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Abstract: This investigation is motivated by increasing interest in ferrimagnetic materials and com-
posites, which exhibit electrical capacitance. It addresses the need for the development of magnetic
materials with enhanced capacitive properties and low electrical resistance. γ-Fe2O3-multiwalled
carbon nanotube (MWCNT) composites are developed by colloidal processing and studied for energy
storage in negative electrodes of supercapacitors. High energy ball milling (HEBM) of ferrimagnetic
γ-Fe2O3 nanoparticles results in enhanced capacitive properties. The effect of HEBM on particle
morphology is analyzed. Gallocyanine is used as a co-dispersant for γ-Fe2O3 and MWCNTs. The
polyaromatic structure and catechol ligand of gallocyanine facilitated its adsorption on γ-Fe2O3 and
MWCNTs, respectively, and facilitated their electrostatic dispersion and mixing. The adsorption
mechanisms are discussed. The highest capacitance of 1.53 F·cm−2 is achieved in 0.5 M Na2SO4

electrolyte for composites, containing γ-Fe2O3, which is high energy ball milled and co-dispersed
with MWCNTs using gallocyanine. HEBM and colloidal processing strategies allow high capacitance
at low electrical resistance, which facilitates efficient charge–discharge. Obtained composites are
promising for fabrication of multifunctional devices based on mutual interaction of ferrimagnetic
and capacitive properties.

Keywords: iron oxide; carbon nanotube; supercapacitor; milling; dispersant; nanoparticle;
electrode; composite

1. Introduction

Many recent investigations have focused on the design and optimization of processing
techniques for the fabrication of advanced composites [1–4]. Significant interest has been
generated in the development of colloidal techniques [5–8]. The design of electrostatic
self-assembly methods resulted in the fabrication of novel nanocomposites with high per-
formance [9–12]. Advanced nanocomposites have been developed, combining functional
properties of inorganic materials, polymers and carbon nanotubes [13–16]. A technological
problem in the development of such composites by colloidal techniques is related to disper-
sion of carbon nanotubes, and their efficient co-dispersion and mixing with other materials.
Various techniques have been reported for the dispersion of carbon nanotubes [13,17–19].
However, their co-dispersion with metal oxide nanoparticles presents difficulties due to
the lack of efficient co-dispersants. Therefore, there is a need for the development of
co-dispersant molecules, which must be adsorbed on both materials and facilitate their
mixing on the nanometric scale. It is challenging to co-disperse carbon nanotubes with
nanoparticles of magnetic oxides, which are prone to agglomeration due to van der Waals
and magnetic forces.

Another challenge is related to the development of advanced techniques for fabrication
of nanoparticles. High energy ball milling (HEBM) is a promising technique for sustainable
production of different nanoparticles, such as metals, alloys and oxides [20–22]. Particle
shape and properties can be modified by HEBM [23]. Aluminum nanoparticles with
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enhanced reactivity were prepared by this method [24]. Moreover, Al-Ni mixed powders
with enhanced reactivity were fabricated [25].

HEBM is under development for the mechanochemical synthesis of materials [26–28].
This technique offers advantages of waste-free eco-friendly processing [26]. Mechanochemi-
cal alloying is one of the promising applications of HEBM [29,30]. The use of HEBM allowed
the fabrication of advanced composites with uniform dispersion of ceramic particles in a
metal alloy matrix [31]. Such composites exhibited advanced mechanical properties [31].
Mg alloys showed significant enhancement of H-storage properties after HEBM [32]. This
resulted from reduction in grain size and improved distribution of a catalyst material [32].
HEBM allowed modification of microstructure and properties of magnetic materials and
facilitated the fabrication of advanced alloys with hard magnetic properties [33]. HEBM
is a promising technique for the fabrication of particles for energy storage applications in
supercapacitors and batteries [34–36]. The reduction in particle size allowed an improved
rate performance of Li4Ti5O12 electrodes [34]. HEBM treatment of graphite created abun-
dant oxygen functional groups on the particle surface [37] and supercapacitor devices with
an enlarged voltage window and high capacitance were obtained. However, the effect of
HEBM on Ni(OH)2 battery electrode material performance is not well understood. The
structure changes in Ni(OH)2 electrodes showed deterioration of their electrochemical
performance [38]. Such controversial and diverging results generate a need for further
investigation of HEBM for fabrication of active materials for energy storage devices.

The goal of this investigation was fabrication and testing of Fe2O3–carbon nanotube
composite electrodes for supercapacitors. The approach was based on synergy of two
methods, colloidal processing and HEBM. An important finding was that gallocyanine
is a promising co-dispersant which adsorbs on Fe2O3 and carbon nanotubes and allows
for their efficient co-dispersion and mixing. We analyzed the influence of HEBM on
morphology of Fe2O3 particles. Electrochemical testing results revealed benefits of HEBM
and colloidal processing in the presence of gallocyanine, which facilitated the fabrication of
the Fe2O3–carbon nanotube composite electrodes with enhanced capacitance.

2. Materials and Methods

Multiwalled carbon nanotubes (MWCNTs, OD 13 nm, ID 4 nm, length 1–2 µm, Bayer,
Leverkusen, Germany), Ni foams (thickness 1.6 mm, 95% porosity, Vale, Mississauga,
Canada), Fe2O3 nanopowder (size < 50 nm), Na2SO4, poly(vinyl butyral) (PVB), gallocya-
nine (MilliporeSigma, Oakville, Canada) were used. The mass ratio Fe2O3:MWCNT:PVB
was 80:20:3 in composites 1–3. The composite electrodes were prepared by impregnation of
Ni foam current collectors with mixed Fe2O3 and MWCNT slurries in ethanol, containing
dissolved PVB. The slurries were ultrasonicated for 30 min before impregnation of the
current collectors. As-received Fe2O3 powder was used for the preparation of composite 1,
whereas high energy ball milled Fe2O3 was utilized for composites 2 and 3. Composite 2
was prepared without gallocyanine, whereas gallocyanine was used for preparation of com-
posite 3 using a preliminary co-dispersion procedure, described below. High energy ball
milling was performed using a Mixer Mill MM 500 Nano (Retsch GmbH, Haan, Germany)
at a frequency of 15 Hz. Milling time was 30 min. A preliminary co-dispersion and mixing
procedure was used for the preparation of composite 3. In this preliminary procedure, the
ball milled Fe2O3 powder was mixed with MWCNTs in ethanol, containing dissolved gal-
locyanine. The mass ratio of gallocyanine:Fe2O3 was 0.15. After ultrasonication for 30 min,
filtering for removal of non-adsorbed gallocyanine and drying, the obtained mixture was
used for preparation of a slurry in ethanol, containing PVB for impregnation of the current
collectors. The impregnated electrodes were dried in air at 60 ◦C and pressed to 30% of
original thickness. The total mass of impregnated material after drying (mass loading) was
40 mg·cm−2.

Electron microscopy investigations were performed using a JSM-7000F, (JEOL, Tokyo,
Japan) scanning electron microscope (SEM) and Talos 200 (Thermo Fisher Scientific, Waltham,
MA, USA) transmission electron microscope (TEM). X-ray diffraction (XRD) analysis
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(diffractometer Bruker D8, Bruker, Billerica, MA, USA) was performed at the rate of
0.01 degrees per second using Cu-Kα radiation. Fourier transform infrared spectroscopy
(FTIR) studies were performed using a Bruker Vertex 70 spectrometer (Bruker, Billerica, MA,
USA). The IR spectra were registered between 400 and 4000 cm−1 as a result of the average
of 3 scans with a resolution of 0.5 cm−1. Zeta potential measurements were performed by a
mass transfer method [39].

The capacitive behavior of the electrodes was analyzed in aqueous 0.5 M Na2SO4
electrolyte using a PARSTAT 2273 (Ametek, Berwyn, PA, USA) potentiostat for cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A BioLogic VMP
300 potentiostat (Biologic, Willow Hill, IL, USA) was used for galvanostatic charge–discharge
(GCD) investigations. A 3-electrode electrochemical cell was used, which contained a work-
ing electrode, counter-electrode (Pt mesh) and a reference electrode (SCE, saturated calomel
electrode). Gravimetric (Cm, F·g−1) and areal (CS, F·cm−2) capacitances were calculated
from the CV, EIS and GCD data as was described in previous investigations [40,41].

The capacitance was obtained from CV data using the following equation:

C =
∆Q
∆U

=

∣∣∣∫ t(Umax)
0 Idt

∣∣∣+∣∣∣∫ 0
t(Umax) Idt

∣∣∣
2Umax

(1)

where ∆Q is charge, I—current, t—time and ∆U—the potential range. GCD data were used
for the calculation of capacitance by the following equation:

C = I∆t/∆U. (2)

The complex capacitance C*(ω) = C′(ω) − iC”(ω) was calculated at different frequen-
cies (ω) from the complex impedance Z*(ω) =Z′(ω) + iZ”(ω) data:

C′(ω) =
− Z′′ (ω)

ω|Z(ω)|2
, (3)

C′′ (ω) =
Z′(ω)

ω|Z(ω)|2
. (4)

CS and Cm obtained from CV and GCD data in a potential window of 0–0.9 V rep-
resented integral capacitances. EIS data obtained in an open circuit potential at voltage
amplitude of 5 mV provided differential capacitances. The EIS spectra were acquired in the
frequency range of 10 Hz–1 kHz.

3. Results

Figure 1 shows the X-ray diffraction pattern of as-received Fe2O3 powder. The diffrac-
tion pattern shows peaks of γ-Fe2O3 phase. Labeled peaks in Figure 1 correspond to JCPDS
file 025-1402 of γ-Fe2O3.

Figure 2 shows TEM images of as-received and HEBM nanoparticles at different
magnifications. The particle size of as-received Fe2O3 powder was typically below 50 nm,
is agreement with the information provided by the powder manufacturer. However, TEM
observations revealed a small number of larger spherical particles with a particle size
of 200–250 nm (Figure 2A). Such particles were not observed after HEBM (Figure 2B).
Therefore, HEBM eliminated such relatively large particles. The TEM images at a higher
magnification (Figure 2C,D) did not show a significant difference in the size of nanoparticles
before and after HEBM. It is in this regard that HEBM over 90 h resulted in a similar size
of Fe2O3 nanoparticles [42]. However, TEM analysis of HEBM nanoparticles showed
significant particle grinding, which resulted in a rough particle surface (Figure 3).
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Figure 3. (A,B) High magnification TEM images of Fe2O3 nanoparticles after HEBM, which show
increased surface roughness of the particles.

It is known that γ-Fe2O3 phase (maghemite) is a ferrimagnetic material with rela-
tively high spontaneous magnetization [43,44]. The fabrication of stable suspensions of
such nanoparticles for colloidal processing presents difficulties due to van der Waals and
magnetic interactions, which promote particle aggregation and sedimentation. Another
problem is related to poor electronic conductivity of γ-Fe2O3, which is detrimental for
applications of this material in supercapacitors.

In this investigation, gallocyanine was used as a dispersion agent for Fe2O3. A
sedimentation test of as-received Fe2O3 powder in ethanol showed fast precipitation. The
addition of gallocyanine with mass ratio gallocyanine: Fe2O3 = 0.15 resulted in colloidal
stability for 2 days for as-received Fe2O3 and more than 10 days for HEBM Fe2O3. It was
hypothesized that gallocyanine adsorbed on Fe3O4 particles and provided electrostatic
stabilization. Figure 4A shows the chemical structure of gallocyanine. It contains a catechol
ligand, which can facilitate gallocyanine adsorption on inorganic surfaces (Figure 4B).
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Catecholate molecules are gaining attention for surface modification and dispersion
of different materials. One of the greatest drivers of catecholate dispersant development
is investigation of strong mussel adsorption on different surfaces, which is based on
bidentate bonding of catechol ligands of mussel adhesive proteins [45–47]. Recent studies
of monoaromatic charged molecules from the catechol family led to the development of
advanced dispersants [48]. Caffeic acid, tiron, dopamine and other cationic and anionic
catecholates were used for dispersion of ZrO2, TiO2, MnO2, ZnO and other metal oxides
in ethanol [48,49]. Adsorption of caffeic acid on positively charged MnO2 particles in
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ethanol resulted in charge reversal [50]. Therefore, it was not surprising that gallocyanine
adsorbed on Fe2O3 and facilitated particle dispersion. The gallocyanine adsorption on
Fe2O3 nanoparticles was confirmed by FTIR studies (Figure 5).
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The FTIR spectrum of as-received Fe2O3 showed absorption at 1404 cm−1, which
can result from vibrations of adsorbed CO2 [51]. The spectrum of gallocyanine showed
absorption at 1722 cm−1 related to C=O stretch [52]. Absorptions at 1591 and 1555 cm−1

are related to C=C–C stretch [18,19]. Absorptions at 1385, 1312 and 1119 cm−1 are related
to C–O, C–N–C and C–O–C stretches, respectively [18,52]. The spectrum of Fe2O3 dis-
persed using gallocyanine showed similar peaks and confirmed gallocyanine adsorption
on Fe2O3 particles. The spectra of pure Fe2O3 and Fe2O3 dispersed using gallocyanine
(Supplementary Information, Figure S1) showed broad absorptions at 550 cm−1 related to
Fe–O stretching [53].

The larger size of gallocyanine, compared to the size of monoaromatic catecholates,
such as caffeic acid, tiron and dopamine, is beneficial for dispersion of Fe2O3. Figure 4
indicates that gallocyanine is a cationic molecule. Therefore, gallocyanine was used as a
cationic dispersant for Fe2O3. Electrophoretic experiments in an electric field of 30 V cm−1

for Fe2O3 suspensions, containing gallocyanine, confirmed that Fe2O3 particles were posi-
tively charged, as they moved toward the cathode under the influence of the electric field
and deposited electrophoretically on the cathode surface. Zeta potential of Fe2O3 particles
was found to be +8.2 mV. Figure 4 indicates that gallocyanine is a polyaromatic molecule.
It was found that gallocyanine allowed for efficient dispersion of MWCNTs in ethanol.
The adsorption mechanism involved π–π interactions of polyaromatic gallocyanine with
side walls of MWCNTs. The MWCNT suspensions prepared without gallocyanine were
unstable and showed rapid precipitation. In contrast, the MWCNT suspension containing
gallocyanine showed colloidal stability for more than 2 weeks. Therefore, the adsorbed
gallocyanine provided electrostatic dispersion of MWCNTs and electrostatic co-dispersion
of Fe2O3 and MWCNTs in mixed suspensions.

Figure 6 shows SEM images of composites 1–3 impregnated into Ni foam current
collectors. Composite 1 contained mainly nanoparticles of Fe2O3 and a small number
(about 1%) of spherical particles with a typical size of 200–250 nm in agreement with the
results of TEM studies (Figure 6). HEBM resulted in crashing and elimination of such



J. Compos. Sci. 2022, 6, 177 7 of 13

particles. The SEM images of composites 2 and 3 showed only nanoparticles of Fe2O3,
which were mixed with MWCNTs (Figure 6B,C). The porosity of the electrode materials
was beneficial for electrolyte access to the active material.
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The CVs for composites 1–3 showed pseudocapacitive behavior of the electrodes.
Composite 2 showed improved shape of CVs, which were nearly of rectangular shape.
Composite 3 showed enlarged CV area, which indicated higher capacitance. The capaci-
tances calculated from the CV data were 0.59 F·cm−2 (14.75 F·g−1), 0.88 F·cm−2 (22.0 F·g−1)
and 1.53 F·cm−2 (38.25 F·g−1) at a scan rate of 2 mV·s−1. The higher capacitance of com-
posite 2 compared to composite 1 can be attributed to effect of HEBM, such as crushing of
large particles and increase in surface roughness of nanoparticles. It should be noted that
capacitance increase cannot be correlated with surface area. Previous investigations did
not show correlations between surface area and capacitance of different pseudocapacitive
oxides [54–57]. Composite 3 showed the highest capacitance due to the beneficial effect of
HEBM and enhanced mixing of Fe2O3 and MWCNT, which was achieved using gallocya-
nine as a co-dispersant for colloidal processing. The observed capacitances were mainly
attributed to pseudocapacitive properties of Fe2O3 due to low capacitance of MWCNTs
and low (20%) content of MWCNTs in the composites. In our approach, MWCNTs were
used as conductive additives, which improved electronic conductivity of the composites.
We found that the mass ratio of conductive MWCNTs must be 20% of the total mass of
Fe2O3 and MWCNTs in order to achieve low impedance and high capacitance. Further
increase in the MWCNT content in the composite resulted in reduced capacitance.

Figure 8 shows electrochemical impedance spectroscopy testing results. Composites 1–3
showed a relatively low real part of impedance, which indicated low electrode resistance.
Composites 2 and 3 showed higher capacitance, compared to composite 1 at low fre-
quencies, in agreement with CV data. However, composite 2 showed higher capacitance,
compared to composite 3. The capacitances obtained from the impedance data were lower
than capacitances derived from CVs. The difference may have resulted from different mea-
surement conditions. The AC capacitance represents a differential capacitance measured at
voltage amplitude of 5 mV. The differential capacitance depends on electrode potential. In
contrast, the capacitance calculated from the CV data represents an integral capacitance,
measured in a voltage window of 0.8V.
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(a) composite 1, (b) composite 2 and (c) composite 3.

Figure 9A–C shows GCD data for composites 1–3 at different current densities. The
charge–discharge curves had a nearly triangular shape. The charge–discharge time in-
creased with decreasing current density. Composite 3 showed longer discharge times,
compared to composites 1 and 2 at fixed current densities. The capacitances of 0.65, 1.09
and 1.26 F·cm−2 were obtained at a current density of 3 mA cm−2 for composites 1, 2 and
3, respectively. The capacitances decreased with increasing current density (Figure 9D).
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densities of (a) 3, (b) 5, (c) 7 and (d) 10 mA.cm−2 and (D) capacitance versus current density for
(a) composite 1, (b) composite 2 and (c) composite 3.

Areal capacitance is an important characteristic of electrodes with high active mass
loading [40]. Table 1 compares areal capacitance of the composite 3 electrode with literature
data on areal capacitance of Fe2O3 electrodes, containing conductive additives. It is seen
that previous investigations of negative electrodes based on Fe2O3 in Na2SO4 electrolyte
were mainly focused on testing of α-Fe2O3, which is an antiferromagnetic material. In
contrast, γ-Fe2O3 is a ferrimagnetic material, which showed relatively high capacitance
(Table 1). Despite the difficulties related to colloidal processing of ferrimagnetic γ-Fe2O3
particles, we achieved higher capacitance of γ-Fe2O3-based composites. This resulted from
the effect of HEBM and the use of gallocyanine as a co-dispersant.

The combination of ferrimagnetic and capacitive properties in a single material is very
promising, because reduction of Fe3+ ions results in changing of their magnetic moments.
Therefore, interesting effects can potentially be observed in such materials due to the
influence of the charging process on magnetization or the influence of magnetic field on
the charging process. Pseudocapacitive ferrimagnetics or ferromagnetics represent an
important alternative to magnetically ordered ferroelectrics [58], which exhibit interesting
magnetoelectric effects. It is in this regard that capacitance of γ-Fe2O3 is significantly
higher than that of magnetically ordered ferroelectrics [58]. Moreover, magnetically ordered
ferroelectrics exhibit antiferromagnetic or weak ferri/ferromagnetic properties. In contrast,
γ-Fe2O3 is a ferrimagnetic material, which has a high magnetization. Therefore, this
material, which exhibits advanced capacitive and magnetic properties, is promising for
potential applications in multifunctional devices based on mutual interactions of magnetic
and capacitive properties.
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Table 1. Capacitance of Fe2O3-based composites containing conductive carbon additives in Na2SO4

electrolyte in negative potential range.

Material Mass Loading Voltage Window CS Reference

mg·cm−2 V mF cm−2

α-Fe2O3/graphene 1.0 −1.0–0.0 286 [59]
vs. SCE at 2 mV·s−1

α-Fe2O3/carbon 2.4 −1.0–0.0 862 [60]
vs. SCE at 1 mA·cm−2

α-Fe2O3/carbon 1.1 −1.0–0.0 430.8 [61]
nanoarray vs. Ag/AgCl at 1 mA·cm−2

α-Fe2O3/carbon N/A −0.8–0.0 340 [62]
vs. Ag/AgCl at 1 mA·cm−2

γ-Fe2O3/carbon 40 −0.8–0.0 1530 this work
vs. SCE at 2 mV·s−1

4. Conclusions

Composites of γ-Fe2O3 and MWCNTs with active mass loading of 40 mg·cm−2 were
prepared by colloidal processing for energy storage in negative electrodes of supercapaci-
tors. The composites combined advanced ferrimagnetic properties with high capacitance.
The high capacitance was achieved at a low electrical resistance, which is beneficial for
efficient charge–discharge. HEBM exerted influence on powder morphology and facilitated
the fabrication of composites with enhanced capacitance. Gallocyanine allowed efficient
co-dispersion of γ-Fe2O3 and MWCNTs. The catechol group of this dispersant facilitated its
adsorption on γ-Fe2O3, whereas the polyaromatic structure allowed adsorption on MWC-
NTs. The electrostatic co-dispersion allowed for efficient mixing of individual components
of the composite material. The highest capacitance of 1.53 F·cm−2 was achieved in Na2SO4
electrolyte for composites, containing γ-Fe2O3, which was high energy ball milled and
co-dispersed with MWCNTs using gallocyanine. Obtained composites are promising for
fabrication of multifunctional devices based on mutual interaction of ferrimagnetic and
capacitive properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcs6060177/s1, Figure S1: FTIR spectra of (a) as-received Fe2O3,
(b) gallocyanine, (c) Fe2O3, containing adsorbed gallocyanine.
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