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Abstract: Torsional strength is related with one of the most critical failure types for the design and
assessment of reinforced concrete (RC) members due to the complexity of the associated stress state
and low ductility. Previous studies have shown that reliable methods to predict the torsional strength
of RC beams are still needed, namely for over-reinforced and high-strength RC beams. This research
aims to offer a novel set of models to predict the torsional strength of RC beams with a wide range of
design attributes and geometries by using advanced M5P tree and nonlinear regression models. For
this, a broad database with 202 experimental tests is used to generate highly reliable and resilient
models. To build the models, three independent variables related with the properties of the RC
beams are considered: concrete cross-section area (area enclosed within the outer perimeter of the
cross-section), concrete compressive strength, and torsional reinforcement factor (which accounts for
the type—longitudinal or transverse—amount, and yielding strength of the torsional reinforcement).
In contrast to multiple nonlinear regression approaches, the findings show that the M5P tree approach
has the best estimation in terms of both accuracy and safety. Furthermore, M5P model predictions
are far more accurate and safer than the most prevalent design equations. Finally, sensitivity and
parametric studies are used to confirm the robustness of the presented models.

Keywords: machine learning (ML); reinforced concrete (RC); beams; torsional strength; nonlinear
regression model; M5P tree model

1. Introduction

In several cases, reinforced concrete (RC) structures incorporate members which need
to sustain high torsional loading in their critical cross-sections. These cases include common
bridges and building structures, where linear members (beams and columns) might need to
suffer high torsional effects due to eccentric loadings. Even if torsional effects are combined
with other internal forces, an accurate estimation of the torsional strength is required in the
critical zones of the members. This is particularly important in assessment projects.

For practice, structural engineers usually base their calculations on the provisions from
standards, namely, for the ultimate limit states. Nowadays, standards for RC structures
incorporate design rules for torsion based on semi-empirical equations, which can still fail to
accurately estimate the torsional strength of RC beams and even provide unsafe predictions,
namely for over-reinforced and high-strength RC members [1–3]. As a consequence, in
recent years, some structural failures attributed to torsional effects are still reported [4].
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Hence, alternative and more accurate models for RC members under torsional loading are
still needed.

In the last decades, reliable models which allow us to compute, with accuracy, the
strength of RC beams under pure torsion have been proposed. The model, so-called skew-
bending, theory was firstly proposed by Hsu in 1968 [5] and further developed [6–8]. This
model was initially established from the observation of the torsional failure pattern in
several experiments with RC rectangular beams with small sizes. However, this model
gives rise to less accurate and more complex equations for RC beams with cross-sections
with larger aspect ratios, with more complex geometrical cross-sections, and for combined
torsion. For these reasons, it has been abandoned by most of the research community.
Nevertheless, some few current standards still base their provisions for torsion on the
skew-bending theory, such as the Russian Building Code [9].

Nowadays, most of the standards for RC structures (such as the American, Canadian,
and European ones [10–13]) base their provisions for torsion on the space truss analogy,
which was firstly proposed by Raush in 1929 [14] and further developed mainly in the
second half of last century [15–18]. This physically more consistent model for RC beams
in the cracked stage provides simpler equations to compute the torsional strength for a
wide range of geometrical RC cross-sections. However, for practical use, different empirical
hypotheses were incorporated in the model for the standards in order to simplify the tor-
sional design. As a consequence, the resulting semi-empirical equations can be somewhat
different between standards and, as referred before, they can fail to provide accurate and
safe predictions for the torsional strength of RC beams. In the past decades, refined models
based on the space truss analogy have been proposed, which allow the strength of RC
beams under pure and combined torsion to be predicted with high accuracy [19–24]. More
advanced analytical models have also been proposed in the literature for RC beams under
torsion and combined loadings [25,26]. In addition, nonlinear finite element models have
also proved to be very reliable to simulate the behavior of RC beams under torsion until
failure [27]. Despite these models having been shown to be very reliable when compared
with experimental results, some of them require advanced calculation procedures to be
implemented in the computer, sometimes with a lot of programming effort, and others
already available in the software can be computationally very demanding. Most of them
are not easy for practitioners to use for structural design and assessment.

These drawbacks can be solved by developing accurate Machine Learning (ML)-based
models as an alternative to the previously referred ones. Several ML techniques have
already taken place in recent years due to innovations in computing and have been applied
to successfully predict the strength of RC members, including, but not limited to, punching
shear in slabs and shear in beams [28–32]. Among such studies, some of them have already
focused on the problem of RC members under torsion [33–37] and also strengthened RC
beams with torsional loading [38–40]. However, since several ML techniques exist and can
be applied to solve problems in the field of structural civil engineering [40], one can state
that few studies still exist in the literature for a given problem, such as the one related to
RC beams under pure torsion. Hence, more studies are needed to help find the best ML
models and strategies for a given problem, in this case, for predicting with accuracy the
torsional strength of common RC beams with broad and varying design attributes and
geometries. Furthermore, in machine learning model definitions, Artificial Neural Network
(ANN) [34,35,37,39,40] and Ensembled Trees [38] are examples of computer-aided machine
learning approaches, whereas M5P model tree and multiple non-linear regression (MNLR)
are examples of explicit machine learning techniques. The first category is referred to as
“black-box approaches”, and this indicates that their paradigms rely on a computer-assisted
methodology, while the second category is known as “white-box techniques”, and this
implies that they provide clear expressions.

This work’s primary innovation and contribution is the development of two unique
explicit correlations which can be used easily to accurately forecast the torsion resistance
of RC beams with broad and varying design attributes and geometries. To achieve this,
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a sample experimental database was used to implement M5P and MLNR models using
three input parameters: the cross-section area (the area enclosed within the outer perimeter
of the cross-section), the concrete compressive strength, and a reinforcement factor which
accounts for the type—longitudinal or transverse—amount, and yielding strength of the
torsional reinforcement. The newly proposed models were assessed using statistical and
graphical criteria, and their performance was compared to that of earlier design building
codes and models. Finally, and in order to assess the degree of contribution of each
parameter used to run the models, a sensitivity analysis was also developed.

2. Materials and Methods
2.1. M5P Model Tree Techniques

The model trees approach provides the piecewise linear fit of the class and a structural
representation of the data. Although they feature a decision tree in a traditional form,
as illustrated in Figure 1, they employ linear functions at the leaves rather than discrete
class labels. A model tree is employed to anticipate numerical values. A linear regression
model is maintained at each leaf to forecast the class value of instances that will reach the
leaf. Model trees provide superior compactness and prediction accuracy over standard
regression trees [41]. By using rules and regression equations, they directly define the
patterns and correlations that are inherent in the data, whereas other advanced machine
learning algorithms, such as ANN (Artificial Neural Network) and SVR (Support Vector
Regression), hide them.
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2.1.1. The M5 Tree Algorithm

Model trees are effective and precise methods for modeling the relationships and
patterns in big datasets, despite being simple [43]. In order to forecast continuous variables,
Quinlan [44] created a novel form of tree known as the M5 tree. The regression trees created
by CART have values at their leaves, but trees created by M5 can include multivariate
linear models. One significant distinction between the M5 regression tree and the CART
(Classification and Regression Tree) regression tree is that the M5 tree can include multivari-
ate linear models, whereas the CART tree can have values at its leaves. Predictions by M5
are more adaptable under this circumstance. The three main stages of M5 tree growth are
tree building, tree pruning, and tree smoothing, as illustrated in Figure 2. The construction
of the M5 tree aims to optimize a parameter known as the standard deviation reduction
(SDR). A definition of the SDR is the following one:

SDR = sd(T)−
n

∑
i=1

|Ti|
|T| sd(Ti) (1)
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where T is the set of cases, Ti is the ith subset of cases that result from the tree splitting
based on a set of variables (attributes), sd(T) is the standard deviation of T, and sd(Ti) is
the standard deviation of Ti as a measure of error [42].
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2.1.2. The M5P Tree Algorithm

The original M5 tree technique was improved by Wang and Witten [45] and was
given the name M5P algorithm to handle enumerated attributes and attribute missing
values. Each enumerated attribute is converted into a binary variable before the M5P
tree algorithm starts building the tree. Traditional decision trees and the nodes’ potential
for linear regression functions are combined in M5P. Firstly, a tree is constructed using
a decision-tree induction process. Splitting criteria are employed instead of maximizing
information gain at each inner node to reduce intra-subset fluctuation in the class values
along each branch. If just a small number of instances are left, or the class values of all
examples that reach a node differ only slightly, the splitting process in M5P comes to an
end. Secondly, each leaf on the tree is pruned back. With a regression plane, an inner node
is transformed into a leaf during pruning [46].

Comparing the M5P algorithm to other algorithms shows advantages. It can be applied
to missing values in both continuous and categorical data. When a value is absent, M5P
uses a technique called “surrogate splitting”, which asks for another attribute to be divided
in place of the original location and uses it in return. Class magnitude is employed in the
training portion by M5P as a surrogate attribute in the belief that it should be connected to
the attribute that is used for splitting. All missing values are replaced by the average values
of the respective characteristics from the training example at the conclusion of the splitting
phase. Instead of using an unknown attribute value in the testing phase, the average value
of that attribute for all training instances that reach the node is utilized. M5P creates models
that are reasonably understandable and small [47].
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2.2. Multiple Nonlinear Regression Method

Let us assume that y is the dependent variable and that x1, x2, . . . and xn are the n
independent variables in the nonlinear relationship. They have a nonlinear relationship
that can be represented as follows:

y = a0xa1
1 xa2

2 . . . xan
n (2)

From Equation (2), the following linearized equation can be constructed by using
logarithmic transformation:

logy = loga0 + a1logx1 + a2logx2 + · · ·+ anlogxn (3)

Similar to the Multi-Linear Regression (MLR) approach, the least squares method can
be used to calculate the coefficients a0, a1, . . . , and an.

2.3. Model Inputs

The mechanical characteristics (e.g., the torsional strength TR) of composite members
such as reinforced concrete beams are influenced by a wide range of variables. These vari-
ables include the cross-section area, amount of longitudinal and transverse reinforcement,
spacing between bars, concrete compressive strength, steel yielding strength, modulus of
elasticity, and more [48–51]. Therefore, it is necessary to identify the most critical param-
eters from various independent variables to create an accurate model. In this research,
three independent factors comprising the cross-section area (Ac, the area enclosed within
the outer perimeter of the cross-section), the concrete compressive strength ( fc), and a
reinforcement factor which accounts for the type—longitudinal or transverse—amount,
and yielding strength of the torsional reinforcement

(
Al fyl At fyt/s

)
were considered as

predictive variables based on prior research and current design codes [1,2]. The only output
of the model is the torsional capacity of the RC beam, TR. In the reinforcement factor, Al is
the total area of longitudinal reinforcement, At is the area of one rebar of the transverse
reinforcement (stirrups), s is the stirrups’ longitudinal spacing, and fyl and fyt are steel
yielding stress of the longitudinal and transverse reinforcement, respectively.

2.4. Database Used

A reasonably recent comprehensive dataset by Bernardo et al. [1] from 21 experimental
investigations carried out between 1968 and 2020 is utilized to analyze the torsional strength
of the RC beams and create a new model and prediction formulae. The utilized dataset
is available and described in detail in [1], including all properties of the RC beams. For
this reason, it is not incorporated in this study. For various TR values between 8.9 kN.m
and 521.3 kN.m, the whole collection consists of 202 recorded experimental data samples.
Two independent parts of the dataset are randomly selected: training (162) and testing (40).
The training dataset is used to train the M5P algorithm, and the testing dataset is used to
evaluate it. Table 1 lists the range of output and variables for testing and training datasets.

Table 1. The input and output parameter ranges for the training and testing sets.

Statistics Subset Min Max Mean STD

Ac (m2)
Training 0.04 0.37 0.15 0.10
Testing 0.05 0.36 0.15 0.09

fc (MPa) Training 13.1 109.8 47.1 23.50
Testing 17.1 96.8 45.1 20.61

Al fyl At fyt/s Training 1.19 × 106 531.30 × 106 37.27 × 106 61.15 × 106

Testing 1.13 × 106 310.78 × 106 32.35 × 106 57.34 × 106

TR (kN.m)
Training 8.99 521.33 92.48 101.01
Testing 12.30 467.26 90.79 95.04
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3. Model Result
3.1. M5P and MLNR Derived Models

The relationship between the input and output parameters in the current study is
not always linear, since the distribution of a wide range of values follows a nonlinear
trend, such as a power law. When calculating the torsional capacity, the M5P model can be
utilized to produce concise, transparent rules that are simple to implement. However, it
could suggest that the input and output parameters are linearly related. Log (inputs) and
log (outputs) were used to create a model to bypass this limitation (output). Consequently,
and based on the results from studies [1,2], it was hypothesized that TR is a power function
that has the following form:

TR = a′( fc)
b′(Ac)

c′(Al fyl
At fyt

s
)

d′

(4)

where the constants (a′, b′, c′, and d′) have different values under various circumstances
and all other terms were previously defined.

Figure 3 displays the established model tree created using the M5P technique. Table 2
provides the coefficients for Equation (4) predicted from the M5P algorithm.
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Table 2. Coefficients for Equation (4) predicted from the model tree.

Linear Model
Coefficient

a’ b’ c’ d’

LM1 4.5311 0.3108 0.7739 0.1491

LM2 1.8252 0.2765 1.1161 0.2883

LM3 1.9852 0.2866 1.0774 0.272

The following example illustrates the methodology of using M5P to predict the tor-
sional capacity of RC beams. For example, let us consider a reference beam from the testing
dataset with the attributes summarized in Table 3.
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Table 3. Reference beam attributes from the testing dataset.

TR(exp) (kN.m) fc (MPA) Ac (m2) Alfyl
Atfyt

s

37.48 28.07 0.098 12090616

As can be seen from Table 3 and Figure 3, the beam sample belongs to the M5P LM1
prediction equation, since the value of Ac is ≤ 0.1164 and > 0.0625. Therefore, using the
coefficients related to LM1, the predicted value for the torsional capacity of the reference
beam in Table 3 is 37.29 kN.m, which agrees very well with the experimental torsional
capacity (37.48 kNm).

The newly developed equation to predict the torsional resistance of RC beams in this
research using an MLNR (Multiple NonLinear Regression) model can be written as follow:

TR = 5.1808 ( fc)
0.1964(Ac)

1.1755(Al fyl
At fyt

s
)

0.2459

(5)

3.2. Performance Analysis

In the ML modeling process, the number of the entire dataset used to build a new
regression model is a critical task. Frank and Todeschini [52] recommended a minimal
proportion of three between the full dataset utilized and the number of included variables
for constructing a credible model based on data mining approaches. A value of five is
considered a more conservative and safe option. As can be seen in this study, the ratio
between experimental data points to the predictors is equal to 202/3 = 67.33.

In order to compare the M5P model with MLNR, performance metrics were used. The
Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Mean Estimation
Error (MAE) were used to evaluate the predictive performance of M5P and MLNR on a
regular basis [53,54]. The three equations below are used to calculate these metrics.

R2 =
∑n

i=1 (y
obs
i − y−obs)

2 −∑n
i=1

(
yobs

i − ypre
i

)2

∑n
i=1
(
yobs

i − y−obs
)2 ∈ [0, 1] (6)

RMSE =

√√√√∑n
i=1

(
yobs

i − ypre
i

)2

n
∈ [0,+∞] (7)

MAE =
∑n

i=1

∣∣∣yobs
i − ypre

i

∣∣∣
n

∈ [0,+∞] (8)

where n denotes the overall number of data points used to calculate the bias, yobs
i and ypre

i are
the observed values for the torsional strength and the predicted torsional strength of the RC
beams for the ith observation, respectively, and y−obs is the average of all observed data.

As shown in Figure 4a,b, for both training and testing datasets, the M5P and MNLR
models’ results reveal a little scatter around the ideal line between the observed and
predicted values of the torsional strength. Model performance measurements are pro-
vided in Table 4 for the training and testing datasets to further check the validity of the
obtained models.
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Table 4. M5P and MLNR model performance in predicting the torsional strength for training and
test datasets.

Statistics MAE RMSE R R2

Training M5P 8.279 13.288 0.991 0.983
MNLR 9.435 13.908 0.989 0.979

Testing M5P 8.224 13.432 0.990 0.981
MNLR 9.224 14.438 0.980 0.960

Total
M5P 9.521 14.663 0.990 0.981

MNLR 10.240 15.049 0.980 0.960

There is a substantial correlation between the predicted and experimental values when
|R| > 0.8, according to Smith [55]. The matching between the observed and predicted val-
ues might not be achieved, even if the R value is near 1. In other words, those two variables
just vary similarly. It is possible to overcome this constraint by utilizing the coefficient
of determination R2. When the model’s R2 value is close to one, and the model’s RMSE
and MAE values are close to zero, the model can be trusted to produce precise results [56].
In terms of accuracy, the models’ performance measures in Table 4 indicate that M5P
outperformed the MNLR in both the training and testing sets. For example, and for R2,
RMSE and MAE values for the training set of the M5P model are 0.983, 13.288, and 8.279,
respectively, while the RMSE and MAE values of R2 for the testing set are 0.981, 13.432, and
8.224, respectively. It should be noted that the performance of MNLR is also acceptable.

A comparison of the forecasting accuracy of the M5P and MLNR models from this study,
with standards and simplified predicting models for the torsional strength of RC beams
using the testing dataset, is performed, and the findings are summarized in Table 5. The
standard equations from SNiP18 [9], ACI 318-19 [10], MC10 [12], EC2 [13], CSA14 [11], and the
simplified equation developed by Rahal in 2013 [2] are among the available torsional strength
models investigated in this study. In order to do so, three statistical error measurements,
including R2, RMSE, and MAE, besides model uncertainty average value x and coefficient
of variation COV for the calculated ratios TR,exp/TR,pred, were utilized for the comparison
between the previously developed models and the other referred ones. The lowest RMSE
and MAE values with the highest R2 are achieved with the M5P model, as shown in Table 5.
The mean value of the model uncertainty variable for the M5P is 1.0419, which is close to the
optimal value (equal to 1). Moreover, with a COV of 11.6419, the M5P model has the lowest
dispersion of all the studied models. The most prominent conservative bias was obtained
from the SNiP18 equations, with a mean value of model uncertainty equal to 1.3584, while the
broadest dispersion is achieved with the MC10 equation, with the value 44.78%.
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Table 5. Accuracy of other models for predicting the torsional strength with M5P and MLNR.

MAE RMSE R2 ¯
x COV %

SNiP18 [9] 23.1680 35.0118 0.9332 1.3584 30.6947
ACI 318-19 [10] 22.3113 36.8349 0.9619 1.2777 26.3644

MC10 [12] 19.9876 32.7077 0.8975 1.2183 44.7848
EC2 [13] 16.4672 24.8102 0.9385 1.1359 23.0495

CSA14 [11] 14.0524 29.5598 0.9399 1.0279 19.2282
Rahal [2] 11.1040 17.0198 0.9705 1.0747 12.1034

MLNR (this study) 9.2240 14.4380 0.960 1.0544 13.9623
M5P (this study) 8.3300 13.4321 0.9807 1.0419 11.6419

The model uncertainty variable between the predicted and observed torsional strength
for all the RC beams in the testing dataset was plotted against the predictors used to build
each of the models in this study, as shown in Figure 5. These plots help to acquire a
better understanding of the standards’ errors. In this regard, the results of the standards
were compared to those of the MLNR and M5P models. An adequate model’s errors
should be less sensitive or independent of changes in the input parameters involved in the
phenomena. Otherwise, it is possible to conclude that such input parameters are either
incorrectly included or should be included in the model [55]. As demonstrated in Figure 5,
the errors of some of the design codes are sensitive to changes in the concrete compressive
strength ( fc) or concrete area (Ac) values.

For example, the MC10 standard tends to overpredict the torsional strength as the
value of fc or Ac increases, while the ACI 318-19 standard tends to behave in the opposite
direction as the value of the same variables increases. Therefore, it is possible to state that
those two parameters might not have been correctly included in the standards equations,
and more studies should be performed on this. On the other hand, the M5P and MLNR
models’ errors are entirely unaffected by these variables. The EC2 standard is less sensitive
to the changes in fc or Ac values when compared to the other standards.

It can also be noticed that some trends in the behavior of the standards equations
exist when it comes to relate the prediction of the torsional strength versus reinforcement
factor. For example, the status of the equations for some of the standards changes from
overprediction to underprediction as the reinforcement factor increases, while the status of
the equations from other standards (namely MC10, EC2, and SNiP18) shows the opposite.
Consequently, all input variables were better incorporated into the newly suggested models
in this study, and the models’ errors were entirely independent of them.

3.3. Parametric and Sensitivity Analyses

The importance of variables in estimating the torsional strength of RC beams is
determined by performing a sensitivity analysis. This analysis is carried out by removing
each predictor from the database, one at a time, and training and testing the proposed
models using the resulting dataset. The R2, RMSE, and MAE performance measures from
the testing and training database were used to analyze the relevance of each variable on
the torsional strength of the RC beams. The results are summarized in Table 6. This table
depicts all of the input factors that are thought to influence the torsional strength of the
RC beams. As can be noticed from Table 6, the area of concrete, Ac, is the most sensitive
variable impacting the torsional strength of the RC beams when compared to the other
input variables. It should also be noticed that leaving out the concrete compressive strength,
fc, has little impact on the obtained models’ performance.
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Table 6. Effect of input variables on the performance of the suggested ML models.

Models Input Variable Training Set Testing Set

MAE RMSE R2 MAE RMSE R2

M5P

Ac, fc, Al fyl At fyt/s 8.279 13.288 0.983 9.224 14.438 0.980
fc, Al fyl At fyt/s 36.916 60.554 0.780 29.816 53.699 0.834
Ac, Al fyl At fyt/s 11.004 15.688 0.980 12.054 16.699 0.970

Ac, fc 20.362 38.627 0.863 20.347 34.240 0.917

MLNR

Ac, fc, Al fyl At fyt/s 9.435 13.908 0.979 9.224 14.438 0.980
fc, Al fyl At fyt/s 46.406 72.710 0.609 51.442 78.215 0.638
Ac, Al fyl At fyt/s 11.004 17.145 0.973 10.485 16.085 0.972

Ac, fc 20.362 38.627 0.863 20.347 34.240 0.917

4. Conclusions

In this study, two novel models for the reliable prediction of the torsional resistance
of RC beams were generated utilizing M5P and MLNR. A representative experimental
database based on inputs such as area of concrete, concrete compressive strength, and
reinforcement factor was gathered from the published literature in order to construct
the relationships.

The following findings are derived from this study:

1. Both the M5P and MLNR models had excellent predictive power.
2. With a total RMSE value of 14.663, the M5P model exceeds the MLNR model.
3. The torsional resistance of the RC beam can be quickly and reasonably estimated

using the suggested M5P model.
4. The generated M5P correlation was evaluated against the equations of design building

codes and other current models. All of these models could not match the developed
M5P’s precision.

5. The M5P and MLNR models indicated that the area of concrete had the greatest
influence on the prediction of torsional resistance.

With only 202 experimental tests, the dataset used to develop the prediction models
was relatively small. This represents a limitation of the presented work. The accuracy and
dependability of the M5P model can be improved by utilizing a larger dataset. Due to
challenges with data collecting, other signs or factors could have gone overlooked. The
type and quality of data used greatly influence how well supervised machine learning
systems perform. In the future, the authors want to determine if adding a new prediction
model or changing the size of the training dataset can increase or decrease the suggested
model’s accuracy.
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