is essential
to reach an optimal balance of permittivity and dielectric losses.

One of the most effective ways to do so is the CCTO structure element doping with
various cations and anions [20-28], since the dielectric properties of CCTO-based ceramic
depend strongly on the nature, amount, and the method of addition of the dopants. Usually,
the additives can be divided into donor and acceptor. Donor dopants are elements with
a higher ionic charge than the one of substituted ions, a phenomenon which leads to
cation vacancies emerging and vise-versa for the acceptor dopants. In recent years, notable
progress in controlling the dielectric properties of CCTO ceramics by doping or co-doping
with various cations has been achieved by studies on the effect of Ni, Cd, Sr/Zr, Sr/Mg,
and Li. It is shown that a sample of the ceramic material Cag 9Srg1Cup 9Mgg 1TisO1, has the
smallest value of the dielectric loss tangent among all other doped compositions (0.05 at
a frequency of 1 kHz) [29]. According to the results of [20], the co-doping of Sr and Zr
simultaneously increases the permittivity and reduces dielectric losses, and the maximum
permittivity (~2 x 10*) and minimum dielectric losses (~0.8) at a frequency of 1 kHz
demonstrates Cag gSrg ,CuzTis«ZrxO1p (x = 0.3). Ni-doping (20%) in the study [30] resulted
in improved dielectric properties in a CCTO system, namely in a balance of the permittivity
(1.51 x 10%) and dielectric losses (0.051) at room temperature and frequency 1 kHz. When
Li;COj is doped in an amount of 0.5 wt.%, the permittivity is maintained at a level of
10° with a weak dependence on frequency below 10° Hz, and its loss tangent decreases
below 0.1 in the range from 300 Hz to 5 kHz (with a minimum value of 0.06 at 1 kHz) [31].

The characteristics of CCTO-based ceramics are also extremely sensitive to annealing
conditions, the most important of which are temperature and duration [28,32-34]. For
instance, obtaining CCTO-based ceramics with high permittivity requires prolonged ther-
mal treatment at 1080 °C, although temperatures above 1065 °C cause Cu®* reduction to
Cu*, which, in turn, can induce large dielectric losses. Hence, it is advisable to dope the
CCTO structure with additives affecting heavily both the calcining temperatures and the
microstructure, e.g., with Li-dopants. Studies [35,36] suggest that the CCTO co-doping
with lithium fluoride allows for a ceramic structure to be obtained with decreased dielectric
losses while preserving the high dielectric constant level. Particularly, it was reported that
ceramics with dielectric losses (tand) of ~0.06 and permittivity (¢’) of ~7.7-8.8 x 10* were
obtained. A significant decline in tand level and superior non-linear characteristics were
attributed to a significant rise in grain boundary resistivity, which was linked to a greatly
enhanced potential barrier and activation energy of conductivity in grain boundaries. In
the article [37] it is shown that co-doping with Li* and AI** ions at the Cu?* site can
lower the appropriate annealing temperatures and enhance the dielectric characteristics
of CCTO-based ceramics. Nevertheless, these reports do not state the influence of lithium
ions on the ceramics’ properties separately; moreover, the Li* ions have been used to fill the
Cu?* site. In this respect, one can assume that doping with lithium ions at the Ca sites can
induce considerable microstructure and dielectric properties changes in CCTO. Therefore,
this paper is mainly focused on acceptor doping of CCTO with Li* cations at Ca?* sites.

It should be noted that the concentration of dopants, which has a positive effect on the
structure and functional properties of CCTO ceramics, is at the microlevel and does not
exceed 0.5 mol.%. According to some individual studies, in the case of Li-doping, this value
decreases to 0.1 mol.% due to the formation of impurity crystalline phases in the phase
composition of the synthesized material at higher concentrations. Additionally, the reverse
effect of grain growth is observed instead of the desired growth inhibition [31,38]. The
simplest and most accessible method of synthesis, which makes it possible to control the
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stoichiometry of precursors to obtain single-phase ceramics with microamounts of dopants,
is the solid-phase reaction.

This paper’s aim is to investigate the structural and dielectric properties of Li-doped
LixCa(; _x)Cu3TigO1p-ceramics (x = 0.010; 0.025; 0.050; 0.075; 0.100) obtained by solid-
state method.

2. Materials and Methods
2.1. Synthesis

The Li-doped CCTO ceramic powders were obtained via solid-state synthesis using
titanium dioxide (TiO,, rutile, 99.5%, «Component-Reaktiv», Moscow, Russia), copper
(II) oxide (CuO, 99%, «Vekton», St. Petersburg, Russia), calcium carbonate (CaCO3, «<AO
Reahim», Moscow, Russia), and lithium carbonate (Li,COj3, 99%, «Rushim», Moscow,
Russia) powders. Stoichiometric amounts of the abovementioned powders were calculated
using the LixCa( _,)Cu3TiyO12 (x = 0.010; 0.025; 0.050; 0.075; 0.100) formula and grinded in
a high-energy mill (Fritsch Pulverisette 9) in ethanol media with Si3Ny4 beads. Resulting
oxide mixtures were thermally treated in a muffle furnace at 900 °C for 8 h with subsequent
deagglomeration in the high-energy Fritsch Pulverisette 9 mill.

Dielectric properties of prepared samples were studied, firstly, by single-axis pressing
of the powders into ~12 mm-diameter discs (~1-1.5 mm thick) at 100 MPa. Polyvinyl
alcohol (PVA) was used as a binder (5 wt.%) The obtained discs were sintered in a mulffle
furnace at 1050 °C for 8 h on an Al,O3-substrate in air. The sintered polished discs surfaces
were painted with silver paste and cured at 690 °C for 1 h.

2.2. Sample Investigation

Phase analysis of prepared samples was carried out by means of X-ray phase diffrac-
tion (XRD) (ARL X'TRA, Thermo Scientific, Ecublens, Switzerland) using CuKo-radiation
(A = 0.15412 nm) in the angle range of 20 from 20 to 80 degrees. The microstructure of
powders and the fractured discs of ceramics, without additional treatment, was studied via
scanning electron microscopy (SEM) (Aspex EXplorer, Aspex LLC, Framingham, MA, USA).
The dielectric properties were investigated by means of impedance spectroscopy (Novo-
control Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from
10~1-10° Hz at room temperature (excitation amplitude of 50 mV).

3. Results and Discussion

XRD patterns of basic and doped CCTO powders and sintered discs based on them
are shown in Figure 1a,b. The main peaks correspond to body-centered cubic lattice of the
CaCuszTigOq; structure (Im3) listed in a standard JCPDF#75-2188 database. It should be
noted that the absence of secondary phases (such as CaO and Li,O) demonstrates that the
Li* ions are embedded into the CCTO crystal lattice in listed quantities. The diffraction
pattern of the powders revealed reflections (20 = 36 and 74°) of the impurity phase of CuO.
However, the intensity of these reflections was very low; therefore, the presence of the
oxide phase is insignificant.

The phase compositions of sintered discs after polishing include three crystalline
phases. The main phase of ceramics remains CaCu3TizO1; however, in addition to CuO,
trace phases of TiO, are also observed for the sintered samples, while no phases involving
Li are discernible in any of the XRD patterns, regardless of dopant concentration.

SEM images of LixCa(j_5)CusTiyO12 powders with various Li* concentrations are
shown in Figure 2. The morphology of the samples prepared at 900 °C comprises homoge-
nous irregular spheres. The size of the spheres is estimated at ~2 um and is not influenced
by the Li* ions concentration.
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Figure 1. XRD patterns of basic CCTO and doped LixCa_xCuzTi;O12 (a) powders annealed at

900 °C and (b) discs sintered at 1050 °C.

(b)

Figure 2. SEM images of LixCa(;_,)Cu3TizO12 powders (a) x = 0; (b) x = 0.05; (c) x = 0.10.

The cross-section (fractured discs) morphologies of LCCTO ceramics with various Li

+

concentrations are shown in Figure 3. It can be noticed that the basic CCTO exhibits a rapid
grain growth process up to 2040 pm size. Additionally, a secondary phase, presumably
CuO, present on the grain boundaries can be observed. Doping the CCTO structure with



J. Compos. Sci. 2023, 7, 282

50f11

Li* ions can strongly influence the microstructure and grain sizes in ceramics. Namely, for
x = 0.025, the number of small grains (under 10 pm) is higher; moreover, the maximum
grain size decreases to 30 um. In the case of the concentration being raised to x = 0.05,
a further reduction in the size occurs. In this case, the microstructure consists of large
grains (up to 20 pum) which are isolated by numerous small grains (24 um). Also, the
presence of secondary phases on the grain boundaries becomes less noticeable, which
can be evidence of a lower diffusion capacity of copper leading to reduction in grain size
and the densification enhancement. As for further addition of dopant (x = 0.075-0.100),
the result is the opposite. The grain size and the number of larger grains is significantly
expanded. In other words, the doping of LixCa(; _)CuzTigO1, ceramics can be beneficial
to a reduction in grain growth only in case of Li* ions concentrations being lower than
x = 0.05.

(d)

Figure 3. SEM images of the morphology of cross-section LCCTO ceramics (a) x = 0; (b) x = 0.025;
(c) x =0.05; (d) x = 0.075; (e) x = 0.10.

The permittivity and dielectric losses frequency dependencies are shown in Figure 4.
As it can be noticed for the permittivity, the basic CCTO and lithium-doped LCCTO
(x = 0.01-0.05) show a plateau in the range between 10 Hz and 10 kHz, which is followed
by a sharp cut of permittivity values at increasing frequency, attributed to a Debye-like
relaxation process [39]. This behavior is typical for the IBLC structure, where a steep decline
in permittivity occurs in case of the mean free electron path induced by outer electric
field being less than the average grain size at higher frequencies. As a result, the main
contribution to high levels of permittivity at higher frequencies is due to the volume of
a semiconductor grain. As for the lower frequencies, it can be attributed to the insulator
grain boundaries. In addition, the increase in permittivity at lower frequencies (under
10 Hz) occurs due to the charge carriers being accumulated on the grain-boundary interface,
which leads to Maxwell-Wagner polarization owing to space charge storage [40]. As the Li*
concentration increases, the dielectric relaxation is present at ~10 Hz, resulting in a sharp
drop of permittivity at frequencies higher than 10 Hz. Moreover, the Li doping of CCTO for
x = 0.01 and 0.025 promotes the rise in permittivity for frequencies between 1 and 10* Hz;
at the same time, for x = 0.05, it is marked by a slight reduction in permittivity. Notably, the
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permittivity value still increases at low concentrations of the dopant despite the shrinking
grain size [41]. Thus, higher permittivity can be attributed to growing grain boundary
capacitance Cy, and surface charge storage occurring on grain boundaries. The basic CCTO
has a permittivity of 3.2 x 10%, while samples with x = 0.01; 0.025; 0.05 are characterized
by permittivity values of 5.5 x 10%; 4.5 x 10%; 2.8 x 10*, respectively, at 10 kHz. Further
addition of Li* leads to a sharp cut in permittivity in the 10-10° Hz range. Low permittivity
can also be attributed to the fact that the sintering temperature of 1050 °C is insufficient for
the formation of insulator grain boundary layer for these Li* concentrations. Such an effect
is exhibited presumably owing to the high CuO deficiency on the grain boundaries [42].
Only a small number of Cu ions undergo the oxidation-reduction reaction due to the
oxygen vacancies present for the optimal charge balance in case of CCTO ceramics being
sintered at elevated temperatures. Ultimately, this leads to the formation of Cu* and Ti3*
which determine the high permittivity. The abovementioned reactions typically occur
above 1065 °C in basic CCTO ceramics [19]. Hence, in case of lower Li* concentrations
(x = 0.01; 0.025), the high permittivity level can be attributed to a high content of CuO
segregated along the grain boundaries, while the increase to x = 0.05 results in copper
deficiency which promotes the oxygen diffusion along grain boundaries, thus making up
for the excessive in-grain charge [43—45]. Furthermore, acceptor doping CCTO structures
with lithium cations can lead to changes in the oxidation state (Cu*/Cu?*; Ti** /Ti**) for
charge compensation, which [46—48], in turn, results in a higher number of crystal dipoles,
additional attribution to polarization, and, therefore, in the increase of permittivity.
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Figure 4. Frequency dependence of (a) dielectric constant and (b) dielectric loss of LixCa(; _x)CuzTigO12
ceramics.

As it can be evinced from Figure 4b, basic and doped CCTO ceramics show the lowest
dielectric losses (tand) for x = 0.025 and x = 0.05, both of which tend to decline with
increasing frequency from 1 to 10-1000 Hz and then rapidly grow in the higher frequency
range. This trend is present due to the semiconductor nature of the grain which has a
relatively higher permittivity value than the one of the insulator grain boundaries. In this
case, the addition of x = 0.025 and 0.05 lithium concentrations induces the drop in the
minimal value of dielectric losses to 0.15 and 0.10, respectively, as opposed to basic CCTO
having tand of 0.18 at 1 kHz. Similarly to permittivity, the dielectric losses show a sharp
rise when further doped with Li* (x > 0.025). This can be a result of the poor insulation
properties of grain boundaries, leading to high leakage current. Additionally, the decrease
in dielectric losses at concentrations x < 0.05 can be attributed to the shrinkage in grain
sizes, leading to growing number of insulator grain boundary layers [23,49].



J. Compos. Sci. 2023, 7, 282

7 of 11

-Z", MQ

10

In order to analyze the grain boundary resistivity, the complex impedance spectroscopy
diagrams Z"-Z' (Figure 5a) were studied. Impedance spectra comprise a semicircle for
frequencies under 10 kHz and a semicircle for higher frequencies, which is evidence of
extremely low resistivity. As it can be observed, the Ca?* substitution with Li* in CCTO
lowers the specific resistivity estimated from the semicircle intersection with the Z’ point.
According to the IBLC model, the high-frequency semicircle corresponds to grain contribu-
tion and exhibits extremely low resistivity values, whereas the low-frequency semicircle
determines the grain boundary contribution and shows great specific resistivity. The
equivalent scheme for these type of impedance spectra consists of two serially connected
RC elements, as shown in Figure 5b where Ry, and Rgy, are specific resistivities of grains
and grain boundaries, respectively, and CPE1 and CPE2 determine the grains and grain
boundaries permittivity. Based on the scheme and complex impedance spectra, the values
of grain boundaries specific resistivity Ry}, were estimated using the EIS Spectrum Analyser
software, as shown in Figure 5b. As it can be seen, introducing a small amount of Li*
dopant sharply reduces the Ry, which gradually continues to decrease with further Li*
addition. Generally, the lowering in grain size results in growing grain boundary resistivity
Rgb ; however, in this case, it is accompanied by a decline in the Rgb value. Thus, one can
assume that the decrease in Rgy, is mainly caused by declining segregation on copper at the
grain boundaries.
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Figure 5. (a) The impedance spectra for LCCTO ceramics modified by different amounts of Li+ at room
temperature. (b) Dependence of the grain boundary resistance Ry, on the Li* cation concentration.

The Cole-Cole diagram for LCCTO is shown in Figure 6. As it can be observed, the
graphs show two semicircles which are attributed to the grain and boundary influence. The
third semicircle is present on the x = 0.01 sample diagram due to excessive contribution
of the ceramic—electrode interface. At the same time, the grain semicircle is present in the
high-frequency range (closer to the origin), followed by the boundary semicircles. Mean-
while, they display well-split relaxation times. Additionally, the doping of CCTO ceramics
with different concentrations of the additive can lead to the change in dipole relaxation
times. The contribution of induced dipole grain orientation (electron-pinned defect-dipole
(EPDD)), grain boundaries (internal barrier layer capacitor (IBLC)), and ceramic—electrode
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interface [50,51], as well as the parameters of the corresponding relaxations, can be esti-
mated using the Havriliak-Negami (HN) function:

e =L10C <eoo + &M) + (soo + Asw> (1)
weo (1+ (jwt)®) EPDD (1+ (jwr)*) IBLC

where ¢* is the complex permittivity; w is the angular frequency of the alternating electric
field; T is the average relaxation time; opc is the direct current conductivity; « is the
parameter characterizing the dispersion width of the relaxation time; and B is the peak of
the parameter asymmetry, Ae = &5 — €. Here, ¢ is the electrostatic permittivity for low
frequencies, while e, is the permittivity for high frequencies.
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Figure 6. Measured complex dielectric Cole-Cole plot.

HN function parameters for LCCTO ceramics estimated using DielParamFit_2 [52]
software are shown in Table 1. As shown in Table 1, the relaxation behavior of the grain
dipoles obeys the Cole—Cole function (x = 0.88-0.94, = 1). In other words, the grain
dipoles comprise a combination of relaxation time with a narrow distribution, as the «
parameter is close to the value of 1 in all of the cases. The estimated grain dipole relaxation
time ranges from 0.78 x 107 to 1.70 x 10° s. The dipole behavior of the grain boundaries
also obeys the Cole-Cole function (« = 0.45-0.57, 8 = 1); however, the o parameter is much
less than 1. This indicates the presence of an interacting dipole combination on the grain
boundaries which is characterized by a relaxation time dispersion. The estimated grain
boundary dipole relaxation time ranges from 0.4 x 107* to 7.1 x 10~ *s.

Table 1. Parameters of the Havrilyak-Negami equation for LCCTO ceramics.

Parameters of the

Havriliak-Negami Equation x=0 x=0.01 x=0.025 x=0.05
EPDD IBLC EPDD IBLC EPDD IBLC EPDD IBLC
Ae 15,846 2549 26,950 92,835 31,780 40,261 16,808 16,256
0.88 0.45 0.93 0.57 0.84 0.57 0.94 0.50
B 1 1 1 1 1 1 1 1
T, 08x107% 06x10™* 17x107% 62x107% 16x10° 71x107* 09x107°® 04x1074
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At the same time, it should be noted that for concentrations of 0.01 and 0.025 an
increase in the dipole component of polarization to 15,846 and 31,780, respectively, is
observed, with a slight change in the parameters « and S relative to the undoped CCTO.
The relaxation time for EPDD increases to 1.6 x 10~® s, which is probably due to the
polaron conductivity of the CCTQO; therefore, doping with small amounts of mobile lithium
leads to an increase in the permittivity due to this process. The contribution of the barrier
layer in the studied system, similarly to the dipole component, increases to x = 0.025 and
sharply decreases at x = 0.05. The calculated Ae increases from 2549 to 40,261 for x = 0.025
relative to the undoped CCTO. This behavior is related to the ratio of grain sizes and the
area of grain boundaries, as well as to a change in the chemical and phase composition.
This is confirmed by results of SEM and XRD analyses. Such an influence is complex, and a
clear improvement in the dielectric properties is observed for concentrations of x = 0.01
and 0.025.

The developed materials can be used in the manufacture of MLCC as a dielectric.

4. Conclusions

In this paper, the authors successfully obtained LixCa(j _)CuzTigOq2 (LCCTO) ceram-
ics following a solid-state reaction at 900 °C. XRD data show that the acceptor dopant
Li* ions in a x = 0.01-0.10 content range were successfully merged into the CCTO lattice
structure. It was found that doping with low lithium concentrations (x < 0.05) inhibited
grain growth during the ceramics annealing process; however, the growth proceeded for
lithium content x > 0.05. The permittivity and the dielectric losses were studied by means
of impedance spectroscopy of the obtained LCCTO ceramic samples. Doping the CCTO
structure with Li* in the x = 0.01-0.025 content range facilitated a minor increase in per-
mittivity in the 1-10* Hz frequency range, whereas for x = 0.05 permittivity was found to
be slightly lower. Additionally, for x = 0.025 and 0.05, a decline in dielectric losses at the
extreme was observed (0.15 and 0.10, respectively), compared to 0.18 for basic CCTO at
1 kHz. Further addition of the dopant up to x = 0.075-0.10 resulted in a sharp decline in
permittivity and in dielectric losses growth, which can be attributed to a CuO deficiency
along the grains. The Nyquist plot Z"'-Z' allowed for the grain boundary resistivity Ry}, to
be estimated. It was found that lithium addition to the CCTO ceramics drastically reduced
the grain resistivity from 115 MQ-cm to 540 MQ-cm for x = 0.01-0.10. The Cole-Cole
diagram ¢”-¢’ analysis using the Havriliak-Negami equation allowed for grain dipole and
grain boundary dipole relaxation times to be estimated. Mean grain dipole relaxation time
ranged from 0.8 x 107¢ to 1.7 x 107% s, while the estimated relaxation time of the grain
boundary dipole combination was found to be ranging from 0.4 x 10~*to 7.1 x 10~*s. The
obtained results can be used for developing high-permittivity materials, e.g., for ceramic
capacitor applications. The developed materials can be used in the manufacture of MLCC
as a dielectric.
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