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Abstract: Polymeric nanocomposite foams have attracted increasing research attention for technical
reasons. Poly(methyl methacrylate) is a remarkable and viable thermoplastic polymer. This review
highlights some indispensable aspects of poly(methyl methacrylate) nanocomposite foams with
nanocarbon nanofillers (carbon nanotube, graphene, etc.) and inorganic nanoparticles (nanoclay,
polyhedral oligomeric silsesquioxane, silica, etc.). The design and physical properties of poly(methyl
methacrylate) nanocomposite foams have been deliberated. It has been observed that processing
strategies, nanofiller dispersion, and interfacial interactions in poly(methyl methacrylate)–nanofiller
have been found essential to produce high-performance nanocellular foams. The emergent applica-
tion areas of the poly(methyl methacrylate) nanocomposite foams are electromagnetic interference
shielding, sensors, and supercapacitors.

Keywords: poly(methyl methacrylate); nanocomposite; foam; electromagnetic; sensor; supercapacitor

1. Introduction

Poly(methyl methacrylate) (PMMA) is a commercially important thermoplastic poly-
mer with appropriate chemical resistance, corrosion resistance, and anti-weathering prop-
erties toward the methodological applications [1–3]. However, the thermal and mechanical
stability properties of PMMA are not high enough to meet industrial demands. Conse-
quently, various design modifications have been carried out on this polymer to enhance
its physical properties. The PMMA matrix has been reinforced with nanoparticles, to
develop nanocomposites. Consequently, the technical application areas of PMMA-based
nanocomposites have been focused on the fields of materials science and nanotechnology.
PMMA has been used to form a three-dimensional cellular foam structure [4]. PMMA foam
possesses inherently high thermal, mechanical, optical, sensing, and environmental proper-
ties, relative to neat PMMA. In this regard, nanocarbon nanoparticles have been employed
to enhance PMMA foam matrix properties. Research has turned towards the incorpora-
tion of nanoparticles such as graphene [5], carbon nanotubes [6], nanoclay [7], inorganic
nanoparticles [8], etc. in the PMMA matrix [9–11]. Consequently, high performance PMMA
nanocomposite foams have been developed. The superior flexibility, thermal stability, me-
chanical robustness, electrical conductivity, sensing, capacitance, and radiation shielding
properties of PMMA and nanofiller-based nanocomposite foams are appropriate for several
technical applications. In this review, progress in the design, features, and applications of
PMMA nanocomposite foams has been offered. Advanced PMMA nanocomposite foams
have been reproduced in several wide-ranging as well as promising application areas. The
future of PMMA nanocomposite foams relies on the design of modified nanoparticle-based
PMMA aerogels.
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2. Poly(methyl methacrylate)

Poly(methyl methacrylate) (PMMA) is a transparent thermoplastic polymer [12,13]. It
is made up of methyl methacrylate monomer. It was originally discovered in 1930s [14].
It is a lightweight polymer with a density of 1.2 gcm−3. PMMA shows atacticity, iso-
tacticity, and syndiotacticity in its structure. PMMA is an optically transparent polymer
and has been frequently used as inorganic glass [15]. PMMA has a refractive index of
1.49 [16–18]. PMMA has an amorphous nature, chemical resistance, weather defiance,
and corrosion resistance properties. The thermal stability of PMMA has been extensively
deliberated [19]. PMMA has a glass transition temperature in the range of 100–130 ◦C.
Using the methyl methacrylate monomer, the solution, bulk, suspension, emulsion, free
radical, atom transfer radical, and anionic radical chain polymerization methods have
been used to form the PMMA backbone [20–23]. However, neat PMMA does not possess
enough thermal/mechanical stability to meet a range of technical demands [24,25]. In
this regard, high performance PMMA-based nanocomposites have been reported [26,27].
Various nanofillers employed within the PMMA matrix are graphene [28], carbon nanotube
(CNT) [29], fullerene [30], layered silicate [31], silica [32], alumina, polyhedral oligomeric
silsesquioxane [33], and metal nanoparticles [34,35]. PMMA has been applied in numerous
applications including automotive parts, coatings, additives, neutron stoppers, packaging,
and the nanocomposite industry.

3. Poly(methyl methacrylate) Foam

Polymeric nanocellular foams have been produced using various processes [36,37].
Among the most promising foaming techniques are supercritical carbon dioxide (CO2) dis-
solution, the high pressure method, and the use of foaming agents [38,39]. The plasticization
effect of foaming may influence the thermal stability, polymer glass transition temperature,
density, and mechanical properties [40]. Thin polymer films can be simply foamed using
CO2 gas dissolution [41,42]. Consequently, foams with medium-to-low density have been
obtained. PMMA has been developed to form foam structures having low density, fine
toughness, rigidity, and thermal conductivity properties [43]. PMMA foams have been
produced using various polymeric methods [44,45]. Pinto et al. [46] adopted the CO2 gas
foaming process to form nanocellular and microcellular PMMA foams. The influence of
CO2 saturation temperature on PMMA foaming was explored. Figure 1 represents scanning
electron microscopy (SEM) images showing the effect of saturation temperature on the
cellular structure. The CO2 saturation temperature seems to impact the foaming mechanism
via better nucleation and cell growth. Zhou et.al. [47] developed PMMA microporous foam
structures via hot melt pressing. The melt method was assisted by the supercritical CO2
foaming method. Figure 2 shows the fabrication process for the PMMA foams. The PMMA
was converted into sheets using melt hot pressing at 200 ◦C (40 MPa). The PMMA sheet
thickness was adjusted in the range of 0.45–1.5 mm. Primarily, single-layer PMMA sheet,
25-layer PMMA sheet, and 80-layer PMMA sheet were studied.
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Figure 2. Schematic diagram of preparing PMMA microporous foam with multi-layer cell struc-
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The volume density of the foams was found to decrease with rising temperatures
(Table 1). This decrease in the volume density was probably due to the higher cell density
of the foam at higher temperature. The compressive strength of the multi-layer foam was
increased from 11.84 MPa to 20.27 MPa with the increasing PMMA layers in the structure
(Figure 3). The highest compressive strength was obtained with the 80 multi-layer PMMA
sheet. Inclusion of the multi-layer PMMA structure promoted better nucleation and growth
of the cells in the polymer matrix [48]. Consequently, the compressive strength of the foams
was increased with layering. The multi-layered foaming method has been well established
for PMMA in literature [49].

Table 1. The volume density of the foams foaming at 16 MPa and different temperatures [47]. Repro-
duced with permission from Elsevier.

Temperature (◦C) Volume Density/Psi (gcm3)

80 0.355 ± 1.8 × 10−3

110 0.265 ± 2.1 × 10−3

140 0.096 ± 3.8 × 10−4
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4. Poly(methyl methacrylate) Nanocomposite Foam
4.1. Poly(methyl methacrylate)/Nanocarbon Nanocomposite Foam

The carbon nanotube is an important type of nanocarbon nanoparticle with extraordi-
nary optical, electrical, magnetic, mechanical, and thermal properties [50]. The CNT has
been effectively used as reinforcement in the polymeric nanocomposites [51]. Addition
of CNT has been used to escalate the foam nucleation process in the polymeric foams.
The nanotube has been used to alter the polymeric foam morphologies. Chen et al. [52]
prepared poly(methyl methacrylate)/carbon nanotube (PMMA/CNT). The Young’s mod-
ulus and collapse strength of the PMMA/CNT nanocomposite foam were enhanced by
82% and 104%, respectively. Yuan et al. [53] designed PMMA/CNT nanocomposite foams
using the melt method and CO2 gas foaming technique. The preparation method for the
PMMA/CNT nanocomposite foam is given in Figure 4. The bilayer nanocomposite was
used for hot pressing (170 ◦C) and subsequent foaming. The cell size and cell density of the
nanocomposite foams are given in Figure 5. The cell size was decreased from 3.8 to 3.0 µm,
while cell density was increased in the range of 1.8 × 1010–3.7 × 101 Cells/cm3, by varying
the CNT content from 4 to 8 wt.%. Due to the formation of a CNT network in the PMMA
matrix, cell growth was restricted and cell size was decreased. Zeng et al. [54] designed
PMMA/CNT using a gas foaming technique. Table 2 depicts cell size and cell density of the
PMMA/CNT nanocomposite foams. The comparison has shown that the nanocomposite
microcellular foams possess smaller cell size and higher cell density, relative to the neat
PMMA foam.
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Table 2. Comparison of cell size and cell density of PMMA and PMMA nanocomposite foams [54].
PMMA/CNT 0.5 = poly(methyl methacrylate)/carbon nanotube with 0.5 wt.% nanofiller;
PMMA/CNT 1 = poly(methyl methacrylate)/carbon nanotube with 1 wt.% nanofillers. Reproduced
with permission from Elsevier.

Sample Cell Size Cell Density (Cell/cm3)

Pure PMMA 17.5 ± 3.3 1.3 × 108

PMMA/CNT 0.5 4.2 ± 1.0 7.2 × 109

PMMA/CNT 1 6.6 ± 2.0 1.5 × 109

These parameters indicate the success of the supercritical CO2 process to form ho-
mogeneous nanocellular structures. Inclusion of 0.5 wt.% functional CNT enhanced the
tensile strength and tensile modulus by ~40% and ~60%, compared with the neat PMMA
foam. The enhancement in the mechanical properties was attributed to the increased cell
density of the nanocomposite foam and better CNT dispersion. Yuan et al. [55] prepared
PMMA/CNT nanocomposite foams using a supercritical foaming technique. The electrical
conductivity of the nanocomposite foams was increased with the nanofiller loading from
3.34 × 10−6 to 4.16 × 10−6 Scm−1 due to the CNT conductive network formation. Zeng
et al. [56] proposed PMMA/CNT nanocomposite foams by a supercritical foaming method.
The inclusion of nanotubes remarkably augmented cell density and reduced cell size. Addi-
tion of 1 wt.% MWCNT increased cell density and reduced cell size by 70–80 times, relative
to the neat PMMA foam. Figure 6 shows the high-pressure supercritical batch foaming
unit. Initially, CO2 was used to feed to the pressure vessel. Then, the pressure pump was
used to pass the CO2 through the sample in the batch vessel for the foaming process. The
temperature of the system was kept constant and monitored by temperature controller.
Zakiyan et al. [57] designed a PMMA filled with CNT and graphene nanoplatelet (GNP)-
based materials. They performed important studies on the dispersion and alignment of
the CNT and GNP nanofillers. Surface coating of PMMA on the GNP caused hindrance
in the interaction between the GNP particles in the matrix. At the same time, the CNT
easily developed interconnecting network in the matrix, forming direct contacts (Figure 7).
Thus, the dielectric properties of the PMMA/CNT were found to be superior, relative to
the GNP nanocomposite. Graphene is a unique nanocarbon structure which has attracted
immense research interest since its discovery [58]. Graphene possess superior mechanical,
thermal, and electrical properties for the formation of polymeric nanocomposites [59–61].
Fan et al. [62] proposed PMMA and graphene aerogel-derived nanocomposite foams. The
nanofiller used was reduced graphene oxide (rGO). The rGO was loaded in 0.67–2.50 vol.%.
The electrical conductivity was increased from 0.160 to 0.859 Sm−1. The rGO loading in-
creased the microhardness of the nanocomposites from 303.6 to 462.5 MPa and the thermal
conductivity in the range of 0.35–0.70 W/mK. The increase in the electrical and thermal
properties was due to the better distribution of the nanofillers in the PMMA nanocellular
structure [63,64]. Wang et al. [65] produced poly(methyl methacrylate) and graphene oxide
(GO)-based PMMA/GO nanocomposite foams using the solution blending and super-
critical CO2 method. Figure 8 depicts SEM images of the neat PMMA and PMMA/GO
nanocomposite. The inclusion of GO nanosheets increased cell density and decreased cell
size. The smaller, well-defined cells indicate the homogeneous dispersion of the graphene
nanosheets and fine matrix–nanofiller interaction. Both the CNT and graphene nanofillers
have been used to influence the cell size, cell density, tensile strength, modulus, electrical
conductivity, and thermal conductivity properties.
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4.2. Poly(methyl methacrylate)/Inorganic Nanoparticle Nanocomposite Foam

Among inorganic nanoparticles, layered silicate or nanoclays have gained attention
to enhance mechanical properties, thermal stability, rheology, flame retardancy, etc. of
the polymer matrices [66–68]. Fu et al. [69] prepared PMMA and montmorillonite nan-
oclay nanocomposites and foams. The PMMA/montmorillonite unfoamed nanocom-
posite revealed a tensile strength of 7.74 MPa (0.5 wt.% nanoclay). The microcellular
PMMA/montmorillonite foams were produced using subcritical CO2 gas foaming. The
0.5 wt.% foamed sample had a tensile strength of 12.49 MPa. During the foaming pro-
cess, there was the formation of homogeneously aligned nanocells and fine dispersion
of the nanoparticle, resulting in enhanced mechanical properties. Realinho et al. [70]
produced PMMA foams with organically modified montmorillonite in 2.5–10 wt.%. The
supercritical CO2 dissolution method was used. Neat PMMA had an elastic modulus
of 2880 MPa.cm3g−1. Inclusion of 2.5 to 10 wt.% with organically modified montmoril-
lonite considerably enhanced the elastic modulus from 2959 to 3449 MPa.cm3g−1. The
2.5 wt.% nanoclay revealed a glass transition temperature (Tg) of 140 ◦C using differential
scanning calorimetry (DSC). The amalgamation of 10 wt.% nanoclay improved the Tg of
the nanocomposite foam to 142 ◦C. The increase in Tg was due to the ordered nanoclay
platelets and interaction between the PMMA and nanoclay. Ozdemir et al. [71] produced
PMMA and Cloisite-based nanocomposite foam. Thermogravimetric analysis (TGA) was
used to study the thermal stability of the PMMA nanocomposite foams. Neat PMMA
had a maximum decomposition temperature of 374 ◦C. On the other hand, nanoclay en-
hanced the decomposition temperature to 388 ◦C. The increase in thermal properties was
attributed to the increase in cell density, nanofiller dispersion, and PMMA domain size [72].
Moradi et al. [73] produced poly(methyl methacrylate)/polyurethane (PMMA/PU) foams
reinforced with the 0.3–1.5 wt.% Cloisite nanoclay. The foaming was performed through
mixing and heating techniques. According to DSC, the nanoclay loading enhanced the Tg of
the nanocomposite foams. Similarly, TGA thermograms showed thermal degradation resis-
tance with the inclusion of nanoclay up to 450 ◦C [74]. Polyhedral oligomeric silsesquioxane
(POSS) has also been used as an inorganic nanofiller in the PMMA foam matrix [75–77].
Ozkutlu et al. [78] formed PMMA and POSS-abased nanocomposite foams using a co-
rotating twin-screw extruder. Neat PMMA had a thermal conductivity of 0.15 W/mK.
The inclusion of 0.25 wt.% POSS raised the thermal conductivity to 0.16 W/mK. The Tg
of neat PMMA was 116 ◦C, which was raised to 119 ◦C with 0.25 wt.% POSS. The ther-
mal degradation temperature of the neat PMMA (375 ◦C) also increased to 378 ◦C with
nanofiller loading.
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Silica has been used to form cellular foams with PMMA through the supercritical CO2
foaming method, proposed by Lu et al. [79]. Here, the inclusion of 0.5 wt.% silica led to
a thermal conductivity of 0.072 Wm−1K−1. The PMMA/silica foams with 5 wt.% silica
enhanced the compressive strength by 92%, relative to neat PMMA. Rende et al. [80] also
used supercritical CO2 foaming to form the PMMA/silica foams with 0.85–3.2 wt.% silica.
The cell density was increased from 7.5 × 108 to 4.8 × 1011 cells/cm3 with the nanofiller
loading. Consequently, the increase in nanofiller loading reduced the average cell size by
35%. Gu et al. [81] developed a PMMA and silica aerogel using supercritical CO2 foaming.
The compressive strength of the PMMA/silica aerogel with 2 and 5 wt.% silica was 18.90
and 18.12 MPa, respectively. The PMMA/inorganic nanoparticle nanocomposite foams,
having low density, possess high compressive strength, tensile strength, elastic modulus,
Tg, thermal stability, and thermal conductivity properties [82,83].

5. Potential of Poly(methyl methacrylate) Nanocomposite Foam
5.1. Electromagnetic Interference Shielding

Electromagnetic absorption nanocomposites are the most in-demand materials for
defense, military, and civil applications [84]. Electromagnetic absorption materials must
fulfil the requirements of low density, high stability, high absorption efficiency, wide ab-
sorption bandwidth, and electromagnetic interference (EMI) shielding [85]. The polymeric
nanocomposites must be filled with the electromagnetic absorbing nanofillers [86]. These
nanofillers must have fine conducting/magnetic features. In this regard, carbon nanofillers
such as CNT, graphene, carbon nanofiber, etc. have shown high electrical conductivity and
other desired physical properties [87–89]. Chen et al. [90] studied the EMI efficiency and
electrical conductivity of the polymer and graphene aerogel. Barrau et al. [91] examined
the effect of the CNT nanofiller on the EMI shielding of the PMMA nanocomposite foams.
Incorporation of CNT increased the electrical conductivity of the nanocomposite foam.
CNT has high inherent dielectric constant, which enhanced the dielectric constant of the
nanotube [92]. Das et al. [93] primed PMMA and single-walled carbon nanotube (SWCNT)
nanocomposites. The SWCNT loading enhanced the percolation threshold from 10−15 to
10−2. The percolation threshold of PMMA/SWCNT was 3 wt.%. An EMI shielding of 40 dB
was observed in the X-band (8–12 GHz) for 20 wt.% SWCNT at 200 MHz. Yuan et al. [53]
prepared electromagnetic absorbing materials based on the PMMA/CNT nanocompos-
ite. With a CNT loading of 4–8 wt.%, the dielectric loss of PMMA/CNT nanocomposite
foams was enhanced from 2.1 to 10.8 (X-band) (Figure 9). This indicates the formation of
a nanotube conducting network in the PMMA matrix with the nanofiller loading [94,95].
Consequently, the electrical conductivity of the nanocomposite foam was increased, so
leading to a dielectric loss. The phenomenon of electromagnetic absorption by the nanoma-
terials is given in Figure 10. The laminated structure is designed to enhance the absorbing
bandwidth of the PMMA/CNT nanocomposite foams. The absorbing bandwidth of the
laminated nanocomposite foam was 3.5 GHz (8.9–12.4 GHz). The low dielectric constant
was observed in the top layer of the foam due to lower CNT content relative to the bottom
layers, which had greater nanofiller concentrations.

Thus, the lower layers revealed a high dielectric constant. Zhou et al. [96] prepared
PMMA and CNT-based nanocomposite foams through a pressure foaming technique. The
multi-layer cell structure was produced, having a thickness of 2 mm. Electromagnetic
absorption of the nanocomposite foams was studied. The monolayer PMMA foam had
an absorption bandwidth of 1.7 GHz. The PMMA/CNT foam had a higher absorption
bandwidth of 2.5 GHz (9.1–11.6 GHz). Zhang et al. [97] blended PMMA with graphene
and foamed it using subcritical CO2. The PMMA with 1.8 vol.% graphene nanocomposite
foams revealed a high electrical conductivity of 3.11 Sm−1. The EMI shielding of the
nanocomposite foams was 13–19 dB in the frequency range of 8–12 GHz. The superior
properties were credited to the homogeneous dispersion of the graphene in the nanocellular
foam structure.
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5.2. Sensor

Advanced nanocomposite materials have found scope in wearable sensing devices
that prevent charge accumulation caused by the metal-based materials [98]. In addition to
the use of conducting polymers, the research has moved towards the use of conducting
nanocomposite foams [99,100]. Use of appropriately conducting nanoparticles in the
nanocomposite foam may further enhance the conductivity and sensitivity of the wearable
sensor material [101]. Few PMMA-based nanocomposites have been used in wearable
sensors. Vijayakumari et al. [102] proposed a conducting PMMA/Cu nanocomposite-based
wearable sensor. The amount of Cu nanoparticle defined the conductivity and sensitivity
of the nanocomposite sensor. The sensor may detect breathing rate, limb movement, and
other physiological activities. The PMMA-based nanocomposites have also been applied
in gamma ray sensors. Feizi et al. [103] formed three-dimensional PMMA and rGO-based
sensing materials. The gamma ray sensor was developed by coating the PMMA/rGO
nanocomposite foam on a silver-coated glass electrode. The gamma sensor had a linear
response to a dose rate of 50–130 mGymin−1. The gamma ray sensor revealed an important
application in dosimetry for diagnostic activities. Few attempts have been observed on the
PMMA-based nanocomposite foam sensors, but this field needs extensive research efforts
to develop further.
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5.3. Supercapacitor

A new generation of efficient energy storage devices includes the supercapacitor, ultra-
capacitor, or electrochemical capacitor [104–106]. Supercapacitors usually store energy on
the conducting material surface. In this regard, conducting polymers and nanocomposites
have been used in advanced supercapacitors [107–109]. Few attempts have been made to
produce the supercapacitors based on PMMA nanocomposite foams. Ran et al. [110] used
a PMMA block copolymer-based composite as the supercapacitor electrode membrane.
The electrochemical performance was established at a current density of 0.5–5 Ag−1. A
high specific capacitance of 297.0 F g−1 was attained. After 2000 cycles (2 Ag−1), the
specific capacitance retained was >90% of the original value. The supercapacitor had an
energy density and power density of 15.8 WhKg−1 and 4000 WKg−1, respectively. Yang
et al. [111] developed a supercapacitor electrode based on the PMMA and cobalt-doped
hollow porous carbon nanofiber-derived foam. The supercapacitor electrode had a high
specific capacitance of 446 Fg−1 at 0.5 Ag−1. The electrode had long-term stability and
catalytic activity of 0.842 V, i.e., analogous to a commercial Pt/C catalyst. Thus, the PMMA
nanocomposite foams have been acknowledged as promising materials in energy storage
and conversion.

6. Challenges and Summary

In this review, considering PMMA as a foam matrix, PMMA/CNT, PMMA/graphene,
PMMA/graphene oxide, PMMA/nanoclay, PMMA/silica, PMMA/POSS, and other nanocom-
posite foams have been presented (Table 3).

Table 3. Specifications of PMMA nanocomposite foams.

Matrix Nanofiller Foaming Property/Application Ref

PMMA CNT Supercritical CO2 foaming Young’s modulus; collapse strength [52]

PMMA CNT Supercritical CO2 foaming Cell size 3.0–3.8 µm,
cell density 1.8 × 1010–3.7 × 101 Cells/cm3 [53]

PMMA CNT Supercritical CO2 foaming Cell size; cell density; tensile strength; tensile
modulus [54]

PMMA CNT Supercritical CO2 foaming Electrical conductivity
3.34 × 10−6–4.16 × 10−6 Scm−1 [55]

PMMA CNT Supercritical CO2 foaming Increased cell density; reduced cell size [56]

PMMA Reduced
graphene oxide Supercritical CO2

Electrical conductivity 0.160–0.859 Sm−1;
microhardness 303.6–462.5 MPa;

thermal conductivity 0.35–0.70 W/mK
[62]

PMMA Graphene oxide Solution blending;
supercritical CO2

Morphology; cell density; cell size [65]

PMMA Montmorillonite Subcritical CO2 Tensile strength 12.49 MPa [69]

PMMA
Organically

modified mont-
morillonite

Supercritical CO2
Elastic modulus 2959–3449 MPa·cm3·g−1;
Glass transition temperature 140–142 ◦C

[70]

PMMA Cloisite Gas foaming Maximum decomposition temperature 388 ◦C [71]
Poly(methyl
methacry-
late)/polyurethane

Cloisite Mixing/heating Thermal stability [73]

PMMA POSS Co-rotating twin-screw
extruder

Thermal conductivity 0.16 W/mK; Tg 119 ◦C;
thermal degradation temperature 375 ◦C [78]

PMMA Silica Supercritical CO2 foaming Thermal conductivity 0.072 Wm−1K−1 [79]
PMMA Silica Supercritical CO2 foaming Cell density 7.5 × 108–4.8 × 1011 [80]
PMMA Silica Supercritical CO2 foaming Compressive strength 18.90–18.12 MPa [81]

The properties of PMMA nanocomposite foams have been tailored with low nanofiller
contents. Both nanocarbon and inorganic nanofillers have been employed as significant
nanofillers for the PMMA foam matrix. The nanocarbons and inorganic nanofillers appear
to be the cutting-edge material to raise the electrical conductivity, mechanical constancy,
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thermal stability, and physical properties of the nanocomposites. Moreover, the reduced
cell size and increased cell density resulted from nanofiller inclusion. The nanofillers
have been supposed to form an interconnecting network in the foam matrix to reduce
the cell size and increase cell density. Advancements in PMMA-based nanocomposite
foams have been studied for the important applications to date. Various facile techniques
such as foaming, solution mixing, etc. have been used to form PMMA nanocomposites.
PMMA nanocomposites have been developed using an in situ polymerization and solution
method. The foaming methods employed include supercritical CO2, the high pressure
method, the melt method, and the use of foaming agents. High-performance PMMA
nanocomposite foams have been produced through effective dispersion during in situ
polymerization of MMA monomer and subsequent foaming. In situ polymerization has
been frequently used to convert the MMA monomer to PMMA. This process involves
the use of an initiator such as azo-bis-isobutyronitrile. Heating up to 55 ◦C for 24 h is
also recommended to completely convert the MMA to PMMA. The interaction between
the PMMA–nanofiller, nanocellular foam structure, and homogeneity of the cells offered
substantial improvement in nanocomposite foam properties. In this regard, appropriate
nanofiller functionalization may enhance dispersion and interaction with the matrix. Due
to better nanofiller dispersion, PMMA nanocomposite foams have shown substantial
improvement in their physical features. An important use of PMMA nanocomposite foams
has been experiential for EMI shielding devices. PMMA reinforced with CNT and graphene
has been foamed using subcritical CO2 to form the EMI shielding material [53,96,97]. High
performance EMI shielding devices can be produced due to the inclusion of nanoparticles
in the PMMA foam matrix. Functional nanofillers could be applied to future EMI shielding
devices to attain high shielding efficiency. Efforts have also been experiential regarding
PMMA nanocomposite foam-based sensors [102,103]. However, very limited designs
have been explored for gamma ray sensors so far. Future research is needed to expand
research on PMMA nanocomposite foam-based sensors with higher detection limits that
have electronic, chemical, and biological sensing features. Moreover, the use of functional
nanoparticles may enhance the prospect of sensors for advanced future designs. Successful
attempts have been observed for PMMA nanocomposite foam-based supercapacitors,
relative to traditional energy storage devices [110,111]. However, comprehensive efforts
are needed to produce more supercapacitor designs and expand this field. Even now, there
are several unaddressed technical areas (automotive, electronics, biomedical, etc.) which
could be enhanced using PMMA nanocomposite foams. Understanding the mechanism
of physical or chemical interactions in PMMA nanocomposite foam is essential for future
progress. Moreover, the use of novel functional nanofillers and innovative fabrication
techniques need to be developed.

This review summarizes the essential aspects of PMMA nanocomposite foams. Various
facile strategies have been used to design these nanocomposites. Initially, the fundamentals
of PMMA and PMMA foams have been discussed. Later, the PMMA nanocomposite foams
have been prepared with CNT, graphene, nanoclay, silica, POSS, and other nanoparticles.
The superior thermal stability, Tg, mechanical strength, compressive strength, electrical
conductivity, thermal conductivity, etc. of the nanocomposite foams have been summarized.
Consequently, PMMA nanocomposite foams have been explored for radiation shielding,
supercapacitor, and sensor applications. This review will be pioneering in the field of
PMMA nanocomposite foams to expand future research in this area.
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