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Abstract: Extracting the mechanical properties of a composite hydrogel; e.g., bioglass (BG)–collagen
(COL), is often difficult due to the complexity of the experimental procedure. BGs could be embedded
in the COL and thereby improve the mechanical properties of COL for bone tissue engineering
applications. This paper proposed a deep-learning-based approach to extract the mechanical prop-
erties of a composite hydrogel directly from the microstructural images. Four datasets of various
shapes of BGs (9000 2D images) generated by a finite element analysis showed that the deep neural
network (DNN) model could efficiently predict the mechanical properties of the composite hydrogel,
including the Young’s modulus and Poisson’s ratio. ResNet and AlexNet architecture were tuned
to ensure the excellent performance and high accuracy of the proposed methods with R-values
greater than 0.99 and a mean absolute error of the prediction of less than 7%. The results for the full
dataset revealed that AlexNet had a better performance than ResNet in predicting the elastic material
properties of BGs-COL with R-values of 0.99 and 0.97 compared to 0.97 and 0.96 for the Young’s
modulus and Poisson’s ratio, respectively. This work provided bridging methods to combine a finite
element analysis and a DNN for applications in diverse fields such as tissue engineering, materials
science, and medical engineering.

Keywords: composite hydrogel; tissue engineering; deep learning

1. Introduction

Almost all natural and artificial materials exist in the form of composites. Extracting
the material properties of composites is essential in many applications; for instance, marine
construction and buildings [1–3], materials science, and medical and tissue engineering [4].
In tissue engineering, biocompatible materials (i.e., biomaterials) are utilized to generate
hydrogels or other scaffolds to repair or replace damaged or diseased tissues [5]. The
selection of biomimetic materials for hosteler tissues is based on the physicochemical
properties of the native tissue to reduce the chance of scar tissue building at the interphase.
To improve the mechanical properties of COL, which are one of the most abundant proteins
in mammals [6], BGs can be used to formulate composite scaffolds [7]. Many papers
showed that the incorporation of BGs into COL could significantly improve the mechanical
properties of COL such as increased stiffness [5,8], reduced swelling, improved stability
and rheological properties (i.e., yield stress) [9], etc. In addition, the mechanical properties
of BGs-COL depend on the BGs’ concentration, spatial distribution, particle size, and
fabrication process [10]. For instance, Wang et al. [11] showed that crosslinking of BGs-COL
can affect composite hydrogels’ mechanical properties (crosslinked BGs-COL had a 37 kPa
Young’s modulus compared to a 5 kPa Young’s modulus for non-crosslinked BGs-COL).
These mechanical properties can primarily be determined experimentally, analytically [12],
or computationally [13] or by using finite element methods (FEM) [14–18].
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Theoretical homogenization methods such as the double-inclusion method, which
consists of an ellipsoidal inclusion that contains an ellipsoidal heterogeneity and is embed-
ded in an infinitely extended homogeneous domain [19]; self-consistent approaches; and
the Mori–Tanaka mean field method generally can solve simple microstructures and are
impracticable for complex structures [19–22]. For a heterogeneous material, the representa-
tive volume element (RVE) technique can extract the effective mechanical properties of the
composite material in the FEM [23–25]. RVE can be considered a volume that effectively
includes sampling all microstructural heterogeneities in the composite. It must remain
small enough to be considered a volume element of continuum mechanics [26]. Several
boundary conditions can be prescribed to impose a given mean strain or stress on the
material element. Omairay et al. [25] developed a plugin that can automatically apply
the concept of the periodic RVE homogenization and periodic boundary conditions in the
Abaqus software to estimate the homogenized effective elastic properties of the compos-
ite. Kim et al. [27] developed a Python script in the Abaqus user interface to generate
simulation models of the RVEs that consisted of inclusions and a matrix. In addition,
they used a random sequential expansion (RSE) algorithm to create a dataset of circular
shape inclusions in the matrix. Ye et al. [15] generated many RVEs with various types
of complex structures that consisted of arbitrary (either regular or irregular) shapes of
inclusions. These papers considered either inclusion as circular or elliptical or arbitrary
shapes. This study assessed four datasets of uniform shapes, non-uniform shapes, irregular
shapes, and a combination of the three mentioned datasets as a full dataset. Despite the
fact that applying RVEs in the FEM can be an easy-to-use tool to extract the mechanical
properties of composite hydrogels, this method also requires high computational costs and
is time-consuming. To tackle this challenge and speed up this process, machine learning
(ML) and deep learning (DL) technologies were introduced in the application of materials
science and composite materials design.

Recently, ML and DL algorithms in artificial intelligence have become essential tools in
vast applications [28,29], especially in composite material design and materials engineering,
which rely on their power to predict different material properties such as the mechanical
properties [15,27,30–35], thermal conductivity, and thermal expansion coefficients [36]. Due
to the structural complexity of composites and novel materials, optimizing and predicting
materials’ behaviors can affect enormous spaces of design untraceable by conventional
methods. By tackling this challenge with a sufficient dataset that is properly preprocessed,
ML aims to learn the mapping between the input and expected output by using the high-
dimensional feature vector from the original data. Recent advances in ML methods have
resulted in many prospects for overcoming traditional ways of designing composites, pre-
dicting material properties, and optimizing composite structures [15,27,35,37]. For instance,
Shokrollahi et al. [5] used a finite-element-based ML model to predict the mechanical
properties of composite hydrogels with circular shapes of BGs distributed in the COL. They
concluded that ML could effectively predict the mechanical properties of the composite
hydrogels, including the Young’s modulus and Poisson’s ratio, which showed R-values
of 95% and 83%, respectively. Bhaduri et al. [38] integrated 25 FEM analyses of 10 fiber
composites with U-Net architecture to predict the local stress field in a fiber-reinforced
matrix. Yang et al. [32] predicted the entire stress–strain behavior of binary composites
using convolutional neural networks (CNN) and a principal component analysis (PCA).
Li et al. [39] developed a genetic algorithm optimized back propagation (GABP) neural
network model to predict the transverse mechanical properties of unidirectional carbon-
fiber-reinforced polymer (CFRP) composites with microvoids. Zhang et al. [40] predicted
the mechanical properties of a composite laminate, including the failure factor of Puck
theory. However, ML models have not been applied to predict the mechanical properties of
BGs-COL with regular and irregular BGs (microstructure images of BGs-COL show that
BGs do not always have circular shapes [11]). This study used larger datasets of BGs-COL
microstructure images compared to a previous study [5] and various shapes of BGs in the
COL to predict the mechanical properties of BGs-COL by bridging FEM and DL methods.
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The purpose of developing this framework was to speed up the process of extracting the
material properties of composite hydrogels compared to the traditional methods, which
are mostly time-consuming and computationally expensive. Moreover, this study can
serve as a surrogate model for predicting the Young’s modulus and Poisson’s ratio of
composite hydrogels.

In this work, two well-known ML networks (ResNet [41] and AlexNet [42]) were
trained and tuned on the four datasets of BGs-COL microstructure images to predict the
Young’s modulus and Poisson’s ratio. A total of 9000 microstructural images of BGs-
COL were generated in three categories: circular BGs shapes with the same diameter as a
uniform dataset, BGs distributed in the COL with circular shapes and different diameters
as a non-uniform dataset, and free-shape BGs embedded in the COL as an irregular
dataset. In addition, the combination of the three generated datasets was considered the
full dataset. These datasets were generated by a Python script and run in the FE simulation
to extract their corresponding mechanical properties. The performances of the DNN
networks were evaluated in terms of the R-value, MAE, and mean squared error (MSE),
which demonstrated that the trained DNN models could perfectly predict the mechanical
properties of BGs-COL and overcome the challenge of prediction using the traditional
homogenization methods, thereby showing an excellent performance.

2. Materials and Methods

The workflow of the proposed framework that bridged an FE analysis with the CNN
networks to predict the composite material’s properties is illustrated in Figure 1. Firstly,
three datasets (uniform, non-uniform, and irregular shapes of microstructural images of
BGs-COL) were generated with 9000 microstructural images. These 200 × 200 pixel images
were then automatically imported into the FE software, and their corresponding Young’s
modulus and Poisson’s ratio were computed and extracted using a Python script. Two
well-known DNN networks—ResNet and AlexNet—were implemented and trained on the
datasets. Finally, tuned networks predicted the mechanical properties of the BGs-COL.
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2.1. Simulation-Based Datasets

The BGs’ shapes were divided into three categories and distributed in the COL using
Python scripts as shown in Figure 2. To generate COL containing BGs of arbitrary numbers,
sizes, and three different shapes, Python scripts were used. Firstly, a matrix size for COL of
20 × 20 µm was defined. For the regular shapes of BGs, a random number between 1 to
130 that represented the number of the BGs was picked. The diameter of the BGs was 1 µm
for the uniform dataset and a range of 0.2 to 1.5 µm for the non-uniform dataset. Following
that, the developed Python code picked two random numbers in the COL space (between 0
and 20) as the center of the first circle in the x and y directions, and the first BG was placed
in the COL. For the next circles, the distance of the picked numbers as the new circle’s
centers was checked and had to be greater than the diameter of the neighbor’s circles to
avoid overlap between circles. This step was repeated for the remaining circles to generate
the first BGs-COL image (Figure 2a,b). The following algorithm was employed to create
irregular shapes of BGs as shown in Figure 2c. Firstly, the non-uniform code was used as
previously described. Then, random vertices were generated in each circle’s local polar
coordinate system. The spline algorithm connected the vertices and generated irregular
shapes of BGs in the COL. It must be noted that although BGs embedded in the COL were
considered perfectly bonded for simplicity, the developed Python code could quickly be
expanded to generate interphase between the BGs and COL.
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The Python script, which was developed in the Abaqus/Explicit software version
2021, was motivated by [5,25]. This Python script was divided into two main phases to
calculate the homogenized elastic properties by implementing the unified periodic RVE
homogenization method concepts. Firstly, the code was used to generate the geometries
and assigned material properties (Young’s modulus (E) and Poisson’s ratio (ν)) of the BGs
as E = 76.7 GPa and ν = 0.261 [43] and COL as E = 3 kPa and ν = 0.49 [5]. The approximate
global meshing size was chosen as 0.2 µm with two-dimensional generalized plane stress
elements (CPS4R). To apply a uniform displacement of 20% of the COL length (4 µm), the
code determined the boundary surfaces and RVE dimensions; then, by building nodal sets,
the boundary conditions and displacement could be applied and the FE analysis could be
conducted. The second phase was post-processing and calculating the Young’s modulus
and Poisson’s ratio of the BGs-COL hydrogel. This step computed the first nodal forces at
the affected boundary nodes and divided them by the affected surface area to provide the
stress value. So, by dividing the calculated stress value by the applied axial strain of 0.20,
the Young’s modulus of the BGs-COL could be obtained.
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Moreover, the transverse strain was simply the ratio of the change in height to the
original height. The Poisson’s ratio was estimated as the ratio of the transverse strain to
the applied axial strain of 0.20. Detailed explanations can be found elsewhere [25]. The
verification of the simulation results was conducted using [12,25].

2.2. Machine Learning Approach

ResNet and AlexNet architectures were implemented and trained to extract the elastic
mechanical properties of the BGs-COL, including the Young’s modulus and Poisson’s ratio.
The motivation for choosing these networks was the study by Ye et al. [30], which showed
that ResNet had a higher accuracy in extracting the Young’s modulus and Poisson’s ratio
of composite materials than DensNet [44]. ResNet was proposed by He et al. [41] while
attempting to design a network that solved the vanishing gradient problem. ResNet was
developed with many layers: 34, 50, 101, 152, and even 1202. The version of ResNet
used in this paper had 34 layers (ResNet34). The basic block diagram used in the ResNet
architecture is called ResBlocks. In ResNet, a technique called skip connections was used
to connect activations of a layer to further layers by skipping some layers in between.
In addition, the AlexNet network also was trained because it has shown a significant
breakthrough in ML and computer vision, especially in image classification. It is a very
large network with over 6 million parameters. AlexNet consists of five convolutional layers
and three fully connected layers. In the last fully connected layer of both networks, the
rectified linear unit (ReLU) was chosen [45] as the activation function for the regression
problems. The ReLU function is denoted in Equation (1):

f (z) = max(0, z) (1)

Based on the ReLU function, there is a drawback when most of the inputs to ReLU
activation are in the negative range; subsequently, ReLU returns zero as outputs, a large
part of the network becomes inactive, and it is unable to learn further. For this reason,
He et al. [46] modified the ReLU function and called it the Leaky ReLU function, which has
a nonzero but slight slope of 0.01 when z < 0 as denoted in Equation (2):

f (z) =
{

0.01z f or z < 0
z f or z ≥ 0

(2)

The performance also was compared with the Leaky ReLU activation function. Max–
min normalization methods were chosen to scale all target inputs to the same order of
magnitude [47]. In the max–min normalization methods, the data were scaled to the range
of [0, 1]. This method converted the input value x of the attribute X to xnorm the range [low,
high] by using the formula in Equation (3):

xnorm =
(high − low)× (x − minX)

maxX − minX
(3)

where minX and maxX are the minimum and maximum values of the attribute X of the
input dataset. MSE was used as the loss function in the DNN networks. These DNN
architectures were implemented by using TensorFlow and Keras in the Jupyter Notebook
IDE [48]. The ML models were run on a computer equipped with a Ryzen 7 5800X processor,
64 GB of DDR4/2666 MHz memory, and an Nvidia GeForce RTX 3070 GPU.

3. Results

In the present study, three datasets were trained: uniform, non-uniform, and irregular
shapes. In addition, all datasets were combined and trained together as a full dataset. The
training and testing datasets contained 2550 and 450 images, respectively (using an 85:15
train–test split). The full dataset also contained 9000 images (7650 and 1350 for training
and testing, respectively). All networks were trained in 20 repeated epochs. Additional
statistical descriptors such as the MAE, MSE, R-value, and average were provided to
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evaluate the performance of our DNN networks. Figures 3 and 4 depict the Young’s
modulus and Poisson’s ratio predicted by ResNet and AlexNet, respectively, plotted against
the ground truth that the FEM generated. The centerline y = x shows that both trained
ResNet and AlexNet networks could perfectly learn and map the microstructure images to
the mechanical properties; e.g., Figure 3a–c,g indicate that the Young’s modulus could be
predicted by ResNet with a more than 0.96 R-value in all datasets. In addition, an efficient
metric of model performance for the material descriptor was the MAE, which provides
confidence estimates of the model’s prediction. When comparing the MAE to the range
of values (the range of values was 1 because the max–min normalization method was
used), the MAE was relatively small. For the Young’s modulus predicted by ResNet, the
MAE compared to the range was less than 8% for all datasets (Table 1). The Poisson’s
ratio extracted from the ResNet model trained with four datasets is plotted against the
ground truth (FEM) in Figure 3d–f,h. It can be seen that ResNet could perfectly predict
the Poisson’s ratio with more than a 0.94 R-value for the uniform, non-uniform, and full
datasets; while the irregular datasets showed a lower R-value of 0.85. In addition, the MAE
of the Poisson’s ratio extracted by ResNet compared to the range was less than 8% for
all datasets.
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(b,e) non-uniform dataset, (c,f) irregular dataset, and (g,h) full dataset.

Comparing all provided metrics of the AlexNet network showed a better performance
than ResNet in predicting the Young’s modulus and Poisson’s ratio except for the MAE of
the Poisson’s ratio in the non-uniform dataset. Relatively tight confidence intervals on the
errors indicated that the ResNet and AlexNet model architectures perfectly mapped the
microstructural images of BGs-COL to the elastic mechanical properties. ReLU and Leaky
ReLU were chosen as the activation functions in the last fully connected layer. Subsequently,
the performances of our DNN models were compared using the MAE of the networks on
the full dataset. In the AlexNet model, ReLU had a better performance than Leaky ReLU
(a 0.3% and 3.4% lower MAE for the Young’s modulus and Poisson’s ratio, respectively).
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Table 1. Using AlexNet and ResNet, we evaluated the performance of our implemented ResNet and
AlexNet networks with an 85:15 train–test split. The performances were measured according to the
error between the FEM results and the predicted Young’s modulus and Poisson’s ratio derived from
the trained AlexNet and ResNet. Statistical descriptors are provided for context (MAE, MSE, R-value,
and average of distributed data using the max–min normalization method).

Network Dataset Properties MAE MSE R2 Average

AlexNet

Uniform
E11 0.032 0.001 0.99 0.373
ν12 0.053 0.004 0.98 0.587

Non-uniform
E11 0.011 0.001 0.99 0.382
ν12 0.143 0.026 0.95 0.591

Irregular E11 0.013 0.001 0.99 0.491
ν12 0.068 0.006 0.92 0.561

Full
E11 0.044 0.003 0.99 0.258
ν12 0.023 0.001 0.97 0.716

ResNet

Uniform
E11 0.053 0.005 0.97 0.373
ν12 0.062 0.007 0.94 0.587

Non-uniform
E11 0.056 0.005 0.98 0.382
ν12 0.046 0.003 0.95 0.591

Irregular E11 0.045 0.003 0.96 0.491
ν12 0.077 0.008 0.85 0.561

Full
E11 0.079 0.008 0.97 0.258
ν12 0.074 0.007 0.96 0.716

Similarly, in the ResNet model, the predicted Poisson’s ratio had a 0.1% lower MAE
with the ReLU activation function. However, the Young’s modulus predicted by ResNet
showed that Leaky ReLU could perform better than ReLU (3.0% lower MAE). As a result,
ReLU was selected for all networks and datasets depicted in Figure 3i.

4. Discussion

This paper proposed a deep-learning-based approach to extract the mechanical prop-
erties of a composite hydrogel directly from the microstructural images. By integrating
FEM and a Python script, three datasets of microstructural images were generated with
uniform, non-uniform, and irregular shapes of BGs that contained 3000 2D images per
each dataset and their corresponding Young’s moduli and Poisson’s ratios. Combining all
datasets also provided a larger dataset containing 9000 images. Then, ResNet and AlexNet
were implemented and trained on the datasets. The performance of ResNet and AlexNet
networks were measured with an 85:15 train–test split by calculating the errors between
the FEM and DNN results. Statistical descriptors that included the MAE and R-value
showed that both networks had a great performance in predicting the Young’s modulus
and Poisson’s ratio, although AlexNet had a much better performance. This work could
guide the design of BGs-COL and other composite hydrogels and provide a framework for
clinicians to predict composite hydrogels’ mechanical properties rapidly.

This study fed 2D images to ResNet and AlexNet networks and mapped them to
the corresponding Young’s modulus and Poisson’s ratio extracted via FEM. In the first
dataset, uniform, arbitrary numbers of BGs with a diameter of 1 µm were embedded in the
COL, and 3000 microstructural images were generated. This dataset had the simplest BG
geometries and the best performance when AlexNet was trained (0.99 and 0.98 R-values for
the Young’s modulus and Poisson’s ratio, respectively). The average normalized Young’s
modulus and Poisson’s ratio in the uniform dataset were 0.372 and 0.587, respectively.
These metrics showed that for most of the images, the Young’s modulus had small values
with some larger values. However, the average of the normalized Poisson’s ratio indicated
an equal distribution in the range of 0 to 1. The main reason for this distribution, which was
repeated in all datasets, can be referred to as the volume fraction of BGs in the COL, which
had a linear relation with the Young’s modulus and Poisson’s ratio. Shokrollahi et al. [5]
showed that the Young’s modulus would increase when increasing the volume fraction



J. Compos. Sci. 2023, 7, 54 9 of 12

of BGs in the COL. Contrarily, the Poisson’s ratio would decrease with a greater volume
of BGs in the COL. Referring to this conclusion, in the uniform dataset, most images had
a lower volume fraction of BGs in the COL. A Python script was also implemented to
generate irregular shapes of BGs in the COL in order to have a variety of datasets and to
ensure that the datasets covered any possible BG shapes compared to real composites.

Our main motivation was to address a gap in the integration of FEM and robust DNN
methods to predict the mechanical properties of a composite hydrogel [34,49,50], and we
were inspired by the research in [5,30]. Ye et al. [30] concluded that ResNet34 and ReLU had
a better performance in predicting a composite’s mechanical properties than DensNet and
Leaky ReLU. Similarly, ReLU had a better performance; however, the results showed that
AlexNet was more accurate than ResNet34. When comparing the developed non-uniform
dataset results containing 3000 images with the research of Shokrollahi et al. [5], they had
a smaller dataset containing 2000 images with the same shapes and showed that better
R-values for both the Young’s modulus and Poisson’s ratio were obtained. To achieve
these DNN performances, preprocessing of the data and tuning of the hyperparameters
were conducted in both ResNet and AlexNet networks. First, a max–min normalization
method was applied, which could help to improve DNN networks’ performance [47] and
the networks to be unbiased. In addition, two activation functions were used in the last
fully connected layer (with a better performance of ReLU than Leaky ReLU), and MSE was
chosen as a loss function for both ResNet and AlexNet. The rest of the hyperparameters of
ResNet and AlexNet remained as the default settings. When comparing the performances
on all datasets, it was seen that the DNN networks performed well and were not shape-
oriented. Whether the BGs’ geometry was circles or irregular shapes, the DNN extracted
important features and mapped them to the corresponding outputs.

The dataset used in this study contained 2D images with different shapes and random
distributions of BGs in the COL. However, the proposed method could be expanded to
predict the three-dimensional mechanical properties of BGs-COL. For simplicity, it was
considered that the BGs bonded perfectly in the COL; the Python code could be easily
modified to generate an interphase between the BGs and COL. In addition, the Young’s
modulus and Poisson’s ratio were extracted; this framework could extract different material
properties such as stress–strain curves and distributions, etc.

5. Conclusions

This study showed that by bridging DNN with FEM, the mechanical properties of a
composite hydrogel could be predicted perfectly by using microstructural images. Using a
Python script in the FE software, three datasets of microstructural images were generated
with uniform, non-uniform, and irregular shapes of BGs that contained 3000 2D images per
each dataset and their corresponding Young’s moduli and Poisson’s ratios. The datasets
were also combined into a fourth dataset containing 9000 images. ResNet and AlexNet
were implemented, tuned, and trained on the datasets. Different statistical metrics such as
the MAE, MSE, and R-value were used to measure the performances of the implemented
ResNet and AlexNet networks. The statistical descriptors showed that the ResNet and
AlexNet networks had great performances in predicting the Young’s modulus and Pois-
son’s ratio whether the shape of the BGs distributed in the COL was circular or irregular.
However, AlexNet had a relatively better performance with the ReLU activation function.
This work could ease the extraction of composite hydrogels’ mechanical properties and
provide a surrogate model of FEM for the rapid prediction of the Young’s modulus and
Poisson’s ratio of composite hydrogels, which could be further employed in developing a
tool for tissue engineers and clinicians.
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