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Abstract: Pyrochlore oxides ( A2B2O7) are potential nuclear waste substrate materials due to their
superior radiation resistance properties. We performed molecular dynamics simulations to study the
structural properties and displacement cascades in ytterbium titanate pyrochlore (Yb2Ti2O7) and high-
entropy alloys (HEPy), e.g., YbYTiZrO7, YbGdTiZrO7, and Yb0.5Y0.5Eu0.5Gd0.5TiZrO7. We computed
lattice constants (LC) (ao) and threshold displacement energy (Ed). Furthermore, the calculation for
ao and ionic radius (rionic) were performed by substituting a combination of cations at the A and B
sites of the original pyrochlore structure. Our simulation results have demonstrated that the lattice
constant is proportional to the ionic radius, i.e., ao α rionic. Moreover, the effect of displacement
cascades of recoils of energies 1 keV, 2 keV, 5 keV, and 10 keV in different crystallographic directions
([100], [110], [111]) was studied. The number of defects is found to be proportional to the energy of
incident primary knock-on atoms (PKA). Additionally, the Ed of pyrochlore exhibits anisotropy. We
also observed that HEPy has a larger Ed as compared with Yb2Ti2O7. This establishes that Yb2Ti2O7

has characteristics of lower radiation damage resistance than HEPy. Our displacement cascade
simulation result proposes that HEPy alloys have more tendency for trapping defects. This work will
provide atomic insights into developing substrate materials for nuclear waste applications.

Keywords: molecular dynamics simulation; ytterbium pyrochlore oxides; nuclear waste substrate;
displacement cascades; lattice constants; high-entropy alloys; LAMMPS

1. Introduction

Despite the environment-friendly and high-efficacy energy source, nuclear energy has
a few distinctive concerns [1]. Commercial use of nuclear power is only evident when ra-
dioactive waste management is done under a proper strategy. Therefore, the reprocessing of
spent fuel is an important part of ensuring nuclear safety and environmental safety. Nuclear
wastes have different forms depending on the sources and radioactive concentration [2].
Solidification of liquid waste is a common process for managing nuclear waste disposal. In
this regard, the most common processes are vitrification and synroc methods [3]. Although
borosilicate glass is being used frequently as a nuclear waste substrate matrix, having low
solubility of actinide elements restricts their usage [4]. An alternate substitute to solve this
limitation is pyrochlore ceramics due to their superior durability, and better potential at
high temperatures and humid environments [5,6]. Moreover, ceramics have high values
of waste loading as compared to glass [7]. The ceramic-based substrate with the minor
addition of an ionic concentration has higher radiation stability and excellent chemical and
physical properties [8]. Long-term radiation damage is critical for a nuclear waste disposal
strategy [9]. Pyrochlore has been developed rapidly as high-entropy ceramics waste sub-
strate materials in recent years [10,11]. Future state-of-the-art nuclear reactors involve the
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recycling of nuclear fuels, burning of minor actinide series, and decontamination of fission
fragments [12]. Ytterbium titanate pyrochlores (Yb2Ti2O7) have been demonstrated to be
an effective waste substrate material for pyrochemical reactions [13,14]. They are used as
waste forms for immobilizing radioactive waste, particularly high-level radioactive waste
(HLW) [13,14]. It is also notable that the aforementioned pyrochlore serves as a surrogate
for actinides like plutonium and americium. Thus, making it a suitable compound for
studying waste immobilization behaviors. Moreover, ytterbium titanate pyrochlores have
inherent radiation resistance due to their open crystal structure, which allows them to
accommodate radiation-induced defects [15].

Minervini et al. reported disorder in different pyrochlore oxides using the atomic-scale
simulation method. Additionally, pyrochlore demonstrated stability range dependence on
the relative size of cations [16]. Brendan et al. have investigated the relationship between the
structural and bonding energy in lanthanide pyrochlore oxides (Sn2O7) and found that the
position parameter of the oxygen vacancies is inversely proportional to the lattice parameter.
Recently, Zhang et al. have reported on the machine learning (ML) methods to determine
lattice constants of different multi-substitutional pyrochlores in the range of 9–11 Å [17].
Moreover, the pyrochlore stannate (Ce2Sn2O7) demonstrated a temperature-dependent
anisotropic nature [18]. Superconductivity of ternary pyrochlore oxide (Cd2Re2O7) was
reported by Sakai et al., at 1.1 K, and the lattice constant was found to be 10.22 Å at
room temperature [19]. Liyuan et al. performed molecular dynamics to study structural
and elastic properties of different pyrochlores under numerous combinations of A and
B cations. It was found that displacement energy in pyrochlores strongly depends on
the energy of the incident PKA’s as well as their atomic masses [20]. They also reported
that lattice parameters and the atomic radius predominantly affect structural as well as
thermal properties. Chartier et al. performed molecular dynamics simulations to study
displacement cascades in lanthanum zirconate pyrochlore (Ln2Zr2O7) with uranium ions
bombarded with 6 keV at 350 K along different orientations. It was observed that the model
does not lose its crystallinity [21]. It is further reported that the displacement cascades
are determinants of material radiation stability at elevated temperatures [22]. Atomic-
scale radiation damage studies in pyrochlores (Gd2Zr2O7) have demonstrated healing
mechanism during radiation [9,23]. Moreover, a combination of different anions and cations
results in a radiation-resistant response of pyrochlores [24]. Pyrochlores have disordered
structures due to irradiation and alteration of thermodynamics [25]. Pyrochlores are known
for their radiation-tolerant behavior primarily because of their inherent structural stability.
Their structure allows migration and annihilation of defects, minimizing their impact on
the material’s overall properties.

High-entropy pyrochlores refer to a class of materials that exhibit high configurational
entropy due to the random distribution of multiple cations on the crystal lattice sites.
These materials have been studied for various applications, including radiation tolerance.
High-entropy pyrochlore (HEPy) oxides synthesized with Yb2Ti2O7 are obtained by sub-
stituting the cations in the pyrochlore structure and they have displayed higher radiation
resistance than individual pyrochlores [26–29]. Atomic-scale simulation results have also
displayed that radiation resistance is affected by the addition of Zr content in HEPy [30].
Defect dynamics in pyrochlore-type structures are quite difficult to determine in experi-
mental studies due to their complex structure and irradiation-associated phenomena [9,20].
The displacement cascades involve the initiation of damage in the materials alternately
determine the long-term possible outcomes. Atomic-scale simulation methods can shed
light on determining the fundamental material properties and interaction mechanisms in
pyrochlores [24,31] It is also important to mention that a limited number of experimental
and simulation studies have been performed on the behavior of different pyrochlores
under radiation [9,26,32–34]. Molecular dynamics simulations have been applied to study
the influence of displacement cascades on the microstructural properties of different py-
rochlores [9,32]. Computer simulations interpret the radiation damage as a predictive tool
for processing the experiments. The simulation models describe the physics behind the



J. Compos. Sci. 2023, 7, 413 3 of 15

phenomena responsible for the radiation damage mechanism in irradiated material by
providing valuable tools observed in nuclear power plants (NPP). Numerous radiation
damage studies have been reported on metals and alloys [35–41]. This study will serve as a
predictive model for providing insight into expected behavior in radioactive environments.

This article studies three aspects of pyrochlore oxides. Primarily, interatomic potential
was established by parametrizing existing literature and later validated through calcula-
tion for LC, rionic, and Ed of different combinations of A and B in pyrochlore structures.
Furthermore, displacement damage cascade simulations in Yb2Ti2O7 were performed with
each constituent element. The primary knock-on atom’s energies (EPKA~1, 2, 5, and 10 keV)
with different incident directions were used for studying the effect of energy dependence.
Moreover, displacement cascades keeping the same energy were studied for HEPy to
determine its radiation resistance as compared to Yb2Ti2O7.

2. Computational Details and Methodology
2.1. Crystal Structures

Pyrochlores have cubic fluorite-type structures containing 5 or more elements with
oxygen-deficient vacancies having A2B2O7 type structure with A (rare-earth) and B (transi-
tion metal) being different cations [42,43]. The ‘A’ position coordinated with 3+ cation atoms
while the ‘B’ position coordinated with 4+ cation atoms, e.g., 3+ cations (La3+, Nd3+, Gd3+,
Sm3+, and Y3+) and 4+ cations (Zr4+, Ti4+, and Mo4+) [44]. Moreover, 1/8 of the oxygen
atoms are vacant to balance the charges [5]. The different ion combinations are used to
compute different structural properties. The crystal structure is developed by Visualization
of Electronic and Structural Analysis (VESTA) [45]. The lattice parameter for pyrochlore
oxide was set as 10.194 Å. The initial model comprised eight unit cells with 88 atoms per
unit cell with the Fd3m group having composition Yb16Ti16O56 with a unit cell of volume
1059.578190 Å3. Periodic boundary conditions were applied along axes. The initial structure
was equilibrated using the steep decent method (SD) since this method is considered a quick
approach for an optimal efficient solution [46]. For HEPy modeling, the selection of com-
pound Yb0.5Y0.5Eu0.5Gd0.5TiZrO7 represented in equivalent to original Yb2Ti2O7 structure
with a stoichiometric ratio replacing Yb2 → Yb Yb → (Yb0.5Y0.5) (Eu0.5Gd0.5) and Ti2→ Ti
Ti→ Ti Zr. In other words, we can understand it by considering that the atomic number
ratio at the A-site is doped with three elements Y, Eu, and Gd with a total of four elements
while the B-site is doped with two elements Ti and Zr with a total of three elements. The
element in atomic proportion is represented as Yb:Y:Eu:Gd:Ti:Zr → 1:1:1:1:2:2 resulting in
the formation of Yb0.5Y0.5Eu0.5Gd0.5Ti ZrO7. Figure 1 displays the computational models
of unit cells of all models, where (a) is an MD snapshot of a relaxed computational model
under study and (b) is a unit cell of a generic representation of pyrochlore [47], and (c–f) rep-
resent unit cells of Yb16Ti16O56, YbYTiZrO7, YbGdTiZrO7, and Yb0.5Y0.5Eu0.5Gd0.5TiZrO7,
respectively. The composition of each pyrochlore is mentioned as labelled in Figure 1.

The characteristic crystal structure of pyrochlores consists of a network of corner-
sharing tetrahedra, which provides an open framework that can accommodate defects
induced by radiation damage [48,49]. Molecular dynamics simulations were performed
by a large-scale atomic/molecular massively parallel simulator (LAMMPS) developed by
Plimpton [50] and structure analysis and visualization were done by OVITO [51].
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Figure 1. Schematic representation of the computational model and a unit cell of pyrochlore, (a) 
Snapshot of a computational unit cell model, Yb16Ti16O , (b) Generic representation of a unit cell 
of pyrochlore A2B2O7 where A and B are transition metals [43], (c) labeled structure of Yb16Ti16O , 
(d) Yb Y Ti Z𝑟 O  , (e) Yb Gd Z𝑟 Ti O  , and (f) Yb Y Gd Eu Zr Ti O   equivalent of 
Yb0.5Y0.5Eu0.5Gd0.5ZrTiO7. The subscript indicates the number of particular elements in the unit cell. 

2.2. Interatomic Potential 
In MD simulation, realistic interatomic potentials are very crucial for reliable results 

[52]. The interatomic potential was modified by a coupling potential developed in earlier 
studies [24,53]. This potential was tested for replicating equilibrium lattice constants and 
lattice constants reported in earlier studies [54,55]. The potential function is divided into 
two parts and all pair interactions are described separately. The short-range combination 

Figure 1. Schematic representation of the computational model and a unit cell of pyrochlore,
(a) Snapshot of a computational unit cell model, Yb16Ti16O56, (b) Generic representation of a
unit cell of pyrochlore A2B2O7 where A and B are transition metals [43], (c) labeled structure of
Yb16Ti16O56, (d) Yb8Y8Ti8Zr8O56, (e) Yb8Gd8Zr8Ti8O56, and (f) Yb4Y4Gd4Eu4Zr8Ti8O56 equivalent
of Yb0.5Y0.5Eu0.5Gd0.5ZrTiO7. The subscript indicates the number of particular elements in the
unit cell.
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2.2. Interatomic Potential

In MD simulation, realistic interatomic potentials are very crucial for reliable re-
sults [52]. The interatomic potential was modified by a coupling potential developed in
earlier studies [24,53]. This potential was tested for replicating equilibrium lattice con-
stants and lattice constants reported in earlier studies [54,55]. The potential function is
divided into two parts and all pair interactions are described separately. The short-range
combination of ZBL (Ziegler-Biersack-Littmark) potential and Buckingham potential are
adjoined with a fitting function for smooth truncation. The long-range Coulomb potential is
described by particle–particle–particle–mesh solver (PPPM) summation algorithm having
accuracy up to 10−4 and cutoff radius (rcutoff = 10 Å) [56]. The Buckingham potential
results in negative infinity due to short-range interactions whereas ZBL potential is more
realistic for charged modes at short-range interactions [57]. The piecewise interatomic po-
tential of Yb2Ti2O7 is expressed in Equation (1), where r1,2 is the active range of potentials.
The ZBL potential and Buckingham potential are fitted with a fourth-order exponential
spline function represented as Vspline fun.

(
rij
)
= exp (c 1 + c2rij + c3rij

2 + c4rij
3) for smooth

interconnection, where c1−4 are spline constants.

V
(
rij
)
=


VZBL

(
rij
)

rij < r1
Vspline fun.

(
rij
)

r1 < rij < r2
VBuck.

(
rij
)

r2 < rij < rij
0 rcut < rij

(1)

The ZBL potential is defined as VZBL = 1
4πε0

Z1Z2e2

rij
G(α), where G(α)= 0.18118e−32α+

0.5099e−0.9423α + 0.2802e−0.4029α + 0.02817e−0.2016α and α =
rij(Z0.23

1 +Z0.23
2 )

0.8854a0
. Regarding the

notation in the above expression, ε0 represents dielectric constant, a0 represents Bohr’s
radius, e is the electronic charge, and Z1 , Z2 are the atomic number of elements. The
atomic numbers of Yb70, O8, and Ti48. The potential function of Buckingham VBuck.

(
rij
)

potential is represented as a function of distance in Equation (2), where Aij, ρ, and Cxy are
element-dependent potential parameters.

VBuck.
(
rij
)
= Aije

−
rij
ρ −

Cxy

r6
ij

(2)

The Buckingham potential function for Yb and O satisfy conditions in Equation (2).
The values of the parameters are set for each computed pair in Table 1 as reported by earlier
studies [20,53]. For Ti–O, the value of Cxy is adjusted for smooth truncation. Before testing
the potential further, interatomic potentials were coupled through a splined function to
ZBL repulsive and Buckingham functions. The resulting functions are plotted in Figure 2.
The connected potentials for cation–anion/anion–anion are computed through Table 1,
while cation–cations are defined by pair style automatically computed by LAMMPS as
mentioned in the previous studies [58,59].

Table 1. Buckingham potential and splined function parameters [20,53].

Pair (s) Aij (eV) ρ (Å) Cxy (eVÅ
6
) c1 (eVÅ

−1
) c2 (eVÅ

−2
) c3 (eVÅ

−3
) c4 (eVÅ

−4
) r1 (Å) r2 (Å)

Yb-O 1649.80 0.3386 16.57 10.40 −8.38 3.08 −0.55 0.6 1.3
Ti-O 2131.40 0.3038 0.400 10.62 −14.80 −14.74 −6.28 0.3 2.0
O-O 9547.96 0.2192 32.00 9.355 −10.71 6.23 −1.68 0.8 2.1



J. Compos. Sci. 2023, 7, 413 6 of 15J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 6 of 17 
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2.3. Displacement Cascades Simulations

Displacement cascade simulations for all cases were performed through molecular
dynamics code LAMMPS [60]. A system having dimensions 10 × 10 × 10 with a total of
88,000 were constructed. Our calculation for lattice parameters resulted in 10.09 Å with
periodic boundary set along all axes. The interatomic-potential function was employed
as mentioned in the previous section. After completing the preliminary settings, thermal
relaxation was performed initially using a canonical (NVT) ensemble at 300 K at a timestep
of 0.001 ps. After the thermal relaxation, the model was relaxed again using a microcanoni-
cal ensemble (NVE) at a time step of 0.0001 ps to ensure the system had attained sufficient
equilibrium before proceeding with the displacement cascades simulation. For damage
cascade simulations, the recoil energies were chosen as 1 keV, 2 keV, 5 keV, and 10 keV. The
selected PKA’s Yb atom and the PKA’s angles are along the positive Z axis. The direction
of PKA was set at 45◦ along the xy plane at 7◦ to avoid channeling effects.

3. Results and Discussion
3.1. Calculation for Equilibrium Lattice Constant and Ionic Radii

The sites on A and B in the pyrochlore structure have different ions and their combina-
tion affects the properties of the pyrochlores. An important parameter of the unit cell is the
lattice constant and its equilibrium properties. Figure 3 displays total energy as a function
of the LC of Yb2Ti2O7. The concave curve indicates that the energy of the system will reach
the minimum at a certain equilibrium lattice constant. The curve fitting is obtained by
a polynomial function. The equilibrium lattice constant was found to be 10.05 Å which
agrees with the results reported earlier [47,53].
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We tested changing different cations at the A site, i.e., Lu3+, Yb3+, Er3+, Y3+, Gd3+,
Eu3+, Sm3+, Nd3+, La3+, and Ce3+ while the cation at the B site was Ti4+, e.g., the first
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entry in Table 2 is represented as Lu2Ti2O7. The equilibrium lattice constant (LC) and
ionic radius (rionic) were calculated for both combinations and compared with the existing
literature. Table 2 represents the calculation for the LC and rionic of different ions at site A.
The calculations indicate that LC is caused by the replacement of ions proportional to rionic.
Our calculations are in good agreement with other studies [18,61–64]. The preliminary
fitting leads to the desired value and replicates the validity of the potential for further
testing the displacement cascades of models.

Table 2. Calculation for LC and rionic by changing A-site cations while keeping B site as Ti4+.

Ion (s) rionic (Å) ao (Å)

Lu3+ 0.977, 0.861 [18], 1.032 [62] 9.988, 10.291 [18], 10.011 [61]
Yb3+ 0.985, 0.87 [18], 1.042 [62] 10.007, 10.34 [18], 10.03 [63]
Er3+ 1.004, 0.89 [18], 1.004 [62] 10.055, 10.35 [18], 10.069 [63]
Y3+ 1.019, 0.90 [18] 10.056, 10.37 [18], 10.080 [61]

Gd3+ 1.053, 1.107 [61] 10.136, 8.34 [61], 10.171 [61]
Eu3+ 1.066, 1.120 [62] 10.159, 10.192 [63]
Sm3+ 1.062, 1.079 [62] 10.184, 10.211 [63]
Nd3+ 1.109, 0.98 [18], 1.163 [62] 10.231, 10.56 [18]
Ce3+ 1.143, 1.196 [62], 1.14 [63] 10.343, 10.65 [18], 10.6 [63]
La3+ 1.164, 1.03 [18], 1.16 [64] 10.324, 10.7026 [18]

Figure 4 displays the XRD pattern of Yb2Ti2O7, YbYTiZrO7, YbGdTiZrO7, and
Yb0.5Y0.5Eu0.5Gd0.5TiZrO7. The peaks of HEPy exhibit the characteristics of original cubic
pyrochlores with Fd-3m and an LC of 10.19478 Å, 10.19497 Å, 10.19504 Å, 10.19513 Å were
found for simulated structures. X-ray dispersion coefficients for λ = 1.54059 Å with CuKα
were chosen during the XRD pattern. The obtained values are in good agreement with
other studies on pyrochlores [65,66].
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3.2. Threshold Displacement Energy (Ed)

The incident energy of primary knock-on atoms (EPKA) exceeds the constraints of the
entire force field and leaves a vacancy. This minimum energy (Emin) required to displace
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an atom from its lattice site is known as threshold displacement energy (Ed) [32]. The
theoretical calculations displayed that off-site threshold energy depends on crystallographic
direction, temperature, orientation of incident PKA, energy, and type of incident particles.

We have computed the threshold energy of Yb2Ti2O7 initially by selecting Yb and Ti
with O atoms as incident PKA along [100], [110], and [111] axes. The Ed is displayed along
the orientation in Figure 5. It can be seen that Ed (Ti) >> Ed (Yb) > Ed (O). We have seen that
Ed is anisotropic. Our findings are in agreement with other studies [67,68].
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Figure 5. Ed as a function of incident PKA for Yb2Ti2O7 along with bombardment directions.

The calculation of the threshold energy (Ed) of high-entropy pyrochlore YbYTiZrO7
was formed by doping the Y element at the A site and the Zr element at the B site. The
atomic number ratio for simulated pyrochlore with substitution is set as Yb:Y:Ti:Zr →
1:1:1:1. Later, A-site is doped with three elements as Y, Eu, and Gd while B-site is doped
with a total of four elements in equal atomic proportion of seven constituent elements,
i.e., Yb:Y:Gd:Eu:Ti:Zr→ 1:1:1:1:2:2 resulting in the formation of Yb0.5Y0.5Eu0.5Gd0.5TiZrO7.
Table 3 compares the average Ed of two simulated models with incident PKA’s directions.
It is established that Ed(Yb 0.5Y0.5Eu0.5Gd0.5TiZrO7) > Ed(Yb2Ti2O7). This establishes that
HEPy is less prone to defects [67]. The values of Yb are not much different from the results
in Figure 4, but the value of Ti is 2 to 4 times higher, and the Ed value of O is 10, 50, or
more times that of Yb2Ti2O7. This difference is due to the fact that high-entropy alloys have
a more complex structure. This complexity can lead to higher Ed due to strong bonding,
defects, and strains [43,47,69,70].

Table 3. Ed as a function of different incident PKA’s in HEPy models.

Types of PKA PKA Direction Ed (eV) Types of PKA PKA Direction Ed (eV)

Yb
[100] 60

Ti
[100] 1182

[110] 60 [110] 1177
[111] 66 [111] 625

Y
[100] 146

Zr
[100] 430

[110] 146 [110] 431
[111] 174 [111] 426

Gd
[100] 93

O
[100] 1769

[110] 93 [110] 1521
[111] 84 [111] 343

Eu
[100] 85
[110] 85
[111] 128
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3.3. Effect of Displacement Cascades on Energy and Direction of PKA

Irradiated materials are associated with displacement cascades. The displacement cas-
cades are divided into different subcascades during bombardment of incident neutrons and
ion implantation. The displacement cascades with different incident PKA’s are represented
in Figure 6.
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Figure 6. Number of defects (Nde f ects) as a function of time under different energy PKA damage of
Yb2Ti2O7 bombarded with Yb ions of different energies.

As the energy of the initial PKA increases, the total number of defects of various
atoms increases due to an increase in the mean free path between atoms. Higher EPKA
produces larger area cascades which have a higher possibility of reaching Ed [32]. The total
number of defects will have a characteristic of rapid growth and then annihilate with time.
This situation is generally referred to as defect recombination and permanent defect after
radiation. In Figure 7, it can be noted that during the initial stage of the simulation cascade,
collision initiated a rapid accumulation of defects which occurred in the pyrochlore lattice.
The number of defects reached a peak at 0.3 ps and afterwards the size of the cascade
continuously reduced. The defects stabilized at 0.9 ps leaving permanent defects.
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During the cascade simulations, incident PKA was located at the lower left corner and
moved along the diagonal. The effect of incident direction is investigated with Yb incident
with 5 keV along the X-axis inclined at 45◦ at an interval of 5◦ with a 7◦ channeling angle
along the Z-axis. The relation between incident angle as a function of time is expressed in
Figure 8. It can be seen that smaller inclination angles have a lower number of defects. This
is due to the fact that higher inclination angles are associated with lower threshold energies
of incident PKA’s as well as successive overlapping cascades [32].
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Figure 8. Number of surviving defects as a function of (a) Time and (b) inclination angle of incident
5 keV Yb in Yb2Ti2O7.

To observe the effect of ions on inclination angle, we compared the effect of defect
evolution at lower and higher inclination angles by a 5 keV Yb atom. It is also known from
Table 3 that Ti has higher values of Ed as compared to other constituents. The relation
between the number of defects as a function of time is displayed in Figure 9 for the different
incident directions of PKA. It is seen that Ti atoms and Yb atoms are almost the same in
55◦ (Figure 9a) whereas Yb is double in Figure 9b. In both cases, O has a higher number
of defects than other constituents and a higher angle has twice the number of defects.
Therefore, it is more difficult to produce more defects in 55◦ inclination under the same
energy of incident PKA.
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3.4. Displacement Cascades in HEPy

This effect of displacement cascades on HEPy is studied by doping different elements
on A and B sites of the pyrochlore Yb2Ti2O7 structure. We have selected Zr at B sites
while the A site is changed forming three kinds of HEPy, i.e., YbYTiZrO7, YbGdTiZrO7,
and Yb0.5Y0.5Eu0.5Gd0.5TiZrO7. The displacement cascades formed by Yb with 5keV and
defects morphology in HEPy are compared with Yb2Ti2O7. The comparison is based on
the analysis and defect morphology.
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Figure 10 displays the displacement cascade at its peak and after defect annihila-
tion with Yb incident PKA of 5 keV. The defect forms of Yb2Ti2O7 and the other three
high-entropy pyrochlores are compared. The subscript for each displays the peak defects
Nmax and after annihilation. It is noted that the area of displacement cascades is larger
for Yb2Ti2O7 whereas the number of defects formed by displacement cascades in HEPy
is higher than pyrochlore whereas Yb0.5Y0.5Eu0.5Gd0.5TiZrO7 has a lower number of sur-
viving defects. For all the models, the direction of PKA coincides with the defects cluster
direction. We have reason to believe that high-entropy pyrochlore has a better radiation
resistance compared with Yb2Ti2O7. It is also seen from the displacement cascade snapshots
the characteristic of limiting the circumferential development of defects and reducing the
damage volume in HEPy.
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Higher energy incident PKA are reported to have a higher number of surviving de-
fects [14,71,72]. The number of defects as a function of time are compared for HEPy and
pyrochlore as is plotted in Figure 11. It can be seen from Figure 10 that the number of
defects corresponding to YGdEu doped HEPy is lesser in all cases. The surviving defects
in undoped pyrochlore are relatively larger than doped ones. The defect growth rate,
defect disappearance rate, and defect number annihilation is faster in HEPy, especially
Yb0.5Y0.5Eu0.5Gd0.5TiZrO7. It is preliminarily due to the fact that HEPy provides a large
number of available atomic configurations, which can accommodate point defects and com-
pensate for local structural changes induced by radiation. This configurational flexibility
enhances the material’s ability to self-heal and recover from radiation damage, further
contributing to its lower radiation damage radius. This also establishes that HEPy shows a
promising characteristic for radiation tolerance. Thus, MD results in this study can be used
to optimize the radiation-resistant nature of HEPy by testing other models with orientation
and other constituent elements in the composition.
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4. Conclusions

Ytterbium titanate pyrochlore oxides with different compositions and high-entropy
pyrochlores significantly expand the studied ceramics for the immobilization of Low-
Level Radioactive Waste (LRW) ensuring better waste containment and optimizing storage
solutions. Studying radiation resistance and the defects formation mechanism is crucial
for designing pyrochlore for Radioactive Waste (RW) immobilization materials. Moreover,
analyzing the crystal structure of the high-entropy pyrochlores under various conditions
helps to understand any changes due to radiation environments. High-entropy pyrochlores
contain multiple elements, potentially providing a greater capacity to accommodate and
immobilize various radioactive isotopes through diverse interactions.

Molecular dynamics simulations were performed to study the effect of displacement
cascades in ytterbium titanate oxide (Yb 2Ti2O7) and high-entropy alloys. Calculations
were made for equilibrium lattice constant pyrochlore oxides. The displacement cascades
in Yb2Ti2O7 with Yb, Ti, O of 1 keV, 2 keV, 5 keV, and 10 keV along [100], [110], and [111]
were used to determine the threshold energy (Ed) on the radiation damage response of py-
rochlore. The effect of displacement cascades on the formation of high-entropy pyrochlore
YbYTiZrO7, YbGdTiZrO7, Yb0.5Y0.5Eu0.5Gd0.5TiZrO7, and Yb2Ti2O7 was compared to ana-
lyze the radiation stability. The displacement cascades of different incident PKA displayed
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that the number of defects is proportional to the incident energy. Higher incident angles
have a lower number of defects. The position and inclination angle of the incident angle
are important in determining the surviving defects. The defects morphology of HEPy was
compared with Yb2Ti2O7.

Our study will provide valuable insight and contribute to the advancement of nu-
clear waste materials. High-entropy pyrochlores offer a broader range of compositions
and structures, which could make them more versatile for different nuclear applications.
This versatility allows you to fine-tune the material properties based on the application’s
requirements. High-entropy pyrochlores are still a relatively new area of research and
it requires an innovative material design approach. We still believe that more extensive
research is required to explore their behavior under radiation and in nuclear environments.
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