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Abstract: The capacity of a structure can be assessed using inelastic analyses, requiring sophisticated
numerical procedures such as pushover and incremental dynamic analyses. A simplified method
for the evaluation of the seismic performance of steel Concentrically Braced Frames (CBFs) to be
used in everyday practice and the immediate aftermath of an earthquake has been recently proposed.
This method evaluates the capacity of an existing building employing an analytical trilinear model
without resorting to any non-linear analysis. The proposed methodology has been set up through a
large parametric analysis, carried out on 420 frames designed according to three different approaches:
the first one is the Theory of Plastic Mechanism Control (TPMC), ensuring the design of structures
showing global collapse mechanisms (GCBFs), the second one is based on the Eurocode 8 design
requirements (SCBFs), and the third is a non-seismic design, based on a non-seismic design (OCBFs).
In this paper, some examples of the application of this simplified methodology are proposed with
references to structures that are supposed to exhibit global, partial, and soft storey mechanisms.

Keywords: CBF; pushovers; capacity; performances; vulnerability; simplified methods

1. Introduction

Recent seismic events have underlined the high seismic vulnerability of a large part
of the built heritage and, consequently, the importance of its safeguarding [1–21]. With a
view to a large-scale classification of the existing buildings in terms of seismic vulnerability,
the definition of a simplified methodology that allows for an evaluation of the seismic
performance without resorting to analyses that require high numerical complexities, such
as pushover analysis and incremental dynamic analysis, plays an important role [22–31].
These procedures also do not result in seismic classification and code liability, being strongly
influenced by the software used to develop them, nor the modeling of the members, which
is characterized by numerous variables that are difficult to standardize [32–35].

Consequently, a completely analytical simplified model allowing us to univocally
control these complexities is introduced for steel Concentrically Braced Frames (CBFs) [36].

The methodology is set up for general use. It is based on the use of elastic analysis
combined with rigid plastic analysis for both CBFs and MRFs. The difference lies in the
definition of some characteristic points. The capacity curve is represented through a trilinear
approximation. In particular, CBFs are characterized by presenting a second elastic branch
with reduced stiffness for the buckling of the compressed diagonals, whereas MRFs have a
horizontal branch due to the plastic redistribution capacity typical of the structural type.

The performance-based assessment procedure is herein applied to some study cases
in order to testify both the ease and speed of the application of the method. This procedure
consists of identifying some characteristic points associated with target performance objec-
tives on a trilinear simplified capacity curve [37,38]. These points correspond to different
limit states.
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The procedure was validated by a wide parametric analysis on 420 CBFs, designed
according to three different approaches, i.e., for horizontal loads only (OCBFs), according
to the provisions of Eurocode 8 (SCBFs), and in accordance with the theory of plastic
mechanism control (GCBFs). The design according to three approaches was carried out
to ensure a database of frames capable of covering the design philosophies of recent
decades. It is known that structures designed without prescriptions aimed at controlling the
collapse mechanism are used to exhibit soft storey mechanisms, unlike structures designed
according to Eurocode 8, which are capable of avoiding these types of mechanisms without,
however, guaranteeing the development of global collapse mechanisms, which is obtainable
instead with the use of the TPMC approach. For the designed structures, pushover analyses
were carried out to calibrate the proposed analytical relationships and, thus, to ensure a
wide applicability of the method.

The comparison in terms of capacity and demand can be made according to two
alternative approaches: the one proposed by Eurocode 8 [39] and the one proposed by
Nassar and Krawinkler [40]. The former exploits the concept of the ADRS spectrum,
whereas the latter has the benefit of having an easier applicability because it does not
distinguish between low and high periods of vibration. In the following, the main model
equations are reported and described.

2. Fundamental Equations of the Trilinear Model

For the definition of the trilinear capacity curve, elastic analysis and second-order rigid-
plastic analysis are necessary, without resorting to complex static or dynamic non-linear
analyses [41–44].

This tool then allows for a quick representation of the capacity curve through the
intersection of three branches (Figure 1), whose equations are shown below.
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In the proposed model, the first branch of the curve is represented by the elastic
response curve; the second one is defined as an elastic response curve with reduced stiffness,
due to the buckling of the compressed diagonals; and the third (softening branch) is
represented by the collapse mechanism equilibrium curve of the given structure, influenced
by the second-order effects [45–51].

The mechanism equilibrium curve can be obtained by equating the virtual internal
work of the dissipative zones with the virtual external work of the structure, considering
second-order effects. The most likely collapse mechanism can be identified as the one
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corresponding to the lower mechanism equilibrium curve, in a range of displacements
compatible with the local ductility resources.

The equations of the three identified branches in the α-δ plane (horizontal force
multiplier–top sway displacement) are reported below:

• Elastic response curve:

α =
1
δ1

δ (1)

In addition, in order to check the precision of the model, a calibration procedure has
been carried out on the well-known Merchant–Rankine formula, which is able to define the
maximum multiplier of the structure.

The equations of the three identified branches in the α-δ plane (horizontal force
multiplier–top sway displacement) are here reported:

• Elastic response curve (k):

αb,s = αA =
1
δ1

δA (2)

• Elastic response curve with reduced stiffness (k’):

αe,2 = αA + K′(δ− δA) (3)

where
K′ = βK (4)

β = 1−
(

Py.1 − Pcrit.1

Py.1

)
0.5·H0

H
(5)

(
Py−Pcrit

Py

)
represents the relative difference between the axial resistance in tension and

the axial buckling resistance of the diagonal members. Reference is made to the members
of the first storey.

• Mechanism equilibrium curve:

α = α0 − γs
(
δ− δy

)
(6)

The relationships for the evaluation of the collapse multipliers for each possible
collapse mechanism are reported:

• For global collapse mechanism:

α
(g)
0 =

∑ns
k=1 ∑nb

j=1 Wd.jk

∑ns
k=1 Fkhk

(7)

• For type-1 mechanism:

α
(1)
0.im =

∑im−1
k=1 ∑nb

j=1 Wd.jk + ∑nc
i=1 Mc.iim

∑im
k=1 Fkhk + him ∑ns

k=im+1 Fk
; im = 1, 2, . . . , ns−1 (8)

α
(1)
0.ns

= α
(g)
0 ; im = ns (9)

• For type-2 mechanism

α
(2)
o.im =

∑ns
k=im ∑nb

j=1 Wd.jk + ∑nc
i=1 Mc.iim

∑ns
k=im

Fk·(hk − him−1)
; im = 2, 3, . . . , ns (10)
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• For type-3 mechanism:

α
(3)
0.im =

2·∑nc
i=1 Mc.iim + ∑nb

j=1 Wd.jim

(him − him−1)·∑ns
k=im

Fk
; 2 ≤ im < ns (11)

α
(3)
0.ns

=
∑nc

i=1 Mc.ins + ∑nb
j=1 Wd.jns

(hns − hns−1)·Fns

; im = ns (12)

α
(3)
0.1 =

∑nc
i=1 Mc.i1 + ∑nb

j=1 Wd.j1

h1·∑ns
k=1 Fk

; im = 1 (13)

The internal work Wd.jk due to the diagonal members of j-th bay of k-th storey, is given
for a unit virtual rotation of base hinges of columns and is defined as follows:

Wd.jk = Nt.jk·et.jk + Nc.jk(δu)·ec.jk (14)

The axial force Nc.jk(δu) is defined through the first three branches of the Georgescu’s
model [40,41]:

• OA branch:

P =
EA
L

δOA = KdδOA with P limited to Pcrit (15)

• AB branch:

ftB =
Mpl

Pcrit

(
1− Pcrit

Py

)
(16)

δB = −PcritL
EA

+
π2

4L

(
ftB

2 − f0
2
)

(17)

• BC branch:

ft =
Mpl

P

(
1− P

Py

)
with P generic < Pcrit (18)

f0 = δBC = − PL
EA

+
π2

4L

(
ft

2 − f0
2
)

(19)

The link describing the monotonic behaviour of the diagonals is completed by defining
the behaviour in tension, adding the branches OF and FG, as reported in Figure 2.
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The slopes of the equilibrium curve for each type of mechanism can be defined
as follows:

• For the global collapse mechanism:

γ(g) =
1

hns

∑ns
k=1 Vkhk

∑ns
k=1 Fkhk

(20)

• For the type-1 mechanism:

γ
(1)
im =

1
him

∑im
k=1 Vkhk + him ∑ns

k=im+1 Vk

∑im
k=1 Fkhk + him ∑ns

k=im+1 Fk
(21)

• For the type-2 mechanism:

γ
(2)
im =

1
hns − him−1

∑ns
k=im

Vk(hk − him−1)

∑ns
k=im

Fk(hk − him−1)
(22)

• For the type-3 mechanism:

γ
(3)
im =

1
him − him−1

∑ns
k=im

Vk

∑ns
k=im

Fk
(23)

• Maximum multiplier according to calibrated Merchant–Rankine formula [52,53]:

αmax =
α0

1 + ΨCBFα0γsδ1
(24)

where
ΨCBF = a + bξCBF (25)

ξCBF =
∑nbc

EAdiag
Ldiag
· 1

1+(Lb/h)2

∑nc
EIc
h3

(26)

The use of Equation (4) is proposed by assuming, for the coefficient Ψ, the following
relation considering GCBFs and SCBFs:

ΨCBF = 1.00421 + 0.10265 ξCBF (27)

The coefficient ΨCBF has been derived also considering separately GCBFs and SCBFs.
For global concentrically braced frames,

ΨCBF = 1.410677 + 0.294433 ξCBF (28)

whereas, for special concentrically braced frames,

ΨCBF = 0.18799 + 0.11338 ξCBF (29)

The characteristic performance points of the capacity curve (points A, B, C, D of
Figure 3) have been identified on the trilinear model. The points are associated with specific
limit states [50], provided by codes, identifying the achievement of a specific performance
level [47,54–56].



J. Compos. Sci. 2022, 6, 62 6 of 20

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 6 of 20 
 

 

𝛹஼஻ி = 1.410677 + 0.294433 𝜉஼஻ி (28)

whereas, for special concentrically braced frames, 𝛹஼஻ி = 0.18799 + 0.11338 𝜉஼஻ி (29)

The characteristic performance points of the capacity curve (points A, B, C, D of Fig-
ure 3) have been identified on the trilinear model. The points are associated with specific 
limit states [50], provided by codes, identifying the achievement of a specific performance 
level [47,54–56]. 
• Point A—“Fully Operational” 𝛼௕,௦ = 𝛼஺ = 1𝛿ଵ 𝛿஺ (30)

 
Figure 3. Characteristic performance points. 

• Point B—“Operational” 𝛼஻ = 𝛼஺ + 𝐾′(𝛿஻ − 𝛿஺) ;      𝛿஻ = 𝛼௬ − 𝛼஺𝐾′ + 𝛿஺ (31)

• Point C—“Life Safety” 

𝛼஼ = 𝛼଴ − 𝛾௦(𝛿஼ − 𝛿௬) ;      𝛿஼ = 𝛼଴ − 𝛼஺ + 𝐾′𝛿஺𝐾ᇱ + 𝛾௦  (32)

This point is determined through the intersection of the second elastic branch with 
the softening branch, representative of the collapse mechanism equilibrium curve. 
• Point D—“Near Collapse” 𝛿஽ = 𝛿஼ + 𝜑௟௜௠ ∙ 𝐻଴ (33)𝛿஽ = 𝛿஼ + ቆ 𝛿ௗ,௖௣ℎ௜ ∙ 𝑐𝑜𝑠 𝜃ቇ ∙ 𝐻଴ (34)

Figure 3. Characteristic performance points.

• Point A—“Fully Operational”

αb,s = αA =
1
δ1

δA (30)

• Point B—“Operational”

αB = αA + K′(δB − δA) ; δB =
αy − αA

K′
+ δA (31)

• Point C—“Life Safety”

αC = α0 − γs
(
δC − δy

)
; δC =

α0 − αA + K′δA
K′ + γs

(32)

This point is determined through the intersection of the second elastic branch with the
softening branch, representative of the collapse mechanism equilibrium curve.

• Point D—“Near Collapse”

δD = δC + ϕlim·H0 (33)

δD = δC +

(
δd,cp

hi· cos θ

)
·H0 (34)

The inelastic deformation capacity for compressed braces (Table 1) is expressed in
terms of the axial deformation of the brace, as a multiple of the axial deformation of the
brace corresponding to buckling load ∆c.

Table 1. Capacity in terms of axial deformation for braces in compression.

Limit State

Class of Cross-Section DL SD NC

1 0.25 ∆C 4.0 ∆C 6.0 ∆C

2 0.25 ∆C 1.0 ∆C 2.0 ∆C
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For braces in tension (Table 2), the inelastic deformation capacity should be expressed
in terms of the axial deformation of the brace as a multiple of the axial deformation of the
brace at tensile yielding load ∆t.

Table 2. Capacity in terms of axial deformation for braces in compression.

Limit State

DL SD NC

0.25 ∆C 7.0 ∆C 9.0 ∆C

3. Assessment Procedure in Terms of Spectral Accelerations According to
ADRS Spectrum

The capacity–demand assessment procedure can be expressed through the ADRS
spectrum. For each limit state, the spectrum Sa − SDe will be be defined by means of
the relationship SDe(T) = Sa(T)(T/2π)2. With regard to the capacity, it is necessary to
represent the performance points of the behavioral curve of the structure in the ADRS
plane. Of these points, it will be necessary to obtain the displacements d∗LS = dLS/Γ.

The cases T∗ > TC and T∗ < TC. If T∗ > TC must be distinguished [48]. The capacity
in terms of spectral acceleration, relative to the limit state considered, can be obtained
as follows:

SaSL = d∗LSω∗0
2 (35)

The demand is represented by the spectral acceleration provided by the code, for the
specific limit state, in the case of the equivalent SDOF system with the equivalent period of
vibration T*.

For the assessment procedure, the inequality Sals ≥ Sa(T∗) must be satisfied.
If T∗ < TC and q > 1, according to the equality of energy criteria, there is a different

procedure to evaluate the capacity that leads to the anelastic spectrum:

F∗ls =
m∗Sa(T∗)

qls
(36)

qls = 1 + (µls − 1)
T∗

TC
(37)

SaSL = qls
F∗ls
m∗

(38)

If T∗ < TC and q ≤ 1, it results in:

F∗SL = m∗Sa(T∗) (39)

SaSL =
F∗ls
m∗

(40)

m∗ =
n

∑
k=1

mk·k (41)

The checking is verified when the inequality Sals ≥ Sa(T∗) is satisfied.

4. Assessment Procedure in Terms of Spectral Accelerations According to Nassar
and Krawinkler

In the framework of capacity–demand checking [52–58], an equivalent SDOF system
replaces the MDOF actual system exploiting the modal participation factor Γ. The capacity
curve is reported in a Fb-dc plane by multiplying α with the design base shear force. Then
the capacity curve must be reduced through the modal participation factor and represented
in a F*-d* plane. The demand is estimated according to the equivalent period T* and the
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equivalent mass m* as reported by the European codes. The capacity in terms of spectral
acceleration for the points A, B, C, D is defined as follows:

• Point A—“Fully Operational”

SaFO(T∗) =
F∗FO
m∗

(42)

• Point B—“Operational”

SaO(T∗) =
F∗O
m∗

(43)

• Point C—“Life Safety”

F∗LS = m∗SaLS(T∗) (44)

SaLS(T∗) =
F∗LS
m∗

(45)

• Point D—“Near Collapse”

SaNC(T∗) =
F∗NC
m∗

qNC (46)

qNC =
q0

ϕ
(47)

q0(µ, T, γ=0) = [c(µNC − 1) + 1]1/c (48)

where c = T∗
1+T∗ +

0.42
T∗ and µNC = dNC

∗

dO
∗

ϕ =
1 + 0.62(µNC − 1)1.45γ

(1− γ)
(49)

5. Numeric Examples

The simplified assessment procedure is applied to evaluate the capacity of three steel
Concentrically Braced Frames designed according to three different approaches. Permanent
loads Gk are equal to 3.5 kN/m2 wile live loads Qk equal to 3 kN/m2. A frame tributary
length of 6.00 m has been considered for the evaluation of gravitational loads acting on the
beams. The steel used is S275.

A flowchart of the procedure is reported in Figure 4.
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5.1. Global Concentrically Braced Frame

Global concentrically braced frames are designed according to the TPMC. The beams,
diagonals, and column sections are reported in Figure 5.
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The trilinear capacity curve, showing the characteristic points of the model, is re-ported
in Figure 6.
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Parameters obtained from the elastic analysis:

• δ1(α = 1) = 0.0255 m;
• K = 39.161 m−1;
• K′ =23.4964 m−1;
• δA

(
1st buckling

)
=0.0426 m;

• αA = kδA =1.6577.

Parameters obtained from the rigid plastic analysis:

• α0 =2.598;
• γs =0.285 m−1;
• α = α0 − γs

(
δ− δy

)
→ α = 2.598− 0.285(δ−0.07438);

• α(δ = 0) = α0 + γsδy = 2.620;
• H0 = 14 m (global collapse mechanism).

Evaluation of the maximum multiplier through the calibrated Merchant–Rankine
formula:

• αmax = α0
1+ΨCBFα0γsδ1

=2.5058

where

• ΨCBF = a + bξCBF = 1.41068 + 0.29443 ξCBF = 1.698909;

• with ξCBF =
∑nbc

EAdiag
Ldiag

· 1
1+(Lb/h)2

∑nc
EIc
h3

= 1.945191;

• consequently δB =
αy−αA

K′ + δA =0.07438;

• and δC = α0−αA+K′δA
K′+γs

= 0.08163.

According to the limitations given by Eurocode 8 for compressed diagonals at Near
Collapse limit state (∆c · 6), the ultimate displacement is evaluated as:

• δD =
(

δd,cp
hi · cos θ

)
·H0 =

(
0.026874

3.5×0.86378

)
× 14 = 0.12445 m

The checking procedures exploit the transformation of the MDOF system into an
equivalent SDOF system through the participation factor of the main vibration mode Γ. For
this reason, it is necessary to define:
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• The eigenvector φ = {φ1,φ2,φ3,φ4} that, assuming φk =
Fk
Fn

, is:
φ1 = 0.2398 φ2 = 0.4795 φ3 = 0.7193
φ4 = 1.00

• The modal participation factor Γ:

Γ =
∑n

k=1 mkφk

∑n
k=1 mkφk

2 = 1.343

being

m1 = 278.75× 103 kg m2 = 278.75× 103 kg m3 = 278.75× 103kg
m4 = 290.64× 103 k

• The dynamic parameters of the equivalent SDOF system (Table 3).

Table 3. Dynamic parameters of the equivalent SDOF system (GCBF).

m* k* ω* T*
[kg 103] [kN/m] [rad/s] [s]

691.67 92,569.9 11.5688 0.5431

Consequently, the performance points of the capacity curve are defined in the planes
α− δ, Fb − dc, F∗ − D∗, Sa − SD assessing the capacity in terms of accelerations for both
Nassar & Krawinkler and ADRS spectrum approaches. In Tables 4 and 5 the results, based
on the ADRS spectrum the Nassar & Krawinkler formulation, are respectively reported.

Table 4. ADRS spectrum approach (GCBF).

FO O LS NC

F [kN] 3918.52 5683.83 6086.44 6057.55
F* [kN] 2917.66 4232.08 4531.86 4510.35
d [m] 0.0426 0.0751 0.08163 0.12445
d* [m] 0.0317 0.0559 0.0608 0.0927
Sa* [g] 0.433 0.763 0.829 0.9803

Table 5. Nassar and Krawinkler approach (GCBF).

FO O LS NC0

F [kN] 3918.52 5683.83 6086.44 6141.53
F* [kN] 2917.66 4232.08 4531.86 4572.88
d [m] 0.0426 0.0751 0.08163 0.12445
d* [m] 0.0317 0.0559 0.0608 0.0927
µ [m] - - - 1.524
Sa* [g] 0.430 0.624 0.6679 1.0177

Seismic performance verification requires that, for each limit state, the inequality
Sa.SL(T∗)capacity ≥ Sa.SL(T∗)demand is satisfied.

5.2. Special Concentrically Braced Frame

Special concentrically braced frames are designed to fulfil the Eurocode 8 seismic
provisions. The selected case study with the definition of the beam, diagonals, and column
sections is reported in Figure 7.
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Figure 7. Diagram of the frame with indication of beams, diagonals, columns, and seismic forces
(SCBF).

The trilinear capacity curve, showing the characteristic points of the model, is re-ported
in Figure 8.
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Figure 8. Trilinear model and characteristic points for the structure 6S6B_SCBF_6 m.

Parameters obtained from the elastic analysis:

• δ1(α = 1) = 0.06133 m;
• K = 16.305 m−1;
• K′ =13.044 m−1;
• δA

(
1st buckling

)
=0.0571 m;

• αA = kδA =0.9311.
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Parameters obtained from the rigid plastic analysis:

• α0 =1.763;
• γs =0.185 m−1;
• α = α0 − γs

(
δ− δy

)
→ α = 1.763− 0.185(δ− 0.1171) ;

• α(δ = 0) = α0 + γsδy = 1.785;
• H0 = 21 m (global collapse mechanism).

Evaluation of the maximum multiplier through the calibrated Merchant–Rankine
formula:

• αmax = α0
1+ΨCBFα0γsδ1

=1.7267

where

• ΨCBF = a + bξCBF = 1.00421 + 0.10265 ξCBF = 1.05338;

• With ξCBF =
∑nbc

EAdiag
Ldiag

· 1
1+(Lb/h)2

∑nc
EIc
h3

= 0.47899;

• consequently δB =
αy−αA

K′ + δA =0.1171;

• and δC = α0−αA+K′δA
K′+γs

= 0.11922.

According to the limitations given by Eurocode 8 for compressed diagonals at Near
Collapse limit state (∆c · 6), the ultimate displacement is evaluated as:

• δD =
(

δd,cp
hi · cos θ

)
·H0 =

(
0.026874

3.5×0.86378

)
× 21 = 0.18667 m

The checking procedures exploit the transformation of the MDOF system into an
equivalent SDOF system through the participation factor of the main vibration mode Γ. For
this reason, it is necessary to define:

• The eigenvector φ = {φ1,φ2,φ3,φ4,φ5,φ6} that, assuming φk =
Fk
Fn

, is:

φ1 = 0.1598 φ2 = 0.3197 φ3 = 0.4795
φ4 = 0.6394 φ5 = 0.7992 φ6 = 1.00

• The modal participation factor Γ:

Γ =
∑n

k=1 mkφk

∑n
k=1 mkφk

2 = 1.405

being

m1 = 278.75× 103 kg m2 = 278.75× 103 kg m3 = 278.75× 103kg
m4 = 278.75× 103 kg m5 = 278.75× 103 kg m6 = 290.64× 103 kg

• The dynamic parameters of the equivalent SDOF system (Table 6).

Table 6. Dynamic parameters of the equivalent SDOF system (SCBF).

m* k* ω* T*
[kg 103] [kN/m] [rad/s] [s]

959.01 57,610 7.75062 0.81067

Consequently, the performance points of the capacity curve are defined in the planes
α− δ, Fb − dc, F∗ −D∗, Sa − SD assessing the capacity in terms of accelerations for both
Nassar & Krawinkler and ADRS spectrum approaches. In Tables 7 and 8 the results, based
on the ADRS spectrum the Nassar & Krawinkler formulation, are respectively reported.
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Table 7. ADRS spectrum approach (SCBF).

FO O LS NC

F [kN] 3290.01 6009.54 6151.51 6107.34
F* [kN] 2340.99 4276.06 4377.08 4345.65
d [m] 0.0571 0.1171 0.1192 0.1867
d* [m] 0.0406 0.0833 0.0848 0.1328
Sa* [g] 0.2488 0.4545 0.4653 0.8151

Table 8. Nassar and Krawinkler approach (SCBF).

FO O LS NC0

F [kN] 3290.01 6009.54 6151.51 6229.56
F* [kN] 2340.99 4276.06 4377.08 4432.62
d [m] 0.0571 0.1171 0.1192 0.1867
d* [m] 0.0406 0.0833 0.0848 0.1328
µ [m] - - - 1.566
Sa* [g] 0.2488 0.4545 0.6525 0.7399

Seismic performance verification requires that, for each limit state, the inequality
Sa.SL(T∗)capacity ≥ Sa.SL(T∗)demand is satisfied.

5.3. Ordinary Concentrically Braced Frame

Special concentrically braced frames are designed to fulfil the Eurocode 8 seismic
provisions. The selected case study with the definition of the beam, diagonals, and column
sections is reported in Figure 9.
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The trilinear capacity curve, showing the characteristic points of the model, is re-ported
in Figure 10.
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Parameters obtained from the elastic analysis:

• δ1(α = 1) = 0.02597 m;
• K =38.501 m−1;
• K′ = 25.02;
• δA =0.1602 m;
• αA = kδA =2.0680.

It is not necessary to perform rigid plastic analysis because the buckling of columns
occurs for a multiplier of horizontal forces very close to αA. Consequently,

• δu = δB = δC = δD = 0.0575 m;
• αu = αB = αC = αD = 2.18596.

The checking procedures exploit the transformation of the MDOF system into an
equivalent SDOF system through the participation factor of the main vibration mode Γ. For
this reason, it is necessary to define:

The eigenvector φ = {φ1,φ2,φ3,φ4,φ5} that, assuming φk =
Fk
Fn

, is:

φ1 = 0.192 φ2 = 0.384 φ3 = 0.575
φ4 = 0.767 φ5 = 1.00

The modal participation factor Γ:

Γ =
∑n

k=1 mkφk

∑n
k=1 mkφk

2 = 1.379

being
m1 = 123.89× 103 kg m2 = 123.89× 103 kg m3 = 123.89× 103kg

m4 = 123.89× 103 kg m5 = 129.17× 103 kg

and the dynamic parameters of the equivalent SDOF system (Table 9).

Table 9. Dynamic parameters of the equivalent SDOF system (OCBF).

m* k* ω* T*
[kg 103] [kN/m] [rad/s] [s]

366.82 37,127.6 10.061 0.6245
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Therefore, the characteristic points of the capacity curve are defined in the planes
α− δ, Fb − dc, F∗ −D∗, Sa − SD assessing the capacity in terms of accelerations for the
Nassar and Krawinkler approach and ADRS spectrum approach. In particular, in Table 10,
results based on the use of the ADRS spectrum, and, in Table 11, results based on the use of
Nassar and Krawinkler formulation, are reported.

Table 10. ADRS spectrum approach (SCBF).

FO O LS NC

F [kN] 2235.76 2363.33 2363.33 2363.33
F* [kN] 1620.83 1713.31 1713.31 1713.31
d [m] 0.0538 0.0575 0.0575 0.0575
d* [m] 0.0390 0.0417 0.0417 0.0417
Sa* [g] 0.402 0.430 0.430 0.430

Table 11. Nassar and Krawinkler approach (SCBF).

FO O LS NC0

F [kN] 2235.76 2363.33 2363.33 2363.33
F* [kN] 1620.83 1713.31 1713.31 1713.31
d [m] 0.0538 0.0575 0.0575 0.0575
d* [m] 0.0390 0.0417 0.0417 0.0417
µ [m] - - - -
Sa* [g] 0.450 0.476 0.476 0.476

Seismic performance verification requires that, for each limit state, the inequality
Sa.SL(T∗)capacity ≥ Sa.SL(T∗)demand is satisfied.

6. Conclusions

In this paper, three numeric examples explaining the application of a new simplified
assessment procedure for CBFs are reported. The given numerical examples show the speed
and ease of application of the method, which is completely analytical. The equations of the
branches constituting the trilinear model can be obtained uniquely, given the horizontal
seismic actions and the sections of diagonals and columns of the analyzed frame. For
this reason, this methodology is strongly suggested for the large-scale assessment of the
seismic vulnerability of the built heritage. In addition, it constitutes a suitable tool for
checking the capacity of the buildings designed with the new seismic code prescriptions,
or for an evaluation of seismic vulnerability in the immediate aftermath of an earthquake.
The reliability of the procedure is testified by an extensive regression analysis, carried out
on 420 CBFs designed according to different approaches, belonging to different historical
periods. In the sample cases, it is evident that the descending branch has an average slope
like the one resulting from the pushover, while the difference in terms of the multiplier is
due to the elastic deformability, which is not included in a rigid plastic model.

The feasibility of the procedure is very high and makes it suitable to be applied
indiscriminately to frames belonging to different historical periods.

The scatter between the values computed from the pushover analysis and the proposed
method of the maximum bearing multiplier α and the displacement corresponding to the
collapse and formation of the plastic mechanism is usually lower than 10%, testifying the
accuracy of the proposed formulations. In addition, the results achieved by the simplified
assessment procedure are mainly on the safe side.

The assessment of structure vulnerability, in terms of a comparison of the capacity–
demand, has also been performed by using the Nassar and Krawinkler approach, which is
characterized by a wide generality because it does not discriminate between high and low
periods of vibration and accounts for second-order effects.
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It is important to mention that the code assessment approach does not provide the
definition of specific performance points on the pushover curve. The user must identify
target limits, which are provided by codes in terms of displacements. In the proposed
methodology, on the other hand, specific limit states are also associated with performance
points, making the capacity–demand comparison process immediate. The discretization of
the trilinear model in characteristic points (A, B, C, D), associated with the achievement
of predefined performance objectives, makes the comparison between the capacity and
demand for each limit state given by codes easy.
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Abbreviation
Symbol Description

αy
Multiplier of horizontal forces corresponding to the formation of the first
plastic hinge

αcr Critical multiplier for vertical loads

βjk
Inclination of the diagonal of k-th storey and j-th bay with respect to the
horizontal direction

B Inclination of the generic diagonal with respect to the horizontal direction
Γ Non-dimensional slope of the mechanism equilibrium curve
γov Overstrength coefficient

δA

Top sway displacement corresponding to the minimum between the
buckling of the first diagonal and the serviceability conditions—“Fully
Operational” limit state

δB
Top sway displacement corresponding to the first yielding of a diagonal in
tension—“Operational” limit state

δC
Top sway displacement corresponding to the maximum bearing capacity and
the development of the collapse mechanism—“Life Safety” limit state

δD
Top sway displacement corresponding to the exceeding of at least one
member of the local ductility supplies—“Near Collapse” limit state

δ1
Elastic top sway displacement, corresponding to the design value of the
seismic forces

δd,cp
Capacity of the diagonal members, in terms of elongation or compression,
according to Eurocode 8 limitations

1/δ1 Slope of the first elastic branch

δy = δB
Top sway displacement corresponding to the yielding in tension of the first
diagonal

δA Top sway displacement corresponding to the buckling of the first diagonal
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δbr Elongation or shortening of the generic diagonal member
δu Ultimate top sway displacement
µls Ductility for the specific limit state
ξ Sensitivity coefficient for first storey members
φk k-th component of the first mode eigenvector

ϕlim
Capacity in terms of interstorey drift, defined according to Eurocode 8
limitations in terms of elongation or compression of the diagonal members

ϕ Stability coefficient
A . . . Area of the generic member
a,b Regression coefficients
E Elastic modulus

et.jk = ec.jk =
(hk–hk−1)·cosβjk

Elongation of the tensile diagonal and the shortening of the compressed
diagonal of j-th bay of k-th storey, given a unitary virtual rotation of the
hinges at the base of the columns

Fk Design horizontal force applied at k-th storey
Fls Base shear force corresponding to the specific limit state
ϕmax Maximum interstorey drift
ϕlim Interstorey drift limit
hk Storey height of k-th storey
hi Interstorey height
Lj Bay span of the j-th bay
L . . . Length of the generic member
I . . . Moment of inertia of the generic member

Mc.ik
Plastic moment of i-th column of k-th storey, reduced by the
contemporaneous action of the axial force

Mpl Plastic resisting moment of the member
Nt.jk Yielding axial force of the tensile diagonal of j-th bay of k-th storey

Nc.jk
Compressive axial force of the tensile diagonal of j-th bay of k-th storey
accounting for the post-buckling behaviour according to Georgescu’s model

nb Number of bays
nc Number of columns
ns Number of storeys
Pcrit Critical axial load defined according to Eurocode 3.
Py Axial resistance in tension.
qjk Vertical uniform load acting on the beam of j-th bay of k-th storey

q
Ratio between the maximum structural bearing capacity and the yielding
capacity

Sa.ls Spectral acceleration in terms of capacity linked to the considered limit state

Sa(T*)
Spectral acceleration demand, provided by the code, for the specific limit
state.

Vk Total vertical load acting on the k-th storey

( . . . )*
Properties referred to the equivalent SDOF system—m* (mass); T* (vibration
period);ω* (pulse)

Wd.jk
Internal work due to the diagonal braces of j-th bay of k-th storey, occurring
for a unit virtual rotation of the hinges at the base of the columns

References
1. Jung, H.-C.; Jung, J.-S.; Lee, K.S. Seismic performance evaluation of internal steel frame connection method for seismic strength-

ening by cycling load test and nonlinear analysis. J. Korea Concr. Inst. 2019, 31, 79–88. [CrossRef]
2. Montuori, R.; Nastri, E.; Piluso, V. Problems of modeling for the analysis of the seismic vulnerability of existing buildings. Ing.

Sismica 2019, 36, 53–85.
3. Montuori, R.; Nastri, E.; Piluso, V.; Todisco, P. A simplified performance-based approach for the evaluation of seismic performances

of steel frames. Eng. Struct. 2020, 224, 111222. [CrossRef]
4. Montuori, R.; Nastri, E.; Piluso, V.; Todisco, P. Evaluation of the seismic capacity of existing moment resisting frames by a

simplified approach: Examples and numerical application. Appl. Sci. 2021, 11, 2594. [CrossRef]
5. Balazadeh-Minouei, Y.; Tremblay, R.; Koboevic, S. Seismic Retrofit of an Existing 10-Story Chevron-Braced Steel-Frame. J. Struct.

Eng. 2018, 144, 04018180. [CrossRef]
6. Nastri, E.; Vergato, M.; Latour, M. Performance evaluation of a seismic retrofitted R.C. precast industrial building. Earthq. Struct.

2017, 12, 13–21. [CrossRef]

http://doi.org/10.4334/JKCI.2019.31.1.079
http://doi.org/10.1016/j.engstruct.2020.111222
http://doi.org/10.3390/app11062594
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002180
http://doi.org/10.12989/eas.2017.12.1.013


J. Compos. Sci. 2022, 6, 62 19 of 20

7. Morelli, F.; Piscini, A.; Salvatore, W. Seismic behavior of an industrial steel structure retrofitted with self-centering hysteretic
dampers. J. Constr. Steel Res. 2017, 139, 157–175. [CrossRef]

8. Wang, S.; Lai, J.-W.; Schoettler, M.J.; Mahin, S.A. Seismic assessment of existing tall buildings: A case study of a 35-story steel
building with pre-Northridge connection. Eng. Struct. 2017, 141, 624–633. [CrossRef]

9. Hwang, S.-H.; Jeon, J.-S.; Lee, K. Evaluation of economic losses and collapse safety of steel moment frame buildings designed for
risk categories II and IV. Eng. Struct. 2019, 201, 10983. [CrossRef]

10. Seker, O.; Faytarouni, M.; Akbas, B.; Shen, J. A novel performance-enhancing technique for concentrically braced frames
incorporating square HSS. Eng. Struct. 2019, 201, 109800. [CrossRef]

11. Taiyari, F.; Formisano, A.; Mazzolani, F.M. Seismic Behaviour Assessment of Steel Moment Resisting Frames under Near-Field
Earthquakes. Int. J. Steel Struct. 2019, 19, 1421–1430. [CrossRef]

12. Bojórquez, E.; López-Barraza, A.; Reyes-Salazar, A.; Ruiz, S.E.; Ruiz-García, J.; Formisano, A.; López-Almansa, F.; Carrillo, J.;
Bojórquez, J. Improving the Structural Reliability of Steel Frames Using Posttensioned Connections. Adv. Civ. Eng. 2019, 2019,
8912390. [CrossRef]

13. Terracciano, G.; Di Lorenzo, G.; Formisano, A.; Landolfo, R. Cold-formed thin-walled steel structures as vertical addition and
energetic retrofitting systems of existing masonry buildings. Eur. J. Environ. Civ. Eng. 2015, 19, 850–866. [CrossRef]

14. Formisano, A.; Landolfo, R.; Mazzolani, F.M. Robustness assessment approaches for steel framed structures under catastrophic
events. Comput. Struct. 2015, 147, 216–228. [CrossRef]

15. Mangalathu, S.; Hwang, S.-H.; Choi, E.; Jeon, J.-S. Rapid seismic damage evaluation of bridge portfolios using machine learning
techniques. Eng. Struct. 2019, 201, 109785. [CrossRef]

16. Krawinkler, H.; Seneviratna, G.D.P.K. Pros and cons of a pushover analysis of seismic performance evaluation. Eng. Struct. 1998,
20, 452–464. [CrossRef]

17. Brebbia, C. Earthquake Resistant Engineering Structures X, WIT Transactions on the Built Environment; Technology & Engineering;
WIT Press: Southampton, UK, 2015.

18. Gupta, A.; Krawinkler, H. Feasibility of push-over analyses for estimation of strength demand, Stessa 2003—Behaviour of Steel
Structures in Seismic Areas. In Proceedings of the 4th International Specialty Conference, Naples, Italy, 9–12 June 2003.

19. NTC 2018 Italian Code: Chapter 7 “Design for seismic actions”.
20. Fajfar, P. A Nonlinear Analysis Method for Performance-Based Seismic Design. Earthq. Spectra 2000, 16, 573–592. [CrossRef]
21. Gentile, R.; del Vecchio, C.; Pampanin, S.; Raffaele, D.; Uva, G. Refinement and Validation of the Simple Lateral Mechanism

Analysis (SLaMA) Procedure for RC Frames. J. Earthq. Eng. 2021, 25, 1227–1255. [CrossRef]
22. Bernuzzi, C.; Rodigari, D.; Simoncelli, M. Post-earthquake damage assessment of moment resisting steel frames. Ing. Sismica

2019, 36, 35–55.
23. Costanzo, S.; D’Aniello, M.; Landolfo, R. Seismic design rules for ductile Eurocode compliant two storey X concentrically braced

frames. Steel Compos. Struct. 2020, 36, 273–291. [CrossRef]
24. Costanzo, S.; Tartaglia, R.; Di Lorenzo, G.; De Martino, A. Seismic Behaviour of EC8-Compliant Moment Resisting and Concentri-

cally Braced Frame. Buildings 2019, 9, 196. [CrossRef]
25. Costanzo, S.; D’Aniello, M.; Landolfo, R. The influence of moment resisting beam-to-column connections on seismic behavior of

chevron concentrically braced frames. Soil Dyn. Earthq. Eng. 2018, 113, 136147. [CrossRef]
26. Costanzo, S.; D’Aniello, M.; Landolfo, R. Seismic design criteria for chevron CBFs: European vs. North American codes (part-1). J.

Constr. Steel Res. 2017, 135, 83–96. [CrossRef]
27. Costanzo, S.; D’Aniello, M.; Landolfo, R.; De Martino, A. Critical discussion on seismic design criteria for cross concentrically

braced frames. Ing. Sismica Int. J. Earthq. Eng. 2018, 35, 23–36.
28. Karamanci, E.; Lignos, D.G. Computational Approach for Collapse Assessment of Concentrically Braced Frames in Seismic

Regions. J. Struct. Eng. 2014, 140, A4014019. [CrossRef]
29. Pengfei, W.; Shan, G.; Sheling, W.; Xiaofei, W. Anti-collapse equivalent dynamic analysis on steel moment frame. Ing. Sismica

2019, 36, 1–19.
30. Ferraioli, M.; Lavino, A.; Mandara, A. Effectiveness of multi-mode pushover analysis procedure for the estimation of seismic

demands of steel moment frames. Ing. Sismica 2018, 35, 78–90.
31. Bernuzzi, C.; Chesi, C.; Rodigari, D.; De Col, R. Remarks on the approaches for seismic design of moment-resisting steel frames.

Ing. Sismica 2018, 35, 37–47.
32. Pongiglione, M.; Calderini, C.; D’Aniello, M.; Landolfo, R. Novel reversible seismic-resistant joint for sustainable and decon-

structable steel structures. J. Build. Eng. 2021, 35, 101989. [CrossRef]
33. Formisano, A.; Massimilla, A.; Di Lorenzo, G.; Landolfo, R. Seismic retrofit of gravity load designed RC buildings using external

steel concentric bracing systems. Eng. Fail. Anal. 2020, 111, 104485. [CrossRef]
34. Di Lorenzo, G.; Colacurcio, E.; Di Filippo, A.; Formisano, A.; Massimilla, A.; Landolfo, R. State-of-the-art on steel exoskeletons for

seismic retrofit of existing RC buildings. Ing. Sismica 2020, 37, 33–50.
35. Romano, E.; Cascini, L.; D’Aniello, M.; Portioli, F.; Landolfo, R. A simplified multi-performance approach to life-cycle assessment

of steel structures. Structures 2020, 27, 371–382. [CrossRef]
36. Montuori, R.; Nastri, E.; Piluso, V.; Todisco, P. Performance-based rules for the simplified assessment of steel CBFS. J. Constr. Steel

Res. 2022, 191, 107167. [CrossRef]

http://doi.org/10.1016/j.jcsr.2017.09.025
http://doi.org/10.1016/j.engstruct.2017.03.047
http://doi.org/10.1016/j.engstruct.2019.109830
http://doi.org/10.1016/j.engstruct.2019.109800
http://doi.org/10.1007/s13296-019-00218-2
http://doi.org/10.1155/2019/8912390
http://doi.org/10.1080/19648189.2014.974832
http://doi.org/10.1016/j.compstruc.2014.09.010
http://doi.org/10.1016/j.engstruct.2019.109785
http://doi.org/10.1016/S0141-0296(97)00092-8
http://doi.org/10.1193/1.1586128
http://doi.org/10.1080/13632469.2018.1560377
http://doi.org/10.12989/scs.2020.36.3.273
http://doi.org/10.3390/buildings9090196
http://doi.org/10.1016/j.soildyn.2018.06.001
http://doi.org/10.1016/j.jcsr.2017.04.018
http://doi.org/10.1061/(ASCE)ST.1943-541X.0001011
http://doi.org/10.1016/j.jobe.2020.101989
http://doi.org/10.1016/j.engfailanal.2020.104485
http://doi.org/10.1016/j.istruc.2020.05.053
http://doi.org/10.1016/j.jcsr.2022.107167


J. Compos. Sci. 2022, 6, 62 20 of 20

37. Gupta, A.; Krawinkler, H. Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures; Stanford University:
Stanford, CA, USA, 1999.

38. Bruneau, M.; Uang, C.M.; Sabelli, R.S.E. Ductile Design of Steel Structures, 2nd ed.; McGraw-Hill: New York, NY, USA, 2011.
39. Eurocode 8. EN 1998-3: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings, CEN.

2004. Available online: https://www.phd.eng.br/wp-content/uploads/2014/07/en.1998.3.2005.pdf (accessed on 26 January
2022).

40. Nassar, A.A.; Krawinkler, H. Seismic Demands for SDOF and MDOF Systems. John A Blume Earthquake Engineering Center Technical
Report 95; Stanford Digital Repository: Stanford, CA, USA, 1991.

41. Montuori, R.; Nastri, E.; Piluso, V. Advances in theory of plastic mechanism control: Closed form solution for MR-Frames. Earthq.
Eng. Struct. Dyn. 2015, 44, 1035–1054. [CrossRef]

42. Longo, A.; Montuori, R.; Piluso, V. Moment frames—Concentrically braced frames dual systems: Analysis of different design
criteria. Struct. Infrastruct. Eng. 2016, 12, 122–141. [CrossRef]

43. Nastri, E.; D’Aniello, M.; Zimbru, M.; Streppone, S.; Landolfo, R.; Montuori, R.; Piluso, V. Seismic response of steel Moment
Resisting Frames equipped with friction beam-to-column joints. Soil Dyn. Earthq. Eng. 2019, 119, 144–157. [CrossRef]

44. Piluso, V.; Montuori, R.; Nastri, E.; Paciello, A. Seismic response of MRF-CBF dual systems equipped with low damage friction
connections. J. Constr. Steel Res. 2019, 154, 263–277. [CrossRef]

45. Krishnan, S.; Muto, M. Mechanism of collapse of Tall Steel Moment-Frame Buildings under Earthquake Excitation. J. Struct. Eng.
2012, 138, 1361–1387. [CrossRef]

46. Piluso, V.; Pisapia, A.; Castaldo, P.; Nastri, E. Probabilistic Theory of Plastic Mechanism Control for Steel Moment Resisting
Frames. Struct. Saf. 2019, 76, 95–107. [CrossRef]

47. Priestley, M.J.N. Performance based seismic design. Bull. N. Z. Soc. Earthq. Eng. 2000, 33, 325–346. [CrossRef]
48. Bruneau, M.; Uang, C.M.; Whittaker, A. Ductile Design of Steel Structures; McGraw-Hill: New York, NY, USA, 1998.
49. Georgescu, D.; Toma, C.; Gosa, O. Post-critical Behaviour of “K”Braced Frames. J. Constr. Steel Res. 1992, 21, 115–133. [CrossRef]
50. Eurocode 8. EN 1998-1: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for

Buildings, CEN. 2004. Available online: https://www.phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf (accessed
on 26 January 2022).

51. Eurocode 3. UNI EN 1993-1-1: Design of Steel Structures Part 1-1: General Rules and Rules for Buildings, CEN. 2005. Available
online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.1.2005.pdf (accessed on 26 January 2022).

52. Mazzolani, F.M.; Piluso, V. Plastic Design of Seismic Resistant Steel Frames. Earthq. Eng. Struct. Dyn. 1997, 26, 167–191. [CrossRef]
53. Mazzolani, F.M.; Piluso, V. Theory and Design of Seismic Resistant Steel Frames; E & FN Spon: London, UK, 1996.
54. Yun, S.Y.; Hamburger, R.O.; Cornell, C.A.; Foutch, D.A. Seismic performance evaluation for steel moment frames. J. Struct. Eng.

2002, 128, 534–545. [CrossRef]
55. Grecea, D.; Dinu, F.; Dubina, D. Performance Criteria for MR Steel Frames in Seismic Zones. J. Constr. Steel Res. 2004, 60, 739–749.

[CrossRef]
56. Newmark, N.; Hall, W. Earthquake Spectra and Design. In EERI Monographs; Earthquake Engin. Research Library: Richmond,

CA, USA, 1982.
57. Ferraioli, M.; Lavino, A.; Mandara, A. An adaptive capacity spectrum method for estimating seismic response of steel moment-

resisting frames. Ing. Sismica 2016, 33, 47–60.
58. Naeim, F. Earthquake Engineering-From Engineering Seismology to Performance-Based Engineering. Earthq. Spectra 2005, 21,

609–611. [CrossRef]

https://www.phd.eng.br/wp-content/uploads/2014/07/en.1998.3.2005.pdf
http://doi.org/10.1002/eqe.2498
http://doi.org/10.1080/15732479.2014.996164
http://doi.org/10.1016/j.soildyn.2019.01.009
http://doi.org/10.1016/j.jcsr.2018.12.008
http://doi.org/10.1061/(ASCE)ST.1943-541X.0000573
http://doi.org/10.1016/j.strusafe.2018.08.003
http://doi.org/10.5459/bnzsee.33.3.325-346
http://doi.org/10.1016/0143-974X(92)90022-7
https://www.phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf
https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.1.2005.pdf
http://doi.org/10.1002/(SICI)1096-9845(199702)26:2&lt;167::AID-EQE630&gt;3.0.CO;2-2
http://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(534)
http://doi.org/10.1016/S0143-974X(03)00140-8
http://doi.org/10.1193/1.1896960

	Introduction 
	Fundamental Equations of the Trilinear Model 
	Assessment Procedure in Terms of Spectral Accelerations According toADRS Spectrum 
	Assessment Procedure in Terms of Spectral Accelerations According to Nassarand Krawinkler 
	Numeric Examples 
	Global Concentrically Braced Frame 
	Special Concentrically Braced Frame 
	Ordinary Concentrically Braced Frame 

	Conclusions 
	References

