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Abstract: Hemodialysis (HD) is a life-sustaining extracorporeal blood purifying treatment for end-
stage renal disease (ESRD) patients. However, this membrane-based therapy is associated with acute
side effects, life-threatening chronic conditions, and unacceptably high morbidity and mortality rates.
Numerous surface coatings have been developed to improve the blood compatibility of biomaterials.
Heparin is a widely used anticoagulant substance that increases the clotting time and increases the
membrane hemocompatibility in terms of platelet adhesion and protein adsorption and anti-clotting
activity. However, using heparin is challenging due to its severe or life-threatening side effects
such as heparin-induced thrombocytopenia (HIT), in addition to heparin induced thrombocytopenia
and thrombosis (HITT). In addition, heparin is strongly electronegative and exhibits a binding
affinity for the positive active sites of human serum proteins, which is an additional challenge.
Consequently, covalently immobilized heparin would create a more charged surface to induce
more blood–membrane interactions, and consequently more adsorbed human serum proteins and
biochemical pathway activations, which can negatively affect dialysis patients. Therefore, the current
critical review has thoroughly focused on different heparin HD membrane systems, the challenges of
heparin-coated dialysis membranes, and the factors affecting its hemocompatibility, in addition to the
methods that can be used to enhance its hemocompatibility. Furthermore, this review summarizes
the advantages and disadvantages of heparin-grafted methods. Furthermore, the influence of the
heparin-immobilization method on the hemocompatibility and performance of the HD membrane
was comprehensively analyzed. Finally, we conclude with the future perspectives for the strategies
toward the heparinization and heparin-like/mimicking modification of membrane surfaces.

Keywords: hemodialysis membrane; heparin; hemocompatibility; anticoagulant; immobilization

1. Introduction

Hemodialysis (HD) is a life-sustaining extracorporeal blood purifying treatment for
end-stage renal disease (ESRD) patients. However, blood–membrane interactions acti-
vate blood cells and trigger fibrinogen (FB) conformation, which promotes inflamma-
tion cascades. Complement activation results in inflammatory mediator products that
cause allergic reactions during HD and can also lead to acute intradialytic pulmonary
hypertension, chronic low-grade systemic inflammation, and leukocyte dysfunction [1–3].
Bio-incompatibility is also the major reason for albumin adsorption, platelet adhesion,
and the production of bradykinin (white blood cells (WBCs) due to inflammation), blood
clots, and thrombosis. Coagulation can be prevented with heparin, as the most efficient
anticoagulant [4,5].
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Several research efforts for hemodialysis membrane coatings have been developed to
improve the blood compatibility of biomaterials [6–9]. Heparin is a widely used anticoagu-
lant substance that increases the clotting time and increases the membrane hemocompatibil-
ity in terms of platelet adhesion and protein adsorption and anti-clotting activity. A heparin-
coated membrane might unexpectedly reduce the concentration of pro-inflammatory cy-
tokines [10]. Nineteen stable HD patients were first dialyzed with conventional membranes
and enoxaparin as an anticoagulant, and then with the heparin-coated membrane without
systemic anticoagulation. After the HD session with an Evodial dialyzer (heparin-grafted
membrane), the plasma levels of the monocyte chemoattractant protein, endostatin, and
activin A were 2–3-fold lower than with standard dialysis. Nevertheless, covalently im-
mobilized heparin would create a more charged surface to induce more blood–membrane
interactions, and consequently more adsorbed human serum proteins and biochemical
pathway activations, which can negatively affect dialysis patients. Therefore, optimal
anticoagulation remains a controversial issue for clinical practice, and use of anticoagulants
may increase the uremic bleeding tendency.

Therefore, the current critical review has thoroughly focused on different heparin HD
membrane systems, the challenges of heparin-coated dialysis membranes, factors affecting
its hemocompatibility, in addition to the methods that can be used to enhance its hemo-
compatibility. Furthermore, this review summarizes the advantages and disadvantages
of heparin-grafted methods. Furthermore, the influence of the heparin-immobilization
method on the hemocompatibility and performance of the HD membrane was comprehen-
sively analyzed. Finally, we conclude with the future perspectives for the strategies toward
the heparinization and heparin-like/mimicking modification of membrane surfaces

2. Current Challenges of Heparin-Coated Dialysis Membranes

Heparin is a medication and naturally occurring glycosaminoglycan (i.e., a long
linear polysaccharide consisting of repeating disaccharide units). The heparin structure is
illustrated in Figure 1.
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Figure 1. The structure of heparin. 

Heparin is able to interact with coagulation factors XIa, IXa, Xa, and IIa (thrombin), 
and has been widely used as an anticoagulant reagent since 1935. Although the use of 
heparin has some side effects such as heparin-induced thrombocytopenia, hypertriglyc-
eridemia, anaphylaxis, bone mineral disease, hyperkalemia, catheter-related sepsis, etc. 

The most severe side effect is heparin-induced thrombocytopenia (HIT), which re-
sults in blood clotting. There are basically two types of HIT. The most dangerous and 
potentially life-threatening form is type II HIT, which results in both bleeding and throm-
boembolic complications. The mechanism of HIT includes several steps. At first, heparin 
binds with blood platelets with the release of platelet factor 4 (PF4). This PF4, in turn, is 
able to interact with heparin, resulting in the formation of the heparin–PF4 complex, 

Figure 1. The structure of heparin.

Heparin is able to interact with coagulation factors XIa, IXa, Xa, and IIa (thrombin), and
has been widely used as an anticoagulant reagent since 1935. Although the use of heparin
has some side effects such as heparin-induced thrombocytopenia, hypertriglyceridemia,
anaphylaxis, bone mineral disease, hyperkalemia, catheter-related sepsis, etc.

The most severe side effect is heparin-induced thrombocytopenia (HIT), which results
in blood clotting. There are basically two types of HIT. The most dangerous and potentially
life-threatening form is type II HIT, which results in both bleeding and thromboembolic
complications. The mechanism of HIT includes several steps. At first, heparin binds with
blood platelets with the release of platelet factor 4 (PF4). This PF4, in turn, is able to interact
with heparin, resulting in the formation of the heparin–PF4 complex, which triggers blood
antibodies (see Figure 2). This interaction between antibodies and the heparin–PF4 complex
provokes cascade reactions, resulting in more platelet aggregation, which causes severe
thrombocytopenia and further bleeding complications. Moreover, when these heparin-
triggered antibodies bind with endothelial cells, it often results in paradoxical thrombus
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formation with subsequent limb-threatening ischemia, or even fatal pulmonary emboli.
Type II HIT usually occurs 5–12 days after heparin exposure, but can happen immediately
in the case of re-exposure.
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Figure 2. The mechanism of heparin-induced thrombocytopenia (HIT) with further thrombosis
Reprinted/adapted with permission from Ref. [1], 2012, Shen and Winkelmayer.

The above-mentioned complications arise when heparin is injected into the blood
during HD procedure and/or HD circuit parts are covered with heparin. Thus, after
performing 120 HD sessions, 73% of them ended up with multiple fiber clotting (Grade 3)
or clotting of the dialyzer (Grade 4) (see Figure 3) [2].

The opposite effect of heparin treatment as well as for all forms of anticoagulants is
acute hemorrhaging [3]. Incidents of major bleeding during systematic heparinization are
reported to occur with the rate of 7.3 to 16.7 per 100 person-years [4], causing major side
effects such as osteopenia and drug intolerance aside from thrombocytopenia [5]. Even
when heparinization is ceased, nearly a half of all patients that develop HIT experience
thrombotic-related complications that result in a mortality rate up to 30% [6].

Furthermore, the use of heparin is also limited by its high price, activity degradation
with time, and strong dependence on antithrombin, whose concentration broadly varies
across patients with different diseases [7].
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Figure 3. Examples of different grades (by visual inspection) of the heparin-coated dialyzer membrane
modules after performing HD sessions. (Grade 1: clean dialyzer; Grade 2: ~5% of fibers clotting;
Grade 3: multiple fiber clotting; Grade 4: total clotting).

3. Factors Affecting Hemocompatibility of Heparin-Grafted Membranes

One of the main reasons responsible for these side effects of using heparin is believed
to be associated with the surface negative charge that arises when heparin is applied to
cover the HD membrane surface. The negative charge of heparin arises from the inequality
in the positive and negative charge groups (see Figure 4).
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At first glance, the negatively charged membrane has a benefit in terms of protein
repulsion, since the main human serum proteins are also charged negatively due to their
pI (isoelectric) values (see Table 1) being lower than the blood pH. Despite this, there
are frequent observations where negatively charged proteins can adsorb on a negatively
charged membrane surface (i.e., in the “wrong” region of their isoelectric points) [8–11].
This phenomenon can be explained by the presence of rather large charged areas in the
protein molecule due to the high molecular weight, and hence the size of the protein
molecule. Thus, the protein can position positively charged areas toward the membrane
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surface, resulting in electrostatic interaction, although the heparin-coated surfaces demon-
strated a decreased affinity for particular blood proteins including C3, fibronectin, and
fibrinogen [12]. The higher negative surface charge of the HD membrane indicates a high
degree of hydrophilicity, which leads to the absorption of water from the blood circulatory
system [11]. The dehydration of RBCs significantly contributes to the increased deforma-
bility and hemolysis of blood cells [11]. Nevertheless, the current trend in HD membrane
development is to create near-zero charged surfaces to minimize any possible electrostatic
interaction with human serum proteins or other molecules whose adsorption can provoke
further cascade reactions and related undesired consequences. Thus, the above-mentioned
heparin-induced thrombocytopenia results from the interaction of negatively charged
heparin with positively charged platelet factor 4 (PF4) [13]. It should also be noted that
roughness is a key in membrane morphology, which leads to blood cell rupture.

Table 1. The isoelectric points of the main human proteins.

Human Serum Protein pI

Albumin (HSA) ~5
Fibrinogen (FB) 5.8

Transferrin (TRF) ~6
β-2 Microglobulin 5.3 and 5.7 (isoforms)

4. Methods for Enhancing Dialysis Membrane Hemocompatibility

All of the methods for improvements in the material biocompatibility applicable for
membranes can be divided into two categories through achieving a bio-passive antifouling
surface or bioactive surfaces.

4.1. Biopassive Antifouling Surface

This approach assumes the creation of surfaces that possess a minimal adsorption
of proteins and blood cells, since this phenomenon is considered as the very first step for
further thrombotic response, blood clotting, and biochemical cascade reaction, which result
in severe health problems for HD patients. Although the aim of biopassive surfaces is to
minimize triggering immune response reactions, the effectiveness of this approach for long-
term applications is still a major concern. Hence, a bioinactive surface is hardly suitable for
biomedical implants, but is a good option for short-term or single-use applications such as
hemodialysis.

One example of a biopassive surface is a micropatterned surface that possesses super-
hydrophobic (SH) properties, resulting in antifouling behavior (so called “the lotus effect”).
There are some reports, indicating good protein repulsion, decreased platelet adsorption,
and reduced blood component activation [14,15]. The main concern regarding SH surfaces
is the air pocket layer, which prevents liquid contact with the SH surface, which is able
to provoke protein denaturation, causing coagulation cascade reactions and further distal
thrombus formation [16]. Despite this concern, there has been a report showing a successful
implementation of the SH surface for 8 days in the in vivo implant introduced into a sheep
body without any sign of blood clotting or thrombosis [17].

Another example of a biopassive surface is a zwitterionic (ZW)-coated surface. Unlike
SH surfaces, this type of surface is very hydrophilic. ZW molecules have an equal number
of positive and negative charges, which results in near-zero total charge of the surface, thus
minimizing the electrostatic interaction with proteins and other charged blood components.
Moreover, the presence of charged moieties in ZW molecules creates a layer of bonded
water molecules that creates obstacles for protein adsorption on the material surface, thus
possessing antifouling properties [18,19]. These ZW molecules are now being developed
for use to create the 3rd (the latest at the moment)-generation of HD membranes [20]. ZW
coated materials have also been successfully used in implant applications, showing good
bio- and hemocompatibility [21–23].
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Another approach to create a biopassive surface utilizes the immobilization of specific
physiological proteins on a material surface. In vivo experiments have demonstrated that
protein adsorption on the surface of the nanoparticles results in the elimination of non-
specific cellular uptake [24]. Moreover, the protein-covered surface being passive is believed
to be associated, not with protein repellence as with other biopassive surface creation
methods, but due to the affinity of the desired proteins due to surface functionalization [25].
However, the adsorbed proteins may change their conformation, revealing their active and
antigenic sites, which may trigger cascade complement reactions and immune responses,
resulting in undesired consequences [26,27]. Another issue that arises from using this
approach is the Vroman effect (i.e., preliminary adsorbed proteins are able to be replaced
with other proteins such as fibrinogen), which results in further platelet adhesion and
blood clotting [28]. Even if protein is covalently immobilized on the material surface to
prevent protein exchange, the adsorbed protein is subjected to degradation that also results
in platelet adhesion with undesired further thrombotic events, which significantly limits of
the long-term applications of this approach [29].

4.2. Bioactive Surfaces

This approach utilizes the immobilization of bioactive compounds that minimize the
immune response by interacting with key blood components or by releasing bioactive com-
pounds. Nitric oxide (NO) is a gaseous free radical molecule that attenuates the interaction
of platelets to the adsorbed fibrinogen, von Willebrand factor, and other blood proteins, re-
sulting in reduced platelet activation [30]. Moreover, this approach is based on the ability of
the endothelial lining of blood vessel cells to synthesize and exhaust NO from L-arginine at
an estimated flux of 0.5 to 4.0 × 10−10 mol/cm2/min [31]. NO producing materials depend
on the NO generation triggering type including physiologically, enzymatic, chemical, and
thermal activated [32–35]. Ex vivo experiments have demonstrated a significant reduction
in the thrombus formation in human blood and the inhibition of platelet aggregation in
platelet rich plasma [36]. Earlier in vivo experiments in developing NO releasing materials
allowed for a reduction in the thrombus area up to six times in a 7 h rabbit ECC model [37].
Recent work with NO releasing materials indicated the viability of this approach for ECC
applications, wherein the maintenance of 90% of the baseline platelet count was achieved
in a 4 h rabbit model using polyvinylchloride (PVC) tubing [38].

Indeed, the most widely known substance used to prevent blood coagulation is
heparin, which has been used as systemic anticoagulant since 1935. Despite reducing the
thrombin activity, heparin-coated surfaces are often not able to suppress other procoagulant
activity including platelet activation.

One of the main reasons responsible for the side effects of using heparin is believed to
be associated with the surface negative charge that arises when heparin is applied to cover
the HD membrane surface. To overcome this, heparin should be attached to a positively
charged substrate, resulting in near-zero surface charge (see Figure 5).

Using this approach, there have been several reports claiming the successful imple-
mentation of ionic complexes and near-zero charges in in vivo experiments, when no
fibrosis was observed around the implanted foreign parts [21,39–41]. Furthermore, the
above-mentioned complexes are reported to possess good hemocompatibility and near-zero
adsorption of the platelets and fibrinogen, which is believed to be the first step in designing
no-clotting HD membranes [40,42–51].
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5. Recent Development of Heparin-Immobilized Dialysis Membranes

A hollow-fiber oxygenator membrane was covalently coated with nitrous acid de-
graded heparin using aqueous free radical activation and oxygenation and the coupling
of a polyethyleneimine spacer [52]. This coating technology allowed for a heparin surface
density of 3.5 µg/cm2 to be achieved. Protein adsorption was performed within 6 h. The
binding mechanisms of the proteins were demonstrated to be changed for a heparin-coated
surface that resulted in less protein adsorption, which was observed starting from 10 min
of the experiment. However, complement system initiator proteins were detected to bind
more to the heparinized membrane.

The Klotho (KL) gene was cross-linked with heparin to the acellular small intesti-
nal submucosa (SIS) [53]. In vivo experiments demonstrated enhanced adhesion of the
endothelial cells on the SIS membrane, resulting in increased patency rate, endothelial-
ization, and smooth muscle regeneration, which indicates improved hemocompatibility.
This approach of promoting endothelial cell growth on the implant surface demonstrates
promising results, though at the moment, it is hardly applicable for the biocompatibility of
hollow fiber-based HD membrane modules.

To simplify the membrane surface heparinization, a chitosan support layer was
used [54]. Chitosan was directly added to the PES spinning solution, so further hep-
arinization can be easily performed just by treating of hollow fibers with heparin solution.
The authors proposed performing this procedure right before the HD session to minimize
the immobilized heparin degradation. The resultant membranes were observed to possess
a reduction in the thrombin–antithrombin complex, active complement component 3, and
platelet factor 4 concentration, which indicates an improvement in hemocompatibility.
Moreover, the above-mentioned modification with heparin increased the membrane flux
(for pure water).

A similar approach in the simplification of heparin immobilization was used in another
work [55]. Instead of chitosan, polydopamine (PDA) was used. It was demonstrated that
aside from adding polydopamine in the bore spinning solution, it is also possible to coat
PES hollow fiber membranes with PDA after membrane spinning, though it requires more
steps compared to using PDA in the spinning process. Both ways resulted in obtaining a
near-zero charged membrane, which is considered as a benefit. The resultant membranes
are going to be used in hemocompatibility tests in future works.

Chitosan was also used for heparin immobilization on a thermo-responsive poly(N-
isopropylacrylamide) (PNIPAM) polymer, that is, used for controlled drug release and
tissue engineering [56]. Up to 10 layers of alternating layers of chitosan and heparin were
created. To enhance the resultant complex stability layers were covalently cross-linked
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using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide
(NHS), which resulted in a reduced surface charge that is associated with the minimization
of heparin and chitosan loss. Moreover, the cross-linked complex demonstrated better
biocompatibility in terms of the growth of C3H10T1/2 cells after 24 h of cultivation.
However, an uncross-linked chitosan/heparin complex was reported to be successfully
used as an implant for 5 months for vascular regeneration [57]. In this study, a decellularized
scaffold (DCS) vascular path was coated with poly(vinyl alcohol) (PVA) with the further
immobilization of chitosan/heparin via layer-by-layer (LbL) self-assembly. At the same
time, the in vitro hemocompatibility test showed that the APPT time increased only to 45 s
for the heparin/chitosan coated vascular path, whereas the PVA-coated DCS possessed
a 26 s APPT time. The same situation appeared for the PRT, PT, and TT times when the
heparin/chitosan complex increased these times to 25–40 s, though the unmodified material
demonstrated 15–20 s.

The layer-by-layer self-assembly (LbL) technique was used to immobilize heparin
with the oppositely charged dihydroxy-iron (DHI) on the bovine pericardial scaffold (BPS)
surface [58]. This cycle was repeated up to 10 times to create a multi-layer structure with
alternating charged layers. The resultant complex was not stable and was able to gradually
release heparin, thus resulting in 30 days of anticoagulant activity in the in vitro tests.
As was previously discussed, the presence of heparin in human blood is able to provoke
undesired consequences such as HIT. Heparin dosage is always a critical point for HD
sessions, thus additional research is necessary to develop this approach.

Carbon nanotubes were used to carry heparin on their surface with further incorpora-
tion into the polyurethane (PU) matrix [59]. The resultant material showed increased APPT
time (more than 120 s compared to 20 s for non-heparinized material), reduced platelet
adhesion, and increased hydrophilicity.

Heparin was also used to improve the hemocompatibility and hydrophilicity of the ex-
treme hydrophobic nature of poly(ε-caprolactone) (PCL) to create vascular graft implants [60].
Heparin-coated PCL nanofibrous scaffolds were prepared using gamma irradiation and
N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride/N-hydroxysuccinimide
reaction chemistry on a preliminary 2-aminoethyl methacrylate (AEMA) hydrochloride
grafted surface. The resultant modification reduced the fibrinogen adsorption to 4 µg/mm2

(twice less compared with the unmodified PCL vascular graft). Moreover, improvement
in the recovery of blood vessel function was observed for implanted heparin-coated vas-
cular grafts into 24-month-old Sprague Dawley rats due to promoting the proliferation
of endothelial cells and preventing thrombosis. The examples of using heparin through
different approaches of its immobilization on various surfaces and the resulting outcomes
are listed in Table 2.

Table 2. The effects of the different approaches of heparin immobilization.

No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

1
PTFE HD

arteriovenous graft
with attached heparin

Commercial product.

No benefit of using heparin. The number
of cases of open or percutaneous

thrombectomy was significantly higher
for heparin-coated grafts as well as the

number of any intervention performed to
maintain graft patency. Kaplan–Meier
survival curve also shows no positive

effect of using heparin.

[61]

2 Low-molecular weight
heparin injections Heparin prevents blood coagulation. [62]
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Table 2. Cont.

No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

3 Heparin injections

Heparin increases the activated clotting
time (ACT) from 150 s to 300 s depending

on dosage. Survival is improved by
increased heparin administration

independent of the ACT.

[63]

4
Heparin (fractioned
and unfractioned)

injections

When fractioned heparin was used, it
resulted in increasing the density of
lipoproteins that is associated with

atherosclerotic cardiovascular disease.
Unfractionated heparin reduces these

effects.

[64]

5
Barium alginate

microcapsules with
conjugate heparin

Alginate microcapsules were
incubated with avidin with further
treatment with heparin solution.

Immobilized heparin reduces
pericapsular fibrotic overgrowth (PFO)

both in syngeneic and allogeneic rat
transplantation models by ~65% and

~43%, respectively (in-vivo experiments).

[39]

6

Pullulan acetate
(PA)/polyethylene

glycol (PEG)
membrane with

conjugated heparin

Heparin was immobilized using
PEG spacer and

N-hydroxysuccinimide.
Improved resistance to platelet adhesion. [65]

7

Alginate capsules
covered with

poly-l-lysine (PLL)
heparin

Alginate capsules were covered
with positively charged

poly-L-lysine with further
immobilization of heparin or

acrylic acid.

Use of heparin resulted in the appearance
of fibroblasts and macrophages on the

capsules (in-vivo rat tissues). When
heparin was replaced by poly-acrylic acid,

this effect was not observed.

[40]

8 Low-molecular weight
heparin injections

Use of heparin in a coagulation
preventive dose caused heparin-induced

thrombocytopenia (HIT) type 1 and 2
[66–78]

9

Polyurethane (PU)
coated with

chitosan/heparin
layer-by-layer.

Heparin / chitosan was
immobilized on PU surface using

1,6-diisocyanatohexane in the
presence of dibutyltin dilaurate.

Increase in blood clotting and
recalcification time in the in vitro

experiments. Thromboresistance was
83.94 ± 8.12% − 86.22 ± 5.29% after

20–240 min. In vivo hemolysis ratio was
less than 0.01%.

[49]

10
Covalently attached

heparin to membrane
for artificial lung use.

Commercial product.

Heparin reduces activated coagulation
time (ACT) from approx. 250 s to 150 s

compared to the non-heparinized
membrane. Lung performance

parameters remained approximately the
same

[79]

11 Heparin coated circuit
parts Commercial product.

Reduction in the terminal complement
complexes when using heparin.

Improvement in biocompatibility.
[80]

12

PTFE coated with
bovine serum albumin

(BSA)/heparin
multilayers

Heparin/BSA was immobilized
using cross-link by glutaraldehyde

or without it.

The BSA/heparin layer, cross-linked by
glutaraldehyde, prevented fibrinogen

adsorption and platelet adherence on the
PTFE surface.

[51]
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Table 2. Cont.

No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

13 TiO2 surface coated
with heparin

TiO2 surface was coated with
conjugate of polydopamine (PDA)

and poly(ethyleneimine) (PEI).
Then heparin was attached to this

conjugate using
N-hydroxysuccinimide (NHS) and

N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide

(EDC).

Increase of activated partial
thromboplastin time (APTT) from 35 s

(pristine TiO2) to 55–57 s for
heparin-coated TiO2. Heparin-coated
TiO2 also inhibited platelet adhesion.

[81]

14
Titan surface coated

with laminin/heparin
complex

Laminin/heparin complex was
covalently immobilized onto

poly-L-lysine (PLL) coated titan
surface with help of

1-ethyl-3-dimethylaminopropyl
carbodiimide (EDC),

N-hydroxy-2,5-dioxopyrol-idine-
3-sulfonicacid sodium salt (NHS)
and 2-morpholinoethane sulfonic

acid (MES).

The amount of immobilized heparin
depends on the amount of used laminin.

When high concentrations (more than 150
µg/mL) of laminin were used, it

significantly increased the activated
partial thromboplastin time (APTT) to
more than 190 s while the uncoated Ti
surface possessed an APTT of 30 s. A

lower amount of laminin increased the
APTT to 90–120 s.

[44]

15 PLA surface coated
with heparin

Heparin was conjugated with
chitosan coated polylactic acid

(PLA) surface.

Chitosan/heparin complex prevented
platelet adhesion and their activation in
blood contact in the in vitro tests. At the
same time, the L929 fibroblast adhesion

test showed that the PLA surface
adsorbed only 20% of cells, whereas the
chitosan/heparin coating increased this
value to 70%, which was greater than for
the PLA coated with chitosan only (40%

relative adsorption).

[43]

16

The extracorporeal
circuit of low-flux

cellulose dialyzers was
rinsed with heparin

solution

Commercial product.

75% of heparin-treated dialyzers showed
a decrease in the vascular endothelial

basic fibroblast growth factor VEGF165. It
was more profound for patients with

ischemic heart disease.

[82]

17 Fixation of heparin on
biological tissue

Fresh porcine pericardia was used
as biological tissue.

For ionic immobilization, the
tissue was treated with 2.1%

protamine sulfate with further
treatment with 0.625%

glutaraldehyde or genipin.
For covalent immobilization tissue

was treated with 0.625%
glutaraldehyde or genipin with

further treatment with 2%
water-soluble carbodiimide, 1-

ethyl-3-(3-dimethylaminopropyl)-
carbodiimide

hydrochloride.

Heparin increased the surface
hydrophilicity and reduced fibrinogen

and platelet adsorption. At the same time,
covalently attached heparin resulted in a

greater hydrophobic surface and
increased the amount of adsorbed

fibrinogen and platelets compared with
ionically immobilized heparin.

[42]

18
Polyurethane (PU)
films coated with
chitosan/heparin

PU film was treated with plasma
with further growing

polyacrylamide. Then, films were
treated with glutaraldehyde with
the further addition of chitosan

(CH) and heparin (Hep).

Both surfaces were shown to possess
antibacterial properties with some

improvement for PU-CH-Hep.
[83]
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Table 2. Cont.

No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

19 Glass and PVC surfaces
coated with heparin

PVC surface was treated with
radiofrequency SF6 plasma with

further chemical vapor deposition
from heparin/isopropanol and
heparin/hexamethyldisiloxane

solutions.

The coagulation time of blood was
increased by about 20–60%. [84]

20

Electrospun bilayered
bioresorbable

small-diameter
vascular grafts (SDVG)

based on blends of
poly(L-lactic acid)

(PLLA) and segmented
polyurethane (PHD),
coated with heparin

Electrospun fibers were treated
with allyl glycidyl ether with

further addition of poly(ethylene
glycol) bis(amine). Then heparin

was immobilized with help of
2-(4-Morpholino) ethanesulfonic

acid (MES),
1-(3-Dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride
and N-hydroxysulfosuccinimide

sodium salt (sNHS).

Heparin-coated surface promoted a stable
and functional endothelial cell layer. [85]

21

Alkylated
polyelectrolyte thin

film surface with
immobilized heparin

Heparin was chemically modified
by end-point conjugation to biotin

and immobilized onto
membrane-mimetic thin films via
biotin–streptavidin interactions.

Heparin promoted ATIII-mediated
thrombin inactivation. [86]

22

Polysulfone (PSf)
membrane coated with

hep-
arin/polydopamine

(PDA)/polyethyleneimine
(PEI)

PSf membranes were treated with
PDA/PEI mixture. Then

membrane was incubated into
heparin and 1-Ethyl-3-

(aminopropyl)carbodiimide
(EDC)/N-hydroxysucciimide

(NHS) mixture solutions

Heparin-modified PSf membranes
possessed high selectivity for LDL

removal and a reduction in the rate of
platelet adhesion.

[87]

23

Stainless steel with
covalently attached
heparin-liposomes

complex.

Stainless steel surfaces were
treated with plasma with further

deposition of acrylic acid and
heparin-liposomes.

Increase in blood coagulation time. [88]

24 PVC tubing coated
with heparin Commercial product.

It was demonstrated that the
immobilization of heparin altered the

composition of surface-adsorbed proteins
and promoted the AT-mediated inhibition

of surface adsorbed FXIIa and FXIa,
unlike free heparin in solution.

[89]

25

Polyacrylonitrile HD
membrane coated with

chitosan/heparin
conjugate

Chitosan (CS)/heparin (HEP)
polyelectrolyte complex (PEC) was
covalently immobilized onto the

surface of polyacrylonitrile (PAN)
membrane with help of

glutaraldehyde and 1-ethyl-3-(3-di-
methylaminopropyl) carbodiimide

(EDC).

Coated PEC reduced protein adsorption,
platelet adhesion, and thrombus

formation. Additionally, immobilized
PEC could suppress the proliferation of

Pseudomonas aeruginosa.

[90]
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Table 2. Cont.

No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

26

Graphene oxide with
covered heparin,
incorporated in
polyetherimide

membranes

Heparin was immobilized on the
graphene oxide surface with the
help of dopamine hydrochloride.

Then, film and hollow fiber-based
membranes with inclusions of
modified graphene oxide were

prepared.

Heparin reduced the platelet
adhesion/activation (103 times), increased
the blood clotting time (APPT 235 s), and
lowered thrombin generation. Hemolysis

ratio was less than 2%. Outstanding
removal of uremic toxins after 4 h (Urea

77 ± 2.5%, creatinine 68 ± 2%, and
lysozyme 44 ± 2%) and ~95% retention of

human serum albumin was shown.

[91]

27 Heparin injections
during HD

Skin necrosis due to the proposed
acquired antithrombin III deficiency.

Multiple erythematous, tender lesions
developed over the abdomen.

[92]

28 HD procedure with
heparin

Heparin-associated antiplatelet antibody
(HAAb) positive patients experienced

higher risk of thromboembolic and
hemorrhagic complications (60% vs. 8.7%

for control group) and higher related
mortality (28.6% vs. 4.35% for control

group).

[93]

29

Heparin-bonded
polytetrafluorethylene
HD arteriovenous graft

(AVG)

Commercial product.
Rates of reintervention and thrombectomy
were higher for the heparin-coated PTFE

AVGs.
[94]

30
Heparin-coated

polyacrylonitrile HD
membrane

Heparin-coated polyacrylonitrile
membrane (AN69ST) was

compared with regional Citrate
Anticoagulation.

Heparin-coated PAN membrane resulted
in blood clotting in 39% of HD sessions,
whereas no or 13% clotting occurred for

citrate anticoagulation depending on
citrate concentration.

[95]

31

Polyacrylonitrile (PAN)
electrospun scaffold

and heparin-poly(vinyl
alcohol) (heparin-PVA)
hydrogel coating HD

membranes

Heparin was chemically attached
to PVA with help of

glutaraldehyde. Then, it was
mixed with PAN and electrospun.

Heparin reduced membrane fouling with
proteins and improved anticoagulation. [96]

32

Immobilized heparin
on PVDF membranes

with microporous
structures

First, polyacrylic acid was grafted
on the PVDF surface. Then,

heparin was covalently attached
using (1-ethyl-3-(3-

dimethylaminopropyl)-
carbodiimide

hydrochloride.

Heparin reduced platelet adhesion [97]

33

Dopamine-covered 316
L stainless steel surface

coated with
heparin/poly-L-lysine

nanoparticles

Stainless steel was covered with
dopamine with the further

addition of heparin/poly-L-lysine
nanoparticles.

Heparin prolonged the APTT and TT
times, although a heparin density of more

than 20 µg/cm2 was unsuitable for
vascular cell proliferation and

endothelium regeneration.

[48]

34
Polycarbonate film
with immobilized

heparin

Heparin was attached to the PCL
surface via aminolysis

modification.

Heparin increased the surface negative
charge, resulting in increased protein

adsorption.
[98]
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Table 2. Cont.

No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

35
GORE-TEX1 vascular

grafts (PTFE) with
immobilized heparin

Commercial product.

Heparin-coated PTFE grafts remained
patent and had significantly greater
thrombus-free luminal surface. The

bioactivity of heparin was retained for a
period of up to 12 weeks.

[99]

36

liquid crystalline
hydroxypropyl

cellulose ester film with
immobilized heparin

Heparin was directly attached to
cellulose surface using NaOH.

Heparin increased the activated partial
thromboplastin time (APTT) and

prothrombin time (PT) as well as the
plasma re-calcification time (PRT) and

reduced coagulation activation.

[100]

37

Alginate microbeads
covered with

polyallylamine
(PAV)/macromolecular

heparin conjugates

Heparin/PAV complex was
attached to alginate microbeads

using poly-L-lysine.

Heparin–PAV complex increased anticlot
activity, lowered cytotoxicity, reduced

elevated complement, leukocyte CD11b,
and fibrotic overgrowth.

[50]

38

Hollow-fiber based PES
HD membrane,

modified with tannic
acid (TA)/poly(2-ethyl-

2-oxazoline)
(PEtOx)/heparin

PES hollow fibers were covered
with TA, then partially hydrolyzed
PetOx was added with the further

immobilization of heparin.

TA/PEtOx/Hep complex protected
cardiomyocytes (H9C2) and vascular

endothelial cells (HUVEC) from oxidative
damage. Additionally, activated partial
thromboplastin time was prolonged and

complement activation was reduced.

[45]

39

Polyvinyl chloride
(PVC) tubes and

capillary membrane
oxygenators with
heparin-modified

hollow fibers

Commercial product.

Immobilization of heparin resulted in
reduced attachment of activated C3 and

C5b-9 to the membrane surface in the
invitro experiment and improved

long-term hemocompatibility.

[101]

40
PVC surface coated

with heparin and nitric
oxide.

Heparin/copper nanoparticles
and NO-generating substances

were immobilized via tyrosinase
(Tyr)-mediated reaction.

Heparin/copper
nanoparticles/NO-generating generating

complex demonstrated reduced
inflammatory response and improved the

adaptation of implants in vivo.
Additionally, the complex promoted

endothelialization and inhibited
coagulation and platelet activation

[102]

41 PES HD membrane. Heparin was added during HD.

In vitro, heparin reduced the rate of
superoxide release from separated

12-myristate 13-acetate (PMA)-stimulated
peripheral blood polymorphonuclear

leukocytes (PMNLs). In vivo, the rate of
superoxide release from PNMLs was
significantly reduced for heparin use.

[103]

42
Cellulose membrane

with covalently
attached heparin

Visking@ dialysis tubes were
modified with heparin (HE),

dextran sulfate (DX), dermatan
sulfate (DS), and endothelial cell
surface heparan sulfate (ES-HS)

using the photochemical
heterobifunctional reagent

4-azido-lfluoro-2-nitrobenzene
(AFNB).

Heparin-coated membrane showed 50%
reduced platelet adhesion. ES-HS

modified membranes demonstrated no
platelet adhesion.

[104]
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No. System Preparation Method Outcome in Hemocompatibility and
Performance Ref.

43 Polyetherimide (PEI)
with attached heparin

Heparin was covalently attached
to the PEI surface via the amide

group reaction.

Heparin caused a significant reduction in
the platelet adhesion as well as the

reduction in cell growth and
metabolic activity

[105]

44
Bio-based poly(lactic

acid) (PLA) membrane
with attached heparin

Heparin was immobilized to the
PLA membrane surface via

reaction with dopamine.

Suppressed platelet adhesion, prolonged
plasma recalcification time, and decreased

the hemolysis ratio.
[106]

45

Styrene-butadiene-
styrene (SBS)

copolymer-based
membrane with

immobilized poly-
vinylpyridine/heparin

Heparin was attached to polymer
surface using poly-vinylpyridine.

Reduced adsorption of albumin and
fibrinogen. [46]

46

Polyvinyl chloride
(PVC) based sodium
selective membrane

electrode coated with
chitosan/heparin

Heparin/chitosan was attached
using carbonyldiimidazole (CDI). Reduced platelet adhesion [107]

47

Heparin grafted HD
dialyzers based on

polyaryethersul-
fone/polyamide,

polysulfone,
polyethersulfone,

polyarylethersulfone,
cellulose triacetate

Dialyzers from several
manufacturers.

Increase in the success rate of the HD
sessions for heparin-grafted dialyzers

(68.5% versus 50.4% for the control
group).

[108]

48 Gold covered SUS316L
stainless steel (SS) sheet

Alternatively immobilized
chondroitin 6-sulfate (ChS) and

heparin (HEP) layers on
gold-coated SS.

Increase in the blood clotting time [109]

49
Titanium surface

covered with chitosan
(CS)/heparin (Hep)

Heparin was covalently
immobilized on the alkali treated

titanium surface with further
immobilization of CS with

electrostatic bonding.

Reduction in protein absorption, blood
clot mass, and platelet adhesion.

Additionally, antibacterial activity was
observed.

[47]

50

Polyisobutylene-based
thermoplastic

elastomer (TPE) with
immobilized heparin

Heparin was immobilized using
1-ethyl-3-(dimethyl-aminopropyl)

carbodiimide hydrochloride
(EDAC) and azidobenzoic

acid/propine acid

Hindered accessibility of the heparin
active site to antithrombin. [110]

51

Hydrophobic
polyethylene (PE)
porous membrane
covered with poly-
dopamine/heparin

Heparin was covalently attached
to the PE surface with dopamine.

Suppressed platelet adhesion and
improved anticoagulation in vitro. [111]

52

Polytetrafluoroethylene
(PTFE) with a

heparin-immobilized
extracellular matrix

(ECM) coating

Heparin was attached to the ECM
coating.

Reduced endothelial cell (EC) growth and
improved smooth muscle cell (SMC)

proliferation, though platelet adhesion
was observed at a low heparin surface

density (4.89 ± 1.02 µg/cm2).

[112]

53
Heparin-coated

dialyzer membrane
modules

Commercial dialyzers.
73% of HD sessions ended up with Grade 3
and Grade 4 clotting. No significant benefit
of using heparin over vitamin E was shown.

[2]
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6. Conclusions

The development of antifouling and anti-clotting materials is of great importance
for hemodialysis and biomedical applications. The current tendency in the development
of biocompatible materials is to design a membrane with near-zero charge due to the
immobilization of zwitterionic molecules or pseudo-zwitterionic complexes. Achieving a
near-zero charge dialysis membrane will minimize any possible electrostatic interaction
with human serum proteins or other molecules, whose adsorption can provoke further
cascade reactions and related undesired consequences.

The possibilities of current chemistry allow us to synthesize tunable structures with
the desired properties that are potentially capable of replacing heparin and providing
ultimate hemocompatibility. At the same time, it is also possible to use heparin for the
creation of complex conjugates that eliminate heparin drawbacks, although this approach
seems to be less promising than the controlled synthesis of heparin-mimicking polymers.

Achieving a biopassive antifouling surface that possesses minimal adsorption of
proteins and blood cells is urgently required, since this phenomenon is considered as the
very first step for further thrombotic response, blood clotting, and biochemical cascade
reaction, which result in severe health problems for HD patients. Though the aim of
biopassive surfaces is to minimize triggering immune response reactions, the effectiveness
of this approach for long-term applications is still a major concern. Hence, a bioinactive
surface is hardly suitable for biomedical implants, but is a good option for short-term
or single-use applications such as hemodialysis. On the other hand, a bioactive surface
utilizes the immobilization of bioactive compounds that minimize the immune response by
interacting with key blood components or by releasing bioactive compounds.

Furthermore, with the methods mentioned in our study, it is more suitable for modify-
ing flat-sheet membranes. However, studies to date on the heparin or heparin-mimicking
modification of hollow fibers are not sufficient or well-tested. Therefore, in future studies,
much more attention should be paid to the surface modification of hollow fiber membranes.

A few studies have succeeded in the mimicking of heparin conformation, since the
anticoagulant of heparin is not only derived from the chemical groups, but also because
the specific conformation of heparin may also promote the binding of coagulant factors.
Thus, with a further understanding of heparin, the ultimate goal should be to design
advanced heparin-mimicking polymers with both mimicking groups and conformations. It
is believed that this review will evoke more attention toward the design of heparinized and
heparin-like/mimicking membranes and encourage future advancements of this emerging
research field.
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Abbreviations

Abbreviation Meaning
HIT Heparin-induced thrombocytopenia
PF4 Platelet factor 4
HD Hemodialysis
C3 Complement component 3
HSA Human serum albumin
FB Fibrinogen
TRF Transferrin
SH Superhydrophobic
ZW Zwitterionic
NO Nitric oxide
ECC Extracorporeal circuits
PVC Polyvinyl chloride
KL The Klotho Gene
SIS Small intestinal submucosa
PES Polyethersulfone
PDA Polydopamine
PNIPAM Poly(N-isopropylacrylamide
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
NHS N-hydroxysuccinimide
DCS Decellularized scaffold
PVA Poly(vinyl alcohol)
LbL Layer-by-layer
APTT Activated partial thromboplastin time
PRT Plasma recalcification time
PT Prothrombin time
TT Thrombin time
DHI Dihydroxy-iron
BPSs Bovine pericardial scaffolds
PU Polyurethane
PCL Poly(ε-caprolactone)
AEMA 2-aminoethyl methacrylate
PTFE Poly-tetrafluoroethylene
ACT Activated clotting time
PFO Pericapsular fibrotic overgrowth
PA Pullulan acetate
PEG Polyethylene glycol
PLL Poly-L-lysine
BSA Bovine serum albumin
PEI Poly(ethyleneimine)
MES Morpholinoethane sulfonic acid
PLA Polylactic acid
VEGF165 Vascular endothelial basic fibroblast growth factor
CH Chitosan
Hep Heparin
SDVG Small-diameter vascular grafts
sNHS N-hydroxysulfosuccinimide sodium salt
PSf Polysulfone
PEC Polyelectrolyte complex
PAN Polyacrylonitrile
HAAb Heparin-associated antiplatelet antibodies
AVG Arteriovenous graft
PVDF Poly-vinylidene fluoride
PAV Polyallylamine
TA Tannic acid
PEtOx Poly(2-ethyl-2-oxazoline)
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HUVEC Human umbilical vein endothelial cells
Tyr Tyrosinase
PMA Phorbol 12-myristate 13-acetate
PMNLs Polymorphonuclear leukocytes
DX Dextran sulfate
DS Dermatan sulfate
ES Endothelial cell surface
HS Heparan sulfate
AFNB 4-azido-lfluoro-2-nitrobenzene
SBS Styrene-butadiene-styrene
CDI Carbonyldiimidazole
SS Stainless steel
ChS Chondroitin 6-sulfate
TPE Thermoplastic elastomer
EDAC 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride
PE Hydrophobic polyethylene
ECM Extracellular matrix
SMC Smooth muscle cells
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