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Abstract

:

Calcium oxide plays an important role in alumina production by binding SiO2 from aluminosilicate raw materials (bauxite, nepheline, kaolinite, etc.) in aluminum-free compounds. The efficiency of the hydrochemical technology depends on the activities of calcium oxide or its compounds introduced into the alkaline aluminosilicate slurry. In this paper, we considered the effects of different calcium compounds (calcium carbonate CaCO3, gypsum CaSO4·H2O, calcium oxide CaO and calcium hydroxide Ca(OH)2), introduced during the hydrothermal stripping of aluminosilicates with alkaline solutions, on the degree of aluminum oxide extraction, with the subsequent production of fillers for composites. Ca(OH)2 was obtained by the CaO quenching method. Extraction of Al2O3 in an alkaline solution was only possible with Ca(OH)2, and the degree of extraction depended on the conditions used for CaO quenching. The effects of temperature and of the duration of CaO quenching on particle size were investigated. In potassium solution, the best results for Al2O3 extraction were obtained using CaSO4·H2O gypsum. The obtained solutions were processed using the crystallization method.
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1. Introduction


The environmental requirements for carbonate emissions are being tightened, and the construction of new alumina refineries processing raw materials by sintering is prohibited, while the existing refineries are subjected to mothballing. These requirements have been implemented in the U.S.A. and Europe and are beginning to take effect in China. Therefore, new plants using hydrometallurgical technologies are being constructed. The proposed hydrometallurgical technologies for alumina production also have disadvantages resulting from overgrowing the heating surfaces of autoclave equipment and the need to use calcium carbonate calcination to obtain calcium oxide. To solve these problems, the use of calcium oxide must be replaced with the use of other compounds available in mineral ores and anthropogenic waste [1].



Aluminosilicates originate from Al2O3–SiO2 systems. The introduction of calcium oxide into an Al2O3–SiO2 system during leaching of aluminosilicate raw materials replaces Al2O3 with CaO and forms calcium silicate in the aluminate solution [2,3].



Sintering and hydrochemical methods are used to process highly siliceous bauxite.



In the process of bauxite sintering, CaO is added to bind SiO2 and obtain 2CaO-SiO2. The disadvantages of this method are the high capital intensity and energy consumption, as well as the low stability and the possibility that the 2CaO–SiO2 will decompose during the processing of the sinter and lead to the loss of alkali and alumina [4].



CaO is not used during the hydrochemical processing of high-modulus bauxite with a silicon modulus exceeding 7, since the SiO2 content is low enough, and the losses are insignificant.



In processing highly siliceous bauxites, calcium oxide is added during the leaching of high-modulus alkaline solutions to obtain insoluble calcium silicate compounds without aluminum. With the use of Bayer hydrochemical technology, sodium calcium hydrosilicate Na2O–CaO–SiO2–H2O (SCHS) is formed, and with Bayer hydrogarnet technology, the alumina–iron hydrogarnet 3CaO–Fe2O3–2SiO2–2H2O is formed.



The efficiency of hydrochemical technologies depends on the activity of calcium oxide or its derivatives introduced into the alkaline aluminosilicate slurry.



The authors of [5] described a method for the synthesis of calcium oxide by heat treatment of an aqueous solution of calcium acetate and d-glucose at 350 and then at 700 °C. In this case, highly dispersed calcium oxide with an average particle size of 77 nm formed. This technology is intended for low-tonnage production and is not suitable for the production of alumina with a CaO demand of approximately 1 million tons.



For the CaO–SiO2–H2O system, more than 17 phases are known, and their composition depends on the initial CaO/SiO2 ratio and on the temperature [6,7,8,9,10,11,12,13,14,15,16]. Unibasic (tobermoritic) and biaxial hydrosilicates are characteristic of alumina production and can be used as fillers during the preparation of composite materials [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]. They are formed during the hydrochemical processing of the sinter due to the interactions of the 2CaO–SiO2 sinter with dilute aluminate solutions as well as from alkali regeneration of sodium–calcium hydrosilicates during leaching with different variants of the Ponomarev–Sazhin method.



In the Na2O–CaO–SiO2–H2O system, calcium hydrosilicate and SCHS may be stable phases, depending on the combination of temperature and alkali concentration [10].



The physicochemical properties of NaOH and KOH solutions differ significantly. The electrolyte activity coefficient in NaOH solutions is about an order of magnitude smaller than in potassium solutions, and, consequently, the chemical activity of sodium solutions is lower.



Certain differences in the behavior of individual sodium and potassium compounds are primarily due to the chemical properties of the sodium and potassium ions. The potassium ion has a larger ionic radius than the sodium ion, i.e., 1.33 Å vs. 0.98 Å of the latter. This explains the lower hydration capacity of potassium compared to sodium. Potassium ions weaken the bonds between water molecules in the hydrate shell and promote an increase in the translational movement of water molecules surrounding the ions; sodium ions, on the contrary, reduce the mobility of water molecules near the ions and promote the strengthening of bonds between water molecules.




2. Materials and Methods and Results


X-ray fluorescence analysis of the chemical composition of the samples was performed on a Venus 200 wave dispersion spectrometer (Panalyical B. V., Almelo, The Netherlands). Chemical analysis was performed using an Optima 2000 DV inductively coupled plasma optical emission spectrometer (Perkin Elmer, Waltham, MA, USA). Semi-quantitative X-ray phase analysis was performed on a D8 Advance diffractometer (BRUKER, Billerica, MA, USA) using copper (Cu) Kα radiation at an accelerating voltage of 36 kV and a current of 25 mA.



Coarseness was determined with a Winner 2000 laser particle size analyzer of the Photocor series, the measurement principle of which involves static and dynamic light scattering.



2.1. Lime Quenching Mechanism


The mechanism for quenching has not been studied sufficiently, but preference is given for its explanation to the crystallization theory, describing the dissolution of CaO followed by the crystallization of Ca(OH)2.



A scheme is proposed for CaO dissolution via the sequential reactions:


CaO + 2H2O → CaO ∙ 2H2O → CaO·H2O + H2O



(1)







It is assumed that in the process of calcium oxide dissolution, supersaturated solutions are obtained due to the formation of complex dihydrates with CaO·2H2O composition. The process of calcium oxide hydration by water proceeds according to


CaO + 2H2O → Ca 2+ + 2OH−,



(2)




followed by the crystallization from the Ca(OH)2 solution.



Ion hydration leads to the self-dispersion of CaO colloids, which naturally accelerates the solid–phase interactions between CaO and water.



Thus, the overall process of CaO dissolution in water is reduced to the initial hydration of CaO in solution, and the chemical interaction of CaO with water results in the formation of hydrated calcium ions. After saturation of the solution, dissolution of CaO stops, Ca(OH)2 crystallizes from the solution, and the process of CaO hydration proceeds in solid phase.



The solubility of Ca(OH)2 in water and in alkaline solutions decreases with increasing temperature. At 90 °C, the solubility in water is 0.591 g/L, at 120 °C, it is 0.40, at 150 °C, it is 0.247, and at 200 °C, it is 0.05 g/L. In alkaline solutions, the solubility is negligible [4]. There are reports indicating that in the presence of silica, the solubility of CaO increases because the sodium silicate solution acts as a liquid ionite, transferring and retaining the calcium ions in solution. As a result of its low solubility, CaO is almost completely incorporated into the crystallizing solid phases. The compositions and structures of these compounds depend on the conditions under which the interactions occur (concentration, ratio of the components and temperature) [12].



The structure of the Ca(OH)2 powder, including its coarseness as a function of temperature and quenching duration, was investigated.



The effects of the calcium oxide quenching temperature were studied at 20–200 °C (Table 1 and Figure A1, Figure A2, Figure A3, Figure A4 and Figure A5).



The effect of CaO quenching duration was studied in the 120–1440 min range at a temperature of 130 °C (Table 2 and Figure A6, Figure A7, Figure A8, Figure A9 and Figure A10).



Thus, an increase in the duration of the quenching process led to increases in the particle size, which reduced the activity of the reagent.



Analyses of the results obtained from a study of the structure of the Ca(OH)2 powder as a function of temperature and duration of CaO quenching showed that:




	-

	
With increasing temperature, the particle size decreased;




	-

	
With increasing duration, the particles became larger;




	-

	
The optimum conditions for quenching were obtained at a temperature of 200 °C and with a quenching duration of 2 h.









With the existing design of the industrial hardware used for autoclave leaching, it is reasonable to use a temperature of 130 °C, which provides acceptable particle sizes.




2.2. Influence of the Calcium Additive in Systems with Participation of Na2O


We investigated the behavior of the CaO–Al2O3–SiO2 system in sodium alkaline solutions with the calcium-containing materials calcium carbonate CaCO3, gypsum CaSO4–H2O, calcium oxide CaO and calcium hydroxide Ca(OH)2.



The clay fraction of kaolinite clay from the Alexeevskoye deposit, which was practically a monophase comprising kaolin Al2(Si2O5)(OH)4, was used, the basis of which was the Al2O3–SiO2 system.



The chemical composition of the kaolinite clay, in wt. %, was Al2O3, 35.6; SiO2, 43.2; and other components, 21.2; the silicon modulus (µSi) was 0.6.



The kaolinite clay resembled loose sand with a whitish color; its density was 2.06 g/cm3, its bulk density was 1.36 kg/cm3, its pH was 7.7, and its average grain size was 2 mm.



The CaO–Al2O3–SiO2 system was studied with solutions containing 240 g/dm3 of Na2O with a liquid-to-solid ratio of 10.0, at a temperature of 240 °C and for a duration of 240 min; a thermostat unit was used, with six autoclaves rotating through the head and a working volume of 250 cm3 (Figure 1).



The reagents used in the work were chemically pure CaCO3, CaSO4 and CaO.



Ca(OH)2 was obtained by the CaO quenching method.



A study of the forms for the calcium-containing additives showed that when using CaCO3, the release of Al2O3 into the solution did not occur. In the CaO–Al2O3–SiO2 system, phase transformations occurred as follows (Figure 2):




	-

	
The calcium-containing phases Ca(OH)2 and Ca4(Si6O15)(OH)2(H2O)5 were formed;




	-

	
When kaolin Al2O3–2SiO2–2H2O interacted with NaOH, sodium hydroaluminosilicates were formed with different compositions;




	-

	
A phase comprising sodium silicate and tobermorite was formed.









When CaSO4 was used, no Al2O3 was released into the solution. Phase transformations did occur in the system as follows (Figure 3):




	-

	
The calcium-containing phases Ca(OH)2 and NaCaHSiO4 were formed;




	-

	
When kaolin, Al2O3–2SiO2–2H2O, interacted with NaOH, cancrinite, (Na6(Al6Si6O24))(NaOH)2(H2O)6, was formed.









In studies using Ca(OH)2, calcium hydroxide was obtained by quenching calcium oxide at room temperature, with a liquid-to-solid ratio of 3:1. The liquid phase was separated by filtration. The moisture content of the product was 50%.



When using Ca(OH)2, the rate for recovery of Al2O3 from the alkaline solution was 26.61%.



The phase composition of the obtained cake is shown in Figure 4.



To increase the efficiency of Ca(OH)2 utilization, hydrothermal activation of the calcium-containing additives, including CaO quenching at 130 °C, was investigated.



After high-temperature quenching, the efficiency of Al2O3 extraction into the solution was increased to 69.34%.



The phase composition of the cake obtained with Ca(OH)2 quenched at 130 °C is shown in Figure 5.



The increased rate of the extraction of Al2O3 from the solution is explained by the fact that increasing the temperature of CaO quenching increased the activity of the resulting Ca(OH)2. Earlier, it was noted that increasing temperature enhanced the quenching process and improved the quality of the product by increasing the dispersibility of the powder. The productivity of the process increased by a factor of 7–8 in comparison with that obtained with low-temperature quenching (25 °C).




2.3. Influence of the Calcium Additive in Systems with Participation of K2O


It used to be thought that potassium solutions of alkalis and aluminates behaved in the same way as sodium solutions, but recent studies in this field indicate that their behavior is not always the same. For example, when kaolins are treated with potassium aluminate solutions at a temperature of about 100 °C, the formation of potassium aluminosilicates practically does not occur, while sodium aluminosilicate under the same conditions is formed quickly, completely binding all the silica.



We investigated the behavior of the CaO–K2O–Al2O3–SiO2 system in sodium alkaline solutions with the calcium-containing materials calcium carbonate CaCO3, gypsum CaSO4–H2O, calcium oxide CaO and calcium hydroxide Ca(OH)2.



The CaO–K2O–Al2O3–SiO2 system was studied with solutions containing 240 g/dm3 of K2O with a liquid-to-solid ratio of 8.0, at a temperature of 240 °C and for a duration of 240 min.



The replacement of sodium oxide with potassium oxide up to 32–33 did not reduce the degree of extraction of the main components into the solution. A further increase in the proportion of potassium in the initial solution up to 55–56 contributed to a sharp decrease in the content of aluminum and potassium in the solution after leaching. Increasing the amount of K2O up to 100 negatively affected the process of decomposition of the raw materials, with a further decrease in the degree of transition of aluminum and potassium into the solution.



The chemical composition of the samples depending on the calcium-containing additive used for the activation is presented in Table 3.



A study of calcium-containing additives showed that when using CaCO3, the rate of recovery of Al2O3 from the alkaline solution was 47.62%.



In the CaO–K2O–Al2O3–SiO2 system, phase transformations occurred as follows (Figure 6):




	-

	
When silica interacted with calcium, wollastonite, jaffeite, tobermorite and gahlenite were formed;




	-

	
When kaolin Al2O3–2SiO2–2H2O interacted with KOH, potassium hydroaluminosilicates were formed with different compositions;




	-

	
An aluminum silicate hydroxide phase was formed.









When CaSO4 was used, the rate of recovery of Al2O3 from the alkaline solution was 63.83%. Phase transformations did occur in the system as follows (Figure 7):




	-

	
When silica interacted with calcium, jaffeite was formed;




	-

	
When kaolin Al2O3–2SiO2–2H2O interacted with KOH, potassium aluminosilicates were formed with different compositions.









When CaO was used, the rate of recovery of Al2O3 from the alkaline solution was 42.6%. Phase transformations did occur in the system as follows (Figure 8):




	-

	
When silica interacted with calcium, calcio-olivine and dmisteinbergite were formed;




	-

	
When kaolin Al2O3–2SiO2–2H2O interacted with KOH, potassium aluminosilicates were formed with different compositions.









In studies using Ca(OH)2 quenching at room temperature, the rate of recovery of Al2O3 from the alkaline solution was 11.87%. Phase transformations did occur in the system as follows (Figure 9):




	-

	
Aluminum interacted with potassium and silicon to form megacalsite;




	-

	
A portlandite phase and reinhardbraunsite were formed.









In studies using Ca(OH)2 quenching at 130 °C, the rate of recovery of Al2O3 from the alkaline solution was 12.51%. Phase transformations did occur in the system as follows (Figure 10):




	-

	
Aluminum interacted with potassium and silicon to form kaliophilite;




	-

	
A portlandite phase and dellaite and calcite were formed.









The effect of calcium additives to sodium and potassium alkali during kaolin leaching on the degree of Al2O3 extraction is presented in Table 4.



The study showed that when leaching in sodium alkali, the highest aluminum recovery was achieved using Ca(OH)2 quenched at 130 °C, while when leaching in potassium alkali, the highest aluminum recovery was achieved using calcium sulfate.



The obtained alkali aluminate solutions were processed by crystallization.



The process of crystalline precipitation from solution consists of four stages: formation of a supersaturated solution, formation of crystal nuclei, i.e., crystallization centers, crystal growth, and crystallization itself.



The rate of crystal growth depends on the process conditions. To form nuclei, supersaturation of the solution was carried out by evaporation. Then, the supersaturated solution was cooled to promote the spontaneous growth of a new nucleate phase.



Recrystallization was carried out by removing the residual supersaturation of the solution and recrystallizing the precipitate.



The solubility in the K2O–Al2O3–H2O system at 30, 60 and 90 °C was investigated (Table 5, Table 6 and Table 7).



The analysis of the solubility showed that with the increase in K2O concentration from 9.5–29.5% the equilibrium concentration of Al2O3 increased, and the caustic ratio decreased accordingly.



At a K2O content in the solution up to 18%, the equilibrium concentration of Al2O3 increased slowly from 0.9% Al2O3 (with 9.5% K2O) to 3% Al2O3 (with 19.2% K2O). With a further increase in caustic alkali concentration, a decrease in the Al2O3 equilibrium concentration was observed, and the Al2O3 equilibrium concentration curve sloped steeply downward. Accordingly, a sharp increase in the caustic ratio occurred at K2O contents up to 38%. At increases in alkali concentration above 38%, the curve descended.



The unsaturated solution regions increased with increasing temperature and, correspondingly, the supersaturated solution regions decreased.



The caustic ratios of equilibrium solutions in the K2O–Al2O3–H2O system are shown in Figure 11.



According to Figure 11, the caustic ratios of equilibrium solutions in the system gradually decreased with increasing K2O concentration up to 29.5 at 30 °C, being 1.89 at 28.1 K2O at 60 °C, 1.44 at 28.1 K2O at 95 °C and finally reaching the lowest value of 1.18. With further increase in K2O concentration, we observed a sharp increase in αₖ, which was due to the conversion of the solid hydroxide phase to aluminate and its precipitation from the solution.



The caustic ratios of the precipitates depended on the degree of squeezing and on the concentration of the alkali in the equilibrium solutions. The isotherms of the Na2O -Al2O3–H2O and K2O–Al2O3–H2O systems at 30° are similar in appearance, while at 60 and 95 °C, they differ markedly. The branches of the latter system at 60 and 95 °C are steeper than those of the first system.



The composition of the solid phase of both systems in the left branches of the curves is the same, i.e., gibbsite, while in the right branches, the solid phases differ not only by the nature of the alkali in the composition of the aluminates, but also by the amount of alkali and crystallization water.



While in the Na2O–Al2O3–H2O system the aluminates Na2O–Al2O3–2.5 H2O and 3Na2O–Al2O3–6 H2O were formed, in the K2O–Al2O3–H2O system, only K2O–Al2O3–3H2O precipitated at concentrations of K2O up to 45.



In the K2O–Al2O3–H2O system, the equilibrium of the solutions was established in a shorter time than in the Na2O–Al2O3–H2O system.



This study showed that when leaching in sodium alkali, the highest aluminum recovery was achieved using Ca(OH)2 quenched at 130 °C, while when leaching in potassium alkali, the highest aluminum recovery was achieved using calcium sulfate.





3. Conclusions


The behavior of the CaO–Al2O3–SiO2 system was investigated in alkaline solution with calcium-containing materials including calcium carbonate CaCO3, gypsum CaSO4–H2O, calcium oxide CaO and calcium hydroxide Ca(OH)2. Ca(OH)2 was obtained with the CaO quenching method. The extraction of Al2O3 in the alkaline solution was only possible with the use of Ca(OH)2, and the efficiency of the extraction depended on the conditions of CaO quenching.



The structure of the Ca(OH)2 powder and its coarseness as a function of the temperature and duration of the quenching were investigated.



The analysis of the structure of the Ca(OH)2 powder as a function of the temperature and duration of CaO quenching showed the following:




	-

	
With increasing temperature, the particle size decreased;




	-

	
With increasing duration, the particles became larger;




	-

	
The optimal parameters for obtaining a fine powder were a temperature of 200 °C and a duration of 2 h.
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Appendix A


The effect of CaO quenching temperature over the range of 20–200 °C is presented in Figure A1, Figure A2, Figure A3, Figure A4 and Figure A5.
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Figure A1. Structure of the Ca(OH)2 powder quenched at 20 °C for 2 h. 






Figure A1. Structure of the Ca(OH)2 powder quenched at 20 °C for 2 h.
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Figure A2. Structure of the Ca(OH)2 powder quenched at 130 °C for 2 h. 






Figure A2. Structure of the Ca(OH)2 powder quenched at 130 °C for 2 h.
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Figure A3. Structure of the Ca(OH)2 powder quenched at 150 °C for 2 h. 






Figure A3. Structure of the Ca(OH)2 powder quenched at 150 °C for 2 h.



[image: Jcs 07 00508 g0a3]







[image: Jcs 07 00508 g0a4] 





Figure A4. Structure of the Ca(OH)2 powder quenched at 180 °C for 2 h. 






Figure A4. Structure of the Ca(OH)2 powder quenched at 180 °C for 2 h.
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Figure A5. Structure of the Ca(OH)2 powder quenched at 200 °C for 2 h. 






Figure A5. Structure of the Ca(OH)2 powder quenched at 200 °C for 2 h.
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Appendix B


The effect of CaO quenching duration over the range of 120–1440 min t a temperature of 130 °C is presented in Figure A6, Figure A7, Figure A8, Figure A9 and Figure A10.
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Figure A6. Structure of the CaO powder quenched at 130° for 2 h. 






Figure A6. Structure of the CaO powder quenched at 130° for 2 h.
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Figure A7. Structure of the CaO powder quenched at 130° for 4 h. 






Figure A7. Structure of the CaO powder quenched at 130° for 4 h.



[image: Jcs 07 00508 g0a7]







[image: Jcs 07 00508 g0a8] 





Figure A8. Structure of the CaO powder quenched at 130° for 6 h. 






Figure A8. Structure of the CaO powder quenched at 130° for 6 h.
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Figure A9. Structure of the CaO powder quenched at 130° for 8 h. 






Figure A9. Structure of the CaO powder quenched at 130° for 8 h.
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Figure A10. Structure of CaO powder quenched at 130° for 24 h. 






Figure A10. Structure of CaO powder quenched at 130° for 24 h.
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Figure 1. Thermostat plant with autoclaves. 






Figure 1. Thermostat plant with autoclaves.
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Figure 2. Phase composition of the kaolin leach cake with CaCO3 after activation. 
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Figure 3. Phase composition of the activation cake with CaSO4. 
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Figure 4. Phase composition of the cake obtained from Ca(OH)2 after quenching at 25 °C. 
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Figure 5. Phase composition of the cake obtained with Ca(OH)2 after quenching at 130 °C. 
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Figure 6. Phase composition of the kaolin leach cake with CaCO3 after activation. 
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Figure 7. Phase composition of the kaolin leach cake with CaSO4. 
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Figure 8. Phase composition of the kaolin leach cake with CaO. 
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Figure 9. Phase composition of the cake obtained with Ca(OH)2 quenching at 25 °C. 
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Figure 10. Phase composition of the cake obtained with Ca(OH)2 quenching at 130 °C. 
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Figure 11. Caustic ratios of equilibrium solutions in the K2O–Al2O3–H2O system. 
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Table 1. Effect of quenching temperature on particle size.






Table 1. Effect of quenching temperature on particle size.





	
Temperature, °C

	
Particle Size, nm

	
Area, %

	
∑ Particles Less Than 1000 nm






	
20

	
14.62

	
71.1

	
71.1




	
7.9 × 105

	
28.9




	
130

	
0.549

	
3

	
86.4




	
5.406

	
6.8




	
69.79

	
56.7




	
1664

	
19.9




	
4.1 × 105

	
13.6




	
150

	
1.848

	
5.4

	
89.5




	
58.49

	
18.9




	
3950

	
65.2




	
1.7 × 104

	
10.5




	
180

	
0.957

	
1.1

	
93.2




	
4.29

	
5.2




	
64.52

	
14.8




	
4949

	
72.1




	
1.4 × 107

	
6.9




	
200

	
0.506

	
0.4

	
94.7




	
4.82

	
5.1




	
153.6

	
89.2




	
2.6 × 106

	
5.3











 





Table 2. Effect of quenching duration on particle size.






Table 2. Effect of quenching duration on particle size.





	
Duration, min

	
Particle Size, nm

	
Area, %

	
∑ Particles Less Than 1000 nm






	
120

	
0.172

	
7.1

	
85.0




	
15.61

	
16




	
86.83

	
12




	
850.3

	
49.9




	
1.7 × 106

	
15




	
240

	
1.368

	
2.5

	
62.5




	
19.73

	
27.1




	
165.8

	
32.8




	
5908

	
37.5




	
360

	
0.355

	
3.5

	
55.1




	
13.82

	
23




	
126.3

	
28.6




	
1.1 × 104

	
36.4




	
1.1 × 107

	
8.5




	
480

	
0.955

	
6.4

	
14.3




	
45.12

	
7.8




	
1.8 × 104

	
82.3




	
2.7 × 107

	
3.4




	
1440

	
1.304

	
10.8

	
14.1




	
42.47

	
3.2




	
6.5 × 104

	
65.2




	
8.7 × 107

	
20.7











 





Table 3. The chemical composition of the samples depending on the calcium-containing additive used for the activation.






Table 3. The chemical composition of the samples depending on the calcium-containing additive used for the activation.





	
Calcium-Containing Additive

	
Content, %




	
CaO

	
K2O

	
Al2O3

	
SiO2






	
CaO

	
14.77

	
10.19

	
13.1

	
22.9




	
CaSO4

	
21.6

	
12.13

	
3.9

	
10.4




	
Ca(OH)2

	
23.06

	
0

	
3.74

	
20.45




	
CaCO3

	
10.8

	
12.77

	
7.0

	
15.8











 





Table 4. The effect of calcium additives to sodium and potassium alkali during kaolin leaching on the degree of Al2O3 extraction.






Table 4. The effect of calcium additives to sodium and potassium alkali during kaolin leaching on the degree of Al2O3 extraction.





	Calcium-Containing Additive
	NaOH
	KOH





	CaCO3
	0
	47.62



	CaSO4
	0
	63.83



	Ca(OH)2, quenching at 25 °C.
	26.61
	11.87



	Ca(OH)2, quenching at 130 °C.
	69.34
	12.51










 





Table 5. Solubility in the system K2O–Al2O3–H2O at 30 °C.
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Equilibrium Solution Composition, g/dm3

	
αₖ

	
Sediment Composition, %

	
αₖ

	
Note




	
K2O

	
Al2O3

	
H2O

	

	
K2O

	
Al2O3

	
H2O

	

	






	
9.5

	
0.9

	
89.6

	
10.0

	
3.5

	
31.4

	
65.1

	
0.12

	
The precipitate is insoluble




	
15.1

	
1.8

	
83.1

	
9.1

	
6.1

	
36.3

	
57.6

	
0.18

	
The precipitate is insoluble




	
19.2

	
3.0

	
77.8

	
7.0

	
8.2

	
42.2

	
49.6

	
0.21

	
The precipitate is insoluble




	
23.0

	
4.5

	
72.5

	
5.6

	
15.1

	
33.7

	
51.2

	
0.49

	
The precipitate is insoluble




	
28.3

	
15.2

	
56.5

	
2.0

	
21.3

	
25.2

	
53.5

	
0.92

	
The precipitate is insoluble




	
29.5

	
16.9

	
53.6

	
1.9

	
-

	
-

	
-

	
-

	
The precipitate is partially soluble




	
32.0

	
10.1

	
57.9

	
3.4

	
34.1

	
28.4

	
37.5

	
1.31

	
The precipitate is soluble




	
34.3

	
5.8

	
59.9

	
6.4

	
37.0

	
18.2

	
44.8

	
2.21

	
The precipitate is soluble




	
38.2

	
3.1

	
58.7

	
13.4

	
38.2

	
25.1

	
36.7

	
1.65

	
The precipitate is soluble




	
42.5

	
1.5

	
56.0

	
30.7

	
41.1

	
12.1

	
46.8

	
3.69

	
The precipitate is soluble




	
44.5

	
1.05

	
54.45

	
46.0

	
44.4

	
8.7

	
46.9

	
5.52

	
The precipitate is soluble











 





Table 6. Solubility in the K2O–Al2O3–H2O system at 60 °C.






Table 6. Solubility in the K2O–Al2O3–H2O system at 60 °C.





	
Equilibrium Solution Composition, g/dm3

	
αₖ

	
Sediment Composition, %

	
αₖ

	
Note




	
K2O

	
Al2O3

	
H2O

	

	
K2O

	
Al2O3

	
H2O

	

	






	
10.0

	
3.1

	
86.9

	
3.52

	
6.5

	
21.1

	
72.3

	
0.33

	
The precipitate is insoluble




	
11.2

	
4.2

	
84.5

	
2.9

	
6.8

	
29.3

	
63.9

	
0.25

	
The precipitate is insoluble




	
13.1

	
5.1

	
81.8

	
2.8

	
11.1

	
20.0

	
68.9

	
0.6

	
The precipitate is insoluble




	
19.0

	
8.8

	
79.2

	
2.3

	
13.5

	
28.9

	
57.6

	
0.51

	
The precipitate is insoluble




	
24.2

	
15.5

	
60.3

	
1.7

	
9.8

	
42.0

	
48.2

	
0.25

	
The precipitate is insoluble




	
27.2

	
19.8

	
53.0

	
1.5

	
19.7

	
31.1

	
49.2

	
0.69

	
The precipitate is insoluble




	
28.2

	
21.1

	
50.8

	
1.5

	
-

	
-

	
-

	
-

	
The precipitate is partially soluble




	
35.1

	
10.2

	
54.7

	
3.7

	
33.4

	
21.2

	
45.4

	
1.71

	
The precipitate is soluble




	
40.3

	
4.3

	
55.4

	
10.0

	
38.2

	
14.5

	
47.3

	
2.86

	
The precipitate is soluble




	
42.5

	
3.1

	
54.4

	
14.9

	
42.1

	
19.5

	
38.4

	
2.34

	
The precipitate is soluble




	
45.3

	
2.2

	
52.5

	
22.4

	
32.1

	
26.2

	
41.7

	
1.33

	
The precipitate is soluble











 





Table 7. Solubility in the K2O–Al2O3–H2O system at 90 °C.






Table 7. Solubility in the K2O–Al2O3–H2O system at 90 °C.





	
Equilibrium Solution Composition, g/dm3

	
αₖ

	
Sediment Composition, %

	
αₖ

	
Note




	
K2O

	
Al2O3

	
H2O

	

	
K2O

	
Al2O3

	
H2O

	

	






	
8.5

	
4.6

	
86.9

	
2.0

	
4.0

	
32.3

	
63.7

	
0.13

	
The precipitate is insoluble




	
13.6

	
7.8

	
78.6

	
1.9

	
11.5

	
24.6

	
63.9

	
0.51

	
The precipitate is insoluble




	
15.5

	
9.2

	
75.3

	
1.8

	
13.8

	
23.2

	
63.0

	
0.64

	
The precipitate is insoluble




	
18.0

	
12.2

	
69.8

	
1.6

	
10.4

	
34.5

	
55.1

	
0.33

	
The precipitate is insoluble




	
23.5

	
18.8

	
57.7

	
1.4

	
10.2

	
40.3

	
50.5

	
0.27

	
The precipitate is insoluble




	
26.6

	
22.8

	
50.6

	
1.3

	
20.2

	
34.2

	
45.8

	
0.63

	
The precipitate is insoluble




	
28.1

	
25.8

	
46.1

	
1.2

	
-

	
-

	
-

	
-

	
The precipitate is partially soluble




	
31.8

	
19.0

	
49.2

	
1.8

	
33.2

	
28.8

	
38.8

	
1.25

	
The precipitate is soluble




	
34.5

	
14.9

	
56.6

	
2.5

	
38.0

	
33.1

	
28.9

	
1.24

	
The precipitate is soluble




	
37.5

	
11.0

	
51.5

	
3.7

	
39.2

	
23.3

	
97.5

	
1.82

	
The precipitate is soluble




	
42.1

	
6.2

	
51.7

	
7.4

	
40.9

	
27.5

	
31.6

	
1.61

	
The precipitate is soluble
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