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Abstract: Chitosan, which is a derivative of chitin, is particularly popular due to its biodegradable
and renewable nature. However, the properties of chitosan can be inconsistent due to the extrac-
tion process and its natural origin, which poses a challenge to its use in composite materials as
a matrix. The properties of chitosan can be tuned by controlling the degree of deacetylation (the
extent to which acetyl groups are removed from chitin to form chitosan) and molecular weight.
This paper presents a detailed study on the extraction and characterization of chitosan from shrimp
shells. The structural thermal and mechanical characterization were studied using several techniques:
Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis and differen-
tial scanning calorimetry. The intrinsic viscosity and deacetylation degree were determined using
various methods. The results showed an average degree of deacetylation of 77%. The chitosan films
exhibited a high tensile strength of 43.9 MPa and an elongation at break of 3.14%. The thermal
analysis revealed that the films had a glass transition temperature of 88 ◦C and a maximum thermal
degradation temperature of 320 ◦C. The findings of this research could contribute to the development
of chitosan-based materials with improved properties, leading to its wider adoption in the future
for composite matrix application. The simple and efficient method used for the extraction and
purification of chitosan from shrimp shells makes it a cost-effective and eco-friendly alternative to
synthetic polymers.

Keywords: chitosan extraction; deacetylation degree; biopolymer; composite matrix

1. Introduction

Currently, environmentally friendly materials with improved performance that have
reached major global applications and that are still being developed include cellulose,
chitosan, polyvinyl alcohol (PVA), polylactic acid (PLA), and others [1–3]. Among the
most common applications is use as a composite matrix. In a composite, the polymer
matrix primarily governs the structure, environmental tolerance, and durability [4–6].
The incorporation of these biobased polymers into the composite greatly improves their
mechanical properties such as tensile strength and impact resistance [7–10].

Chitosan is a biodegradable and renewable biological and easy film formation biopoly-
mer. It has significantly impacted research and development in various fields such as
chemistry, biology, health, and environment [11–17]. The biocompatibility, biodegradability,
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low allergen potential, non-toxicity, and easy film formation ability of chitosan are all
exceptional properties that explain the interest in this natural macromolecule, previously
regarded as waste. It has been revealed that this low-cost marine co-product can contribute
to the development of many commercial products with high added value. Generally, all
industrial applications are concerned, from pharmaceuticals to agroalimentary, including
the environment, agriculture, textile, printing, and cosmetics [18–20].

Chitosan products require specific purity and physicochemical properties that are
highly related to its extraction process. Since residual proteins and pigments can cause side
effects, many methods have been developed to prepare chitosan from exoskeletons with
high purity. In general, the methodologies published can be categorized into two types:
chitosan extracted using chemical methods and using biological methods [21]. The chemical
method is the most common in industrial extraction due to the low cost and non-complexity
of the extraction process and the equipment used [22]. The method consists of eliminating
proteins (deproteination), mineral elements (demineralization), color (bleaching), and
acetamide groups (deacetylation).

Chitosan is the partially deacetylated form of chitin, where a fraction of the N-acetyl-
D-glucosamine units have been converted to D-glucosamine. The degree of deacetylation
(DD), which represents the ratio of deacetylated units to the total number of units, is a
crucial structural parameter influencing the physicochemical properties of chitosan. The
term chitosan applies to any copolymer with more than 50% DD. Furthermore, the degree
of deacetylation not only impacts the physicochemical properties but also plays a significant
role in determining the biological properties of chitosan, including its biocompatibility and
biodegradability [23–25]. In addition to the degree of deacetylation, chitosan’s structure en-
compasses various model structures, including type-I and type-II crystallites, which exhibit
distinct helical conformations. These different crystalline forms contribute to the material’s
overall architecture and can influence its mechanical behavior and interactions with other
molecules or surfaces. It is also noteworthy that chitosan derived from crustacean sources,
such as crabs and shrimps, may have a different structure compared to chitosan obtained
from microbial sources like fungi. These structural variations can have implications for
chitosan’s performance and its applicability in different fields [26–28].

The mechanical and thermal properties of chitosan films are essential in determining
their suitability for use in composite applications. The mechanical properties of the chitosan
films, such as their tensile strength and impact resistance, are crucial in ensuring the
durability and performance of the composite material. Furthermore, the thermal properties
of the chitosan films are crucial in determining the stability of the composite material at
high temperatures. The use of chitosan films in composite applications has the potential to
enhance the mechanical and thermal properties of the composite, making it more resilient
and reliable. Therefore, understanding the mechanical and thermal properties of chitosan
films is critical in developing sustainable and efficient composite materials for various
industrial applications [29–40].

In this work, attention will be focused on the extraction of a biodegradable polymer
extracted from crustacean carapaces that is more promising as matrices for bio-composites
in the future. The important physicochemical properties of chitosan will be determined.
These properties affect directly the quality of the chitosan and are highly influenced by the
method used in its production and extraction. The deacetylation degree is one of the most
important properties. It was determined by three methods: conductometric titration in
basic and acid media, pH titration pH second derivative method, and infrared spectroscopy.

2. Materials and Methods
2.1. Raw Material

The different steps we followed to obtain chitosan are presented in Figure 1. The
first step describes the extraction of chitin: the shrimp shells (composed mainly of chitin,
proteins, and calcium carbonate) are crushed, washed, and treated in a water bath for
4 h with a sodium hydroxide solution (10% w/v) in order to eliminate the proteins. After
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filtration, the residue is washed with distilled water and then treated with hydrochloric
acid (2N) to remove calcium. The latter reacts with the acid, releasing CO2, according to
the following reaction:

CaCO3 + 2HCl→CaCl2 + H2O + CO2
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Figure 1. Chitosan extraction protocol by chemical method.

To obtain the chitin, the resulting product was washed with distilled water and ethanol
to remove pigments and lipids and then dried. During this treatment process, the color of
the shells became lighter and lighter. The obtained chitin thus was white in color, with a
fraction of 60 to 70% (by weight) of the quantity of the decalcified carapaces.

To extract chitosan, the chitin is treated in an autoclave with a sodium hydroxide
solution (45% w/v). The treatment is repeated twice, for 5 h each at a temperature of 105 ◦C.
This operation leads to the deacetylation of the chitin according to the following reaction:

R-NH-CO-CH3 + NaOH→ RNH2 + CH3-CO-Ona

The obtained chitosan is white in color and in the form of flakes representing 85% of
the total weight.

To remove any impurities that may have been present in the prepared polymer, we
proceeded to the following purification method: a 1% chitosan solution was prepared by
dissolving, with agitation, the chitosan flakes in an acetic acid solution at a concentration
of 2% by volume. The solution was filtered and the resulting filtrate was neutralized with
NaOH (1N) to pH 8. The obtained precipitate was washed abundantly with distilled water
and then dried at 45 ◦C. Finally, the dried chitosan was stored in powder form or in flakes
at 5 ◦C until it was used.

2.2. Chitosan Film Preparation

To prepare the chitosan film we used acetic acid as a solvent. The preparation involved
several steps (Figure 2), including dissolving the chitosan powder in acetic acid, casting the
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solution onto a substrate, and evaporating the solvent. The chitosan–acetic acid solution
was first prepared by dissolving the chitosan powder in acetic acid, typically at a concentra-
tion of 2% w/v. A homogenous solution was obtained by stirring the mixture continuously
at room temperature for a period of 6 h. The solution was then casted on petri dishes at
a volume of 25 mL to form a uniform layer, after which the solvent was evaporated by
leaving the plate to dry at room temperature.
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Figure 2. Chitosan film preparation using acetic acid as solvent.

2.3. Characterizations

Fourier-transform infrared spectroscopy was carried out using a spectrometer (Nicolet
iS10 Thermo Fisher spectrometer using FTIR) equipped with an attenuated total refection
(ATR) mounting in the wavenumber range between 525 and 4000 cm−1 with a resolution of
2 cm−1 and with 30 scans. The XRD analysis was carried out using a Bruker advance D8 eco
diffractometer, (50 KV-20 mA) equipped with a CuKα radiation source (λ = 1.5418 Å). The
diffraction patterns were collected over a (2θ) angular range of 10–70◦, or 5–70◦ for the clay
fraction, using a size 0.06◦ (2θ) step and a constant counting time. The chitosan molecular
weight was determined based on the intrinsic viscosity. To measure the intrinsic viscosity,
we used an Ubbelohde capillary viscometer. The measurement consists of determining,
at a given temperature, the flow time in a vertical capillary tube of the same volume of
solvent and a chitosan solution. The photoelectric cells are connected to a digital timer
giving the flow time in seconds with an accuracy of 10−2 s. In order to accurately determine
the degree of deacetylation of the prepared chitosan we used three methods: an acid and
base conductometric method, a pH-metric method and the IR spectroscopic method. The
mechanical properties of the films were determined using tensile testing. A universal tensile
machine (MTS criterion model 43) was used for the tests. The tests included measurements
of tensile strength (TS) and elongation at break (%E). The samples used were cut into
10 mm × 4 mm pieces that were tested at room temperature (26 ± 1 ◦C) with a crosshead
speed of 0.1 cm/min. The tensile strength (TS) and the elongation at break (%E) were
calculated as follows:

TS = Fmax/d

%E = (4L/L) × 100

where Fmax is the maximum load (MPa), d is the average thickness of the film (mm),4L is
the amount of film extension, and L is the initial length of the film.

Thermogravimetry/derivative thermogravimetry (TG/DTG) experiments were per-
formed with a thermogravimetric analyzer (Cahn VersaTherm). The thermal behavior
and stability of the chitosan film were assessed at temperatures ranging from 25 ◦C to
700 ◦C, with a heating rate of 20 ◦C min–1 under a nitrogen atmosphere at a flow rate of
25 mL min−1. Differential scanning calorimetry (DSC) experiments were carried out in
a differential scanning calorimeter (SDT-Q600 V8.3) with a controlled cooling accessory.
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All materials were sealed in aluminum pans and the DSC scans were performed in a
temperature range of 25–400 ◦C at a heating rate of 10 ◦C min–1.

3. Results and Discussion
3.1. FTIR and XRD Analysis

Figure 3 shows the FTIR absorption spectra of the prepared chitin and chitosan. The
positions of the different vibrational modes observed and their attributions are grouped
in Table 1. Both spectra exhibit large vibrational bands located around 3100–3500 cm−1

corresponding to the elongation vibrations of -N-H and -O-H including the hydrogen
bonds. The absorbance of this band in the chitosan spectrum decreases in intensity and
moves to a higher frequency. The main band at 3383 cm−1 in the chitin spectrum shifts to
3441 cm−1 in the chitosan spectrum. This shift is usually observed when chitosan has a
poorly ordered structure.
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The absorbances of the bands, due to the elongation vibrations of -CH and -CH2 at
2880–2923 cm−1, become lower in the case of chitosan.

Two absorption bands are present in both spectra at 1557 and 1652 cm−1 due to the
elongation vibrations of -CO-NH2. These amide I and amide II bands are more easily
identifiable in the case of chitin, as the latter is more acetylated than chitosan.

The chitin spectra show bands in the 500–900 cm−1 region known as the structure
sensitive region. The absence of these bands in the spectrum of chitosan reflects the change
in the structure of the polysaccharide [41].

The absorbances of the bands at 3124 and 3132 cm−1 are lower in the case of chitosan.
These absorbances decrease with the increasing degree of deacetylation. This decrease
reflects a reduction in the intermolecular hydrogen bonds C(2) N-H...O=C(7) and C(6)
OH...HO C(6). These results indicate that the antiparallel arrangements of the chitin chains
are transformed into parallel arrangements with the increasing degree of deacetylation [41].

The structural properties of the extracted chitosan were investigated using the XRD
technique. The XRD pattern of chitosan is presented in Figure 4, and the peaks observed at
2θ values match the values reported in the literature [42,43]. The pattern shows a broad
and poorly defined diffraction peak around 20◦, indicating a predominantly amorphous
or poorly crystallized structure. The broadening of the peaks can be attributed to the
amorphous nature of the polymer. Importantly, no impurity peaks were detected in
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the XRD pattern. This structural characteristic can have significant implications for the
mechanical properties of the chitosan film. The amorphous or poorly crystallized nature of
chitosan typically results in increased flexibility and elasticity, which are desirable traits
for various applications [44]. The chitosan film’s ability to undergo deformation without
fracturing or losing its integrity can be attributed to its poorly crystallized structure. These
properties make it suitable for applications where flexibility, tensile strength, and elongation
at break are important.

Table 1. Characteristic vibration bends of the extracted chitin and chitosan.

Wavenumber cm−1 Functional Group

500–900 Structure sensitive region

1028 Stretching of the C-O-C of the glycosidic in ring

1089 Stretching of -OH

895 and 1153 Glycosidic bend β ( 1 Õ 4)

1254 Distortion vibration of -O-H

1423 Symmetrical deformation of -CH3 and -CH2

1557 Amide II

1652 Amide I

523.741 and 1652 Chitin identification

2880 and 2923 Elongation of -CH and -CH2

3105 Intermolecular hydrogen bending
(2) NH. . . . . . . O=C (7)

3246 Intermolecular hydrogen bending
C(6)-OH. . . HO-C(6)

3100–3500 Elongation of -NH and -OH, including hydrogen bonds
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3.2. Molecular Weight Determination

Chitosan is mainly characterized by its molecular weight, which is an important param-
eter for a number of its physico-chemical and biological properties such as hydrophilicity,
viscosity, water absorption capacity, biodegradability, and biocompatibility. The macromolec-
ular chains of chitosan have a molecular weight in the range of 10 to 1500 kDa. The average
molecular weight of chitosan can be determined by a number of techniques, such as osmome-
try, light scattering, NMR, viscosimetric analysis of the intrinsic viscosity, and chromatographic
techniques (size exclusion chromatography, gel permeation chromatography).

One of the most widely used methods for chitosan molecular weight determination is
from the intrinsic viscosity η by applying the Mark–Houwink equation:

[η]= K.Mα
v

where:

• K and α are constants that depend on the polymer-solvent system at a given tempera-
ture;

• Mv is the molecular weight in dalton (Da);
• η is the intrinsic viscosity.

K and α are the Mark–Howink coefficients whose values are respectively 1.81.10−3 mL·g−1

and 0.93 in the case where acetic acid is taken as solvent [45]. The prepared sample had an
intrinsic viscosity of 30 cps (measured for 1 g of chitosan in 99 g of acetic acid solution (1%)) and
a molecular weight of 700 KDa.

The molecular weight is highly dependent on the chitosan preparation process which
may induce depolymerization of the macromolecular chains and/or degradation during
its production. The molecular weight value found for the chitosan prepared in this work is
relatively higher than those generally given in the literature [46]. This is probably due to
the mild treatment used for the deacetylation of chitin. Indeed, the parameters temperature
and concentration of the basic solution on the one hand and the autoclave technique on the
other hand have an influence on the molecular weight.

3.3. Deacetylation Degree Determination

In order to accurately determine the degree of deacetylation of the extracted chitosan
sample, three different methods were utilized. The first method, conductometric titration,
involves measuring the change in electrical conductivity as a result of adding a basic
solution to the chitosan sample in a solid form. This method provides a measure of the
amount of acetyl groups present in the sample, which can be used to calculate the degree of
deacetylation. The second method, the pH titration pH second derivative method, is based
on the principle that the presence of acetyl groups affects the nitration reaction of chitosan.
Finally, the degree of deacetylation was also determined using Fourier-transform infrared
(FTIR) spectroscopy. This method measures the infrared spectra of the chitosan sample and
compares it to a reference spectrum of fully deacetylated chitosan. In the following sections,
we will describe the results obtained using each method and discuss the implications of
these results.

3.3.1. Determination of the Degree of Deacetylation by Conductometric Titration

According to Yu et al. [47], conductometric titration is an adequate and appropriate method
to determine the degree of deacetylation of chitosan, except for some samples with a high degree
of crystallization. This titration method was carried out in basic and acidic media.

• Conductometric titration in basic medium

To investigate the conductivity variation of the chitosan solution, a solution was
prepared by dissolving 150 mg of chitosan in 10 mL of hydrochloric acid (0.1 N), and the
volume was adjusted to 200 mL using distilled water. The prepared solution was subjected
to titration with a sodium hydroxide solution (0.1 N) under continuous stirring. Figure 5
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shows the variation of the conductivity of the chitosan solution as a function of the volume
of sodium hydroxide added during the titration process.
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Figure 5. Conductivity variation of the chitosan solution as a function of the volume of a basic solution.

The curve exhibited two distinct inflection points, each representing a significant
change in the conductivity. These inflection points correspond to the amount of hydrochlo-
ric acid (HCl) required to dissolve the chitosan and convert the amino (-NH2) groups into
ammonium (-NH+

3 ) groups. By measuring the equivalent volumes of NaOH at these points
(V2 and V1), the degree of deacetylation (DDA) of chitosan can be determined.

The degree of deacetylation (DDA) of chitosan is then calculated from the following
equation:

DD = 203 × (V2−V1) × N
m + 42 × (V2−V1) × N

× 100

where:

• N is the normality of the NaOH solution (mol·L−1);
• V2 and V1 are the equivalent volumes of NaOH representing two inflection points;
• M is the mass of chitosan;
• 203 (g·mol−1) is the molar mass of acetylated monomer;
• 42 (g·mol−1) is the difference between the molecular weight of the acetylated monomer

and the molecular weight of the deacetylated monomer.

Applying the conductometric titration method in the basic medium, the calculated
degree of deacetylation was found to be DD = 76%.

• Conductometric titration in acid medium

The determination of DD by acid conductometric titration was carried out as follows:
A mass of 150 mg of chitosan was dispersed in 200 mL of distilled water, while stirring,
and the mixture was titrated with a 0.1 N HCl solution. Figure 6 shows the evolution of
the conductivity of the chitosan solution as a function of the volume of HCl added. The
inflection point corresponds to the quantity of HCl consumed by the amine groups of the
chitosan. The DD was calculated using the following equation:

DD = (203×V×N)/(m + 42×V×N)× 100
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where:

· N is the normality of the HCl solution (mol·L−1);
· V is the volume corresponding to the inflection point as shown in Figure 5;
· m is the mass of chitosan (g);
· 42 (g·mol−1) is the difference between the molecular weight of the acetylated monomer

and the molecular weight of the deacetylated monomer.
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The DD determination gives: DD = 77%.

3.3.2. Determination of the Degree of Deacetylation by pH Titration pH Second
Derivative Method

The pH titration method is a simple, reliable, and widely used method for determining
the degree of deacetylation in chitosan samples. The method is based on the principle that
the presence of acetyl groups affects the nitration reaction of chitosan, and the position and
height of the peak in the second derivative curve are related to the degree of deacetylation
in the sample.

The determination of DD by pH-meter titration was carried out as described in the
literature [48–50]. A solution of chitosan was prepared by dissolving 135 mg of chitosan in
an excess of HCl (0.1 N) solution and then neutralizing this solution with sodium hydroxide
(0.05 N) solution. Figure 7 shows the titration curve for chitosan.

Figure 8 shows the corresponding second derivative. The amount of hydrochloric acid
required to protonate the amine groups is determined from the latter curve.

The degree of deacetylation calculated from this method is 77%.

3.3.3. Determination of the Degree of Deacetylation by Infrared Spectroscopy

Infrared spectroscopy has also been used to determine degree of deacetylation [51].
This technique is generally used for qualitative analysis. Quantitative analysis of DD by IR
requires well-defined reference bands and an accurately plotted baseline.
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The presence of acetyl groups affects the IR spectra of chitosan, and the position and
intensity of the IR peaks can be used to identify the presence of acetyl groups in the sample.
The DD is calculated from the absorption bands located at 1320 and 1420 cm−1 (Figure 9).
The first band is characteristic of the acetylated amine or amide function while the second
was chosen as the reference band.
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The equation used to determine the DD of chitosan is the following:

A1320

A1420
= 0.3822 + 0.03133.(100−DD)

The DD was calculated from this equation to give 78%.
By utilizing multiple methods, we can obtain a more comprehensive understanding of

the degree of deacetylation in the extracted chitosan sample. The DDA results obtained by
the different titration methods are shown in Table 2. The average DD value calculated for
the chitosan prepared in this work is 77%.

Table 2. DD results obtained with different assay methods.

Titration Method DD %

Conductometric titration (basic) 76

Conductometric titration (acid) 77

pH titration pH second derivative 77

Infrared spectroscopy 78

Average 77

3.4. Mechanical Characterization

Mechanical characterization of chitosan films is crucial in assessing their suitability as a
matrix material in composite applications for enhancing mechanical properties. Parameters
such as the tensile strength and elongation at break of chitosan films offer valuable insights
into the material’s ability to withstand external stresses and strains and its behavior under
diverse loading conditions.

The chitosan films demonstrated a tensile strength of 43.9 MPa, indicating the maxi-
mum stress the material can endure before fracture occurs (Figure 10). Additionally, the
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elongation at break was measured to be 3.14%, signifying the maximum strain that the
material can undergo before rupturing. These findings indicate the potential of chitosan
films to enhance the mechanical properties of composites.
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Figure 10. Mechanical analysis: Representative tensile stress × strain test for the prepared chitosan film.

3.5. Thermal Characterization

TG/dTG analysis was performed on the chitosan film to investigate its thermal stability
using thermogravimetric analysis. The results (Figure 11) show that the chitosan film had
an initial weight loss of about 10% within the temperature range of 50 to 180 ◦C, which
was attributed to water evaporation (moisture content). This was followed by a second
weight loss of about 65% at temperatures ranging from 210 ◦C to 370 ◦C, which occurred
due to saccharide ring degradation, which is in full agreement with the results of previous
studies [52,53]. The dTG curve showed a single peak at around 320 ◦C, which indicated
the maximum thermal degradation rate temperature (Tmax). It was observed that the
degradation of the chitosan film continued until 450 ◦C.
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DSC analysis was also performed on the chitosan films using a differential scanning
calorimeter (DSC) to determine the glass transition temperature (Tg) and the thermal
degradation temperature (Td) of the films. The curve (Figure 11) exhibits a first sharp
and broad endothermic peak with a maximum at 88 ◦C, which corresponds to the glass
transition temperature (Tg) of chitosan film. The second endothermic peak appeared 302 ◦C,
which corresponds to the thermal degradation temperature (Td). This result suggests that
the chitosan film underwent a two-step degradation process. The first step was the loss of
the absorbed water molecules from chitosan, followed by the thermal decomposition of the
chitosan polymer. These results align with those reported in the literature [52–54].

Table 3 presents the main characteristics of the prepared sample. The structural
characteristics (MW, DD, and viscosity) of chitosan influence its physicochemical and
biological properties, such as solubility, biocompatibility, and reactivity, and mechanical
properties, such as elongation at break and tensile strength. It has been reported in the
literature that high-molar-mass chitosan has the best mechanical and barrier properties
compared to low-molar-mass chitosan. Sarasam and Madihally compared three different
molar mass ranges of chitosan (50–190 kg/mol, 190–310 kg/mol, and >310 kg/mol) [55].
Their study showed that the tensile strength of chitosan increases with increasing molar
mass. As for the degree of deacetylation of chitosan, Wiles et al. (WILES 2000) studied the
effect of three degrees of deacetylation of chitosan (92, 84, and 73% DD) on water vapor
permeability. They concluded that there is no significant effect on water vapor permeability.
It seems that the DD of chitosan affects the bioactivity of chitosan much more than its
mechanical properties [56].

Table 3. The prepared chitosan characteristics.

Molecular weight (KDa) 700

Deacetylation degree (%) 77

Intrinsic viscosity (cps) 30

Tensile strength (MPa) 43.9

Elongation at break (%) 3.14

Thermal degradation temperature (◦C) 320

4. Conclusions

Chitosan is a promising biopolymer for use as a matrix material in composite applica-
tions. The extracted chitosan possesses several desirable properties, including a molecular
weight of 700 KDa, a deacetylation degree of 77%, an intrinsic viscosity of 30 cps, a tensile
strength of 43.9 MPa, and a thermal degradation temperature of 320 ◦C. These properties
make it suitable for use in various fields, including biomedicine, environmental science,
and industry. By controlling the degree of deacetylation, the properties of chitosan-based
composites can be enhanced, resulting in improved biodegradability, biocompatibility, and
mechanical properties. The mixing of polymers and nanoparticles is opening pathways
for engineering flexible composites that exhibit advantageous electrical, optical, or me-
chanical properties. Moreover, chitosan-based composites have potential applications in
food packaging, wound dressings, drug delivery systems, and tissue engineering. Our
study highlights the potential of chitosan as a matrix for piezoelectric composite materials.
By combining chitosan with piezoelectric materials such as piezoelectric ceramic powder,
composite materials with improved piezoelectric properties could be developed. These
composite materials have potential uses in areas such as energy harvesting, sensors, and
actuators due to their unique properties. Overall, the current body of evidence suggests
that chitosan has a promising future as a sustainable and biodegradable material with
versatile applications, including as a matrix in composite materials.
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