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Abstract: The presence of waviness defects in CFRP materials due to fiber undulation affects the
structural performance of composite structures. Hence, without a reliable assessment of the result-
ing material properties, the full weight-saving potential cannot be exploited. Within the paper, a
probabilistic numerical approach for improved estimation of material properties based on spatially
distributed fiber waviness is presented. It makes use of a homogenization approach to derive viable
knock-down factors for the different plies on the laminate level for reference material and is demon-
strated for a representative tension loadcase. For the stochastic analysis, a random field is selected
which describes the complex inner geometry of the plies in the laminate model and is numerically
discretized by the Karhunen–Loeve expansion methods to fit into an FE model for the strength
analysis. Conducted analysis studies reveal a substantial influence of randomly distributed waviness
defects on the derived knock-down factors. Based on a topological analysis of the waviness fields, the
reduction of the material properties was found to be weakly negatively correlated related to simple
geometrical properties such as maximum amplitudes of the waviness field, which justifies the need
for further subsequent sensitivity studies.

Keywords: composite materials; out-of-plane waviness; knock-down factors; stochastic analysis;
random field; Karhunen–Loeve expansion

1. Introduction

Composite materials play an important role in many engineering disciplines due to
their superior mechanical properties compared to metal. Carbon-fiber-reinforced polymers
(CFRP) are a key ingredient for the construction of efficient aircraft vehicles in order to
reduce structural weight and fuel consumption.

Yet, the use of composite materials induces several challenges along the entire de-
velopment chain due to higher complexity in component manufacturing in contrast to
metallic counterparts. Due to that, process-induced defects may arise which mainly depend
on the type of underlying manufacturing technology, e.g., automated fiber placement [1].
The presence of such inhomogeneities within the material leads to a degradation of the
load-bearing capabilities of the structure and favors crack initiation, which needs to be
handled. Due to a lack of experience, companies are, therefore, often forced to rely on con-
servative designs with minimum defects to comply with quality and safety requirements.
This leads to high manufacturing effort and cost. Therefore, knowledge about the influence
of material flaws on the structural integrity of lightweight components based on CFRP
materials is essential for developing structural designs in favor of an overall cost reduction
and increased life cycle of the components.
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1.1. Out-of-Plane Waviness

One relevant defect is fiber undulation, which may result in either an in-plane angle
misalignment of a composite layer or an out-of-plane waviness formation through the
entire thickness of the laminate. This type of defect may be induced, e.g., in resin transfer
molding or autoclave processes based on pre-preg materials [2,3]. The latter is defined as a
reference process for further considerations within this contribution. Due to the manifold
origins of wavy formations in the material, it is difficult to comprehensively describe the
undulation pattern within complex structural parts. However, a systematic overview is
given in [4] on different aspects of out-of-plane fiber waviness, e.g., geometric classification
schemes. Without a claim of completeness, Figure 1 shows some exemplary conceptual
waviness classifications.

(a) (b) (c)

Figure 1. Two-dimensional examples of out-of-plane fiber waviness in a composite laminate. (a) Em-
bedded single graded waviness, reprinted with permission from Ref. [5], 2013, S. Mukhopadhyay;
(b) hump, reprinted with permission from Ref. [6], 2012, P. Davidson; (c) complex stochastic dis-
tributed waviness, reprinted with permission from Ref. [7], 2010, R. Hinterhölzl.

The phenomenological analysis of waviness in fiber composites with respect to the
correct assessment of resulting material properties is, even for simple test cases and load
settings, a part of ongoing research. One of the first attempts to describe the effect of fiber
waviness on mechanical behavior can be found in [8]. The main focus of the first research
investigations laid on analytical or semi-analytical models to describe the complex inter-
action between fiber and matrix within the material to accurately predict crack initiation
under different load cases and the determination of stiffnesses and residual strengths [9,10].
The approaches developed differ with respect to the depth of detail considered and the
mechanical behavior that can be represented. Due to the complex mechanical behavior,
the existing calculation methods were often limited to two-dimensional problems and
simple geometries. With the advent and versatile applications of finite element methods
(FEM), more complex waviness geometries have been investigated [11,12]. Meanwhile,
other methodological approaches using mesh-free numerical methods were developed to
estimate material degradation and failure propagation in damaged composite materials
more precisely [13]. However, they still lack in terms of a fast assessment of reduced
material properties in a stochastic view due to its higher computational complexity.

Despite the ability of new numerical methods to capture a complex material behavior
in terms of strength and stiffness, its extensive use in practical applications still relies on
experimental validation approaches [14–17]. One main challenge of this is to assure high
repeating accuracy of the specimen tests with artificial defects due to many sources of
errors in the testing structure. Within the physical testing procedures, optical measurement
techniques such as digital image correlation [18] are frequently used for the correct detection
of crack initiation and propagation in composite materials. As a consequence, they are
often limited to a cross-sectional image analysis, which excludes waviness defect analysis
of higher three-dimensional complexity. Other approaches such as computer tomography



J. Compos. Sci. 2022, 6, 353 3 of 22

scans may be an alternative but often involve higher costs of the measuring tools and
further issues in image-based reconstruction.

1.2. Spatial Stochastic Analysis

As already mentioned in the beginning, the presence of material defects such as out-
of-plane waviness is treated with conservative rules in manufacturing and design to fulfill
high quality requirements. These rules aim to include effects of discrete waviness defects
which are often provoked due to the selected manufacturing technology and an unforeseen,
additional random waviness pattern whose detection is hard to predict in general. For the
latter, deterministic numerical approaches in the literature are not sufficient, as previously
shown. Therefore, stochastic analysis methods which combine the physical representation
of local inhomogeneities with a random spatial distribution are essential.

With the help of increasing computation resources, the treatment of spatially dis-
tributed uncertainties in mechanical engineering with respect to composite applications is
considered more frequently in the last decade [19]. Due to numerous possible CFRP mate-
rial configurations based on complex stacking sequences in general, stochastic analysis of
spatial material uncertainties available in the literature usually focuses on partial aspects of
different material length scales, ranging from the microscopic level to the component level,
partially with the attempt to combine the different levels through a multiscale approach [20].
At the microscopic level, Arai et al. [21] demonstrate a probabilistic approach for the spatial
modeling of the microstructure of composite material containing fibers and matrix compo-
nents based on scanning electron microscope images. The authors of [22] propose a similar
approach for the determination of the Young’s modulus of short-fiber reinforced composites
extended by an experimental verification based on tensile tests. In [23], a methodology
is presented to spatially model local deviations of the fiber volume fraction with a focus
on frequency analysis of a representative composite panel. Based on experimental stud-
ies, it was shown that in the case of particular natural frequencies a numerical modeling
approach incorporating spatial material properties may result in a better alignment with
results from physical tests compared to an averaged modeling approach. Zein et al. [24]
propose a method to simulate spatial distributions of the fiber volume fraction over a
largely curved composite structure with a focus on stiffness and strength analysis and
different geometrical parameters. In [25], a quantitative assessment of the buckling stability
of composite cylinders is presented under consideration of spatially varying imperfection
within the structure based on optical measurements. Additionally, in [26], the benefits
of efficient stochastic simulation methods are shown based on a multilevel Monte Carlo
approach. The developed method was demonstrated on a two-dimensional composite plate
subjected to a spatial fiber angle deviation. Sutcliffe et al. [27] investigated the size effect
of random fiber angles relative to specimen dimensions in terms of compressive strength.
Besides the versatile applications and studies in the literature, extensive data from physical
measurements in terms of spatial distribution are still missing and remain a challenge in the
reliable numerical analysis including spatial aspects [28]. In [19], a numerical evaluation
of stochastic distributed out-of-plane fiber wrinkles in a CFRP material was done with a
focus on corner bend strength issues applied to a wing spar structure as an industrially
motivated case study. Based on computer tomography scan data, the complexity of the
fiber wrinkle parametrization was reduced to one model parameter through the thickness
of the laminate with a constant extension of the defect along the depth direction of the
representative spar structure. Despite the numerical abilities of the proposed approach,
challenges still remain due to the worse validity of the estimated defect distributions and
causal relationships between the mechanical response and defect geometry dimensions for
generic use on any kind of composite structure.

Based on the literature and to the best knowledge of the author, there is still a lack
of profound studies concerning the three-dimensional spatial stochastic modeling and
assessment of composite fiber waviness on the laminate level with respect to the material
strength issues. This contribution thus tries to fill this gap by proposing a pragmatic
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numerical approach for the estimation of strength properties within that physical problem
space. As a further beneficial target, the proposed approach shall give possibilities to
derive influence parameters of complex waviness distributions, which could be used for a
competitive composite component analysis in industrial-like scenarios.

The paper starts by explaining the underlying theory to compute specific material
properties. Subsequently, the implemented spatial stochastic modeling and numerical
assessment method will be described. Selected results with respect to specific model and
material parameters will be shown and discussed in detail. Finally, a conclusion will be
drawn from the achieved results, and an outlook will be given.

2. Multiscale Analysis for Computation of Knock-Down-Factors

Prior to the stochastic considerations, an appropriate methodology to assess the me-
chanical effects of fiber waviness needs to be defined. The modeling approach described
in detail in the following is based on the observation that imperfections in a multilayer
laminate often affect not only one layer but also neighboring layers through phenomena
such as load redistribution and mechanical stress localization. The proposed method is
suitable for both the determination of the effective elastic and strength properties of a mate-
rial (see also [12,29]). The approach considers the entire laminate for the homogenization
of defects and not only the individual ply. On the mesoscale (laminate level), these detailed
models provide the homogenized structural response from boundary conditions applied
on the macroscale (structural level). The determined so-called knock-down factors (KDF)
map the influence of defects on the material properties. The selected modeling approach
thus enables the analysis of local imperfections at the ply level, detached from the global
structure analysis. Imperfections occurring in a local area of the laminate or global structure
can be analyzed separately using this approach. The validity of the structural response
determined in this way is limited to the considered region. This loss of representativeness in
the narrower sense is compensated by the fact that an unlimited number of analyses can be
performed in advance with the corresponding configuration of the local three-dimensional
model. Within the scope of the publication, only tensile strength considerations based on
a generic laminate are carried out to demonstrate the multiscale approach. For the corre-
sponding analysis, the stress-based Puck failure criterion [30] is used for the computation
of the internal material limit state of the analysis model.

A stress-based failure criterion is a function f of the current mechanical stress state
σ, and the strength properties R of the material. It converts σ into a scalar value, often
referred to as the failure index (FI):

f (σ,R) = FI. (1)

The equation f (σ,R) = 1 specifies a limit state, which describes the mechanical stress
limit of the material in the six-dimensional stress space. The mechanical stress space is
six-dimensional when using the index-based vector-matrix form (Voigt notation). As soon
as f (σ,R) exceeds 1, material failure has occurred. The intersection points of the stress axes
with the limit surface correspond to the strengths under uniaxial loading.

For each vector in the stress space, there is a positive factor fR(σ), usually called
reserve factor, which maps this stress state to the interface of the failure body [30]:

f ( fR(σ), σ,R) = 1. (2)

Computationally more advantageous, though, is the use of the so-called material effort
M, since the reserve factor fR(σ) becomes infinite for ‖σ‖ = 0. The material effort M
converts a vector from the six-dimensional stress space into a scalar. This scalar represents
the utilization coefficient with respect to the strength limits of the material. In a general
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form, the material stress M results from evaluating any failure criterion f (σ,R). For failure
criteria f (σ,R) that are homogeneous from degree k in σ, M is calculated as follows:

M =
1

fR(σ)
. (3)

The determination of M is more demanding if the formulation of the failure criterion
contains different polynomial degrees of σ. The material effort M determines the load
that can still be tolerated by the material until failure [31,32]. Multiplying the stress vector
by the reciprocal of M (a uniform increase of all stress components) results in the failure
load [30]. For example, if the material stress is M = 0.5, 50% of the material load limit
is reached.

The determination of the effective strength properties is done utilizing finite element
(FE) analyses. The solution of nine uniaxial load cases results in stress distributions from
which the effective strength values for the laminate and the individual layers are deter-
mined. Each load case is evaluated using selected stress-based failure criteria with regard
to damage initiation in the individual layers. This involves comparing each laminate with
imperfections with the corresponding pristine reference laminate. Both models (imperfect
and nominal) are created and analyzed with identical FE meshes, boundary conditions, and
loads. Figure 2 outlines the layer-by-layer evaluation of the resulting stress distributions in
the imperfect and reference laminate. According to Equation (3), the finite element with
the highest material effort (Mdef

i ) is identified in each single layer i of the laminate with
imperfection. Using the same failure criterion, the material effort (Mref

i ) of the matching
finite element of the reference laminate is determined in parallel in the same layer i of the
FE mesh. For failure criteria that distinguish between different failure modes (the selected
Puck criterion in this contribution), the material effort is calculated based on the failure
mode, which is likely to initiate material damage first compared to other modes.

Mi =
1

fR(σi)

. . . . . .

. . .

KDFn

KDFi

KDF1
x

z

Cn, Rn, σn, εn Cn, Rn, σn, εn

Ci, Ri, σi, εi Ci, Ri, σi, εi

C1, R1, σ1, ε1 C1, R1, σ1, ε1

σi = Ciεi

f ( fR(σi), σi, Ri) = 1

z

x x

z

Figure 2. Illustration of homogenization approach for KDF parameter estimation based on pristine
(left) and defective model configuration (right), reprinted with permission from Ref. [29], 2020,
F. Heinecke).
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The ratio of these layer-by-layer material efforts (Mref
i and Mdef

i ) equals the reduction
factor (KDF) of the assigned strength parameter for each uniaxial load case [33,34]:

KDFi =
Mref

i

Mdef
i

=
f ref
R (σi)

f def
R (σi)

. (4)

From Equation (4), nine ratios can be obtained for R(+)def
x , R(−)def

x , R(−)def
y , R(−)def

x ,

R(+)def
z , R(−)def

z , Rdef
xy , Rdef

xz , and Rdef
yz for each individual layer. The superscripts indi-

cate whether it is a property of the imperfect (∗)def or the nominal laminate (∗)ref. For
demonstration purpose of the approach, the KDF for tensile strength R(+)def

x will be used
exemplarily as part of selected analysis studies described in Sections 4 and 5.

3. Random Field Analysis

For the derivation of an appropriate approach to model the variety of typical out-of-
plane fiber wrinkle geometries, the so-called random field concept [35] is used within this
contribution. Used for decades in other scientific disciplines already, the approach is also
frequently applied in recent stochastic mechanical analysis studies of CFRP materials, as
already presented in Section 1.2.

From a mathematical point of view, a random field H(x, θ) can be considered as a
random function that characterizes a random quantity at each point x ∈ Ω of a continuous
domain Ω ⊂ Rd, d ∈ N>0. The quantity θ ∈ Θ represents a coordinate in the sample
space Θ. Besides its multidimensional definition, the parameter d usually represents the
considered physical space dimension in real-world problems, namely one, two, or three
dimensional. For modeling aspects within the paper, the random field H(x, θ) represents
the out-of-plane deformation θ due to the wrinkling of a material point in the CFRP material
at a specific spatial position x ∈ R2. In case of a one-dimensional problem, an example
of an undulation within a laminate with help of the random field is shown in Figure 1c.
Furthermore, the deformation of a material point is assumed to vary symmetrically to
a mean value relying on a normal distribution so that so-called Gaussian random field
methods can be used for simulation. One main fundamental characteristic property of a
Gaussian field is the fact that it can be described by its second-order statistics, the mean
function µ : Ω → R, and covariance function Cov : Ω ×Ω → R. For ease of use, the
assumption of centered Gaussian fields with zero mean is made for this contribution.

3.1. Covariance Function

In general, the covariance function is an extension of the covariance matrix defining the
dependency between two or more random variables. The major difference is the definition
of a term describing the spatial relation between two random variables at points x and x′

within the random field H(x, θ). Formally speaking, this can be described by the equation

Cov(x, x′) = s2 · ρ(x, x′) (5)

where s represents the variance of the quantity θ and ρ(x, x′) describes the correlation
model between two points of the random field. While not restricted to a special kind of
correlation function, covariance matrices for a given subset of points in the random field
always need to be positive-definite. An example of a spatial correlation model used in
different disciplines in science and engineering is the so-called Matern-kernel function

ρ(x, x′) =
1

Γ(ν)2ν−1

√
2ν

l
d(x, x′)νKν

(√
2ν

l
d(x, x′)

)
(6)

where ν and l are positive parameters, Γ represents the Gamma function, and Kν the
modified Bessel function. The function d(x, x′) describes a distance function between two
points within a random field based on a metric, e.g., the Euclidean distance. Based on
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Equation (6), a large variety of different kernel models can be implemented, which can
be seen in Figure 3. In the case that ν equals to 0.5, Equation (6) simplifies to a simple
exponential kernel function with

Cov(x, x′) = s2 · e−
∥∥∥ x−x′

l

∥∥∥
2 (7)

which is a specific realization of the Matern kernel and already used in composite waviness
analysis [19,36].

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

distance

ke
rn

el
re

su
lt

ν = 0.25
ν = 0.5
ν = 1
ν = 2.5
ν = 5.0

Figure 3. Exemplary Matern-kernel functions for the different realization of the parameter ν.

3.2. Numerical Discretization

Due to the complex nature of physical problems with many degrees of freedom, the
use of the random field as previously described is neither appropriate nor technically
viable. To overcome this, the key to an efficient analysis with inherent spatial variability is
a numerical discretization scheme that approximates the original random field with a few
random variables. A lot of discretization methods have been published in the literature.
Among other series expansion methods, the Karhunen–Loève expansion (KLE) is frequently
used due to its optimality in terms of global error metrics [37]. It is based on the spectral
decomposition of the autocovariance function (often also referred to as the kernel function)
of the random field [38]. In general, it states that an ordinary second-order random field
can be represented exactly as follows:

H(x, θ) = µ(x) +
∞

∑
i=1

√
λi ϕi(x)ξi(θ) (8)

In Equation (8), µ(x) represents the mean function of the field, and ξi(θ) describes
standard uncorrelated random variables. The parameters λi and ϕi(x) represent the eigen-
values and eigenfunctions of the autocovariance kernel. They can be obtained by solving
the homogeneous Fredholm integral equation of the second kind:∫

Ω
Cov(x, x′)ϕi

(
x′
)
dx′ = λi ϕi(x) (9)

Within this paper, it is assumed the random field describing the fiber waviness has
a zero mean, so the corresponding term µ(x) has no contribution to the random field.
The analytical solution of the integral eigenvalue problem given in Equation (9) is only
applicable for a few autocovariance functions and simple geometric shapes as the definition
of the global domain. Therefore, the eigenvalue problem is solved numerically. This leads to
a truncated, numerical approximation of the KL expansion given in Equation (8) as follows:
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Ĥ(x, θ) = µ(x) +
N

∑
i=1

√
λ̂i ϕ̂i(x)ξ̂i(θ) (10)

In Equation (10), λ̂i and ϕ̂i are now approximations to the eigenvalues λi and eigen-
functions ϕi of length N, respectively. N directly affects the accuracy of the random field
variations to be modeled, but also increase the computational effort of the solution of the
eigenvalue problem. Depending on the physical problem to be solved and given input data,
the number of N eigenvalues is usually in the order of 50–150. A one-dimensional example
of a single random field realization related to the fiber waviness modeling problem with
a different number of eigenvalues is demonstrated in Figure 4. For the estimation of the
eigenfunctions, different numerical algorithms exist in the literature [38].

(a) (b) (c)

Figure 4. KLE-based waviness modeling of a generic CFRP cross-section made up of 8 layers for
three different numbers of eigenvalues. The numerical approximated random field is highlighted in
red. (a) 6 modes; (b) 12 modes; (c) 20 modes.

4. Probabilistic Analysis
4.1. Process Description

Numerical analyses of mechanical problems under the influence of randomly dis-
tributed disturbances can be divided into two categories from the methodological point
of view: intrusive or non-intrusive methods. The former describe the direct coupling of
stochastic random field formulation and mechanical problem formulation to determine
resulting stochastic output quantities [39]. In the following, the latter, non-intrusive method
will be used, which offers advantages from an implementation point of view by separating
the stochastic and the mechanical problem and is frequently used in the literature [40].
Figure 5 shows a corresponding graphic representation of the process implementation as a
base for stochastic analysis of this contribution. As a consequence of the chosen KLE-based
approximation of the waviness random field (Box A and B) and as a prior step of the nu-
merical KDF computation in Box D, a statistical design of experiments is carried out which
generates the different types of random waviness realization from the base field. Due to the
non-intrusive nature, independent analysis between the different waviness field samples
can be conducted. Each of these distinct waviness fields represent the model input for the
deterministic determination of the knock-down factors (Block D). As already mentioned
in Section 2, the numerical computation of the mechanical response under the influence
of fiber waviness is obtained by using black box FE models. Based on the deterministic
KDF results for each sampled waviness field, histograms and distribution functions can
be easily determined for each selected material parameter in the individual layers of the
laminate (Block E).
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Figure 5. Simplified workflow for the estimation of stochastic knock-down factors.

4.2. FEM Modeling

Related to the deterministic computation (Block D) in the stochastic analysis process,
three-dimensional FE models are generated with discretized parts representing the indi-
vidual layers of the laminate through distinct solid elements assigned with unidirectional
material properties. The different plies are connected through coincident nodes neglecting
cohesive zone effects. An example using a three-dimensional FE model approach for two
selected random field samples is shown in Figure 6. In order to represent the existing me-
chanical stress distribution across the layer thickness physically appropriately, a quadratic
deformation approach using 20-node solid elements is chosen in the FE model [41] due
to its favored numerical convergence properties and less sensitivity against shear locking
compared to linear elements.

The initial modeling step is a structured mesh generation of the laminate configuration
using the open-source tool Gmsh [42]. Subsequently, a mesh deformation of each layer
in the material is performed according to the previously generated random field samples
at the laminate midsurface to generate the desired three-dimensional model defects. An
essential advantage in comparison to unstructured mesh methods, which could locally
better resolve the random field, is the usability within stochastic analysis. For the FE-
based determination of the material properties and stresses of the undisturbed laminate, a
structured mesh has to be generated only once initially, so that significant time and resource
savings can be achieved due to the computational scope at hand. For reasons of complexity,
a laminate configuration is chosen in the publication in which the waviness is pronounced
in the interior of the material and tapers off to the two outer layers. In this case, the middle
layer in the laminate experiences the maximum deformation due to waviness.

Finally, using the deformed inner laminate geometry, a linear-static calculation is
performed for the pristine laminate without waviness and defective configuration applied
to each selected material property. According to Section 2, for each property, there exists a
uniaxial loadcase and boundary condition which is to be applied consequently to the model
prior to the numerical calculation of the mechanical response. For tensile strength analysis
in the x-direction as an example in this paper, the corresponding unit loads and boundary
conditions are shown in Figure 7 and Table 1. They enforce a macroscopic uniaxial strain
state within the model.
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Figure 6. Two examples of random field realizations embedded in a reference FE model for a laminate
of the thickness tlam with about 169,000 degrees of freedom. The upper half layers of the laminate are
made transparent for visibility. The color indicates the relative displacements of the ply with respect
to a nominal pristine position.

Table 1. Applied values for boundary conditions to node sets and loads of the model.

x-Direction y-Direction

uyzPI− = 0 uxzPI− = 0

uyzPI+ = uNre f
uxzPI+ = 0

Fx = σ · AyzPI+

σ = 1

xyPI+

xzPI−

Surface Nodes

x y

z

xyPI−

Master Node (Nre f )

yzPI−

xzPI+yzPI+ Fx

Figure 7. Node sets at model boundary and applied loads for tensile loadcase. (Reprinted with
permission from Ref. [29], 2020, F. Heinecke).

Due to the probabilistic and computational needs, the study makes use of the open-
source FE program B2000++ [43] to compute the model deformation and internal mechani-
cal stresses.

5. Results
5.1. Parameters

In the following section, the results of probabilistic analysis studies will be presented,
considering selected parameters and characteristics, which were obtained using the previ-
ously described calculation approach. Within the study, the CFRP material IM7/8551-7 was
selected as reference a for the material properties of the unidirectional layers used within
the numerical model [44]. For the sake of simplicity, the material properties are assumed
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to be constant over the physical domain in each of the plies. Local deviations, which may
occur due to regions with an excess of resin and a high-volume fraction of fibers induced by
the complex waviness distribution and a corresponding non-uniform thickness distribution,
are neglected. This assumption is valid for small to moderate waviness amplitudes but
should be questioned critically in the case of larger waviness amplitudes. As a stacking
sequence, a symmetric laminate with 32 plies as typically used in aerospace is chosen:

[45, 0,−45, 90, 45, 0, 0, 45, 0,−45, 0, 0, 45, 90, 45, 0]S

This configuration is selected from a representative result of a structural optimization
on the structural component level [45,46]. Based on a single-ply thickness of 0.125 mm, the
total thickness of the laminate reference configuration is 4 mm. The length and width of
the reference were initially set to 20 mm symmetrically. For the description of the random
field, a two-dimensional exponential model is used

Cov(x, x′) = s2 · e−
∥∥∥ x−x′

ω

∥∥∥
2 (11)

with the following parameters to calculate the covariance matrix.

ω =

(
ω1
ω2

)
=

(
5
5

)
mm and s2 = 0.25 (12)

The nominal values for the correlation length and stochastic variance of the waviness
amplitude chosen for the numerical studies rely on data from the literature [28]. They are
adopted subsequently in this context according to the initially selected autoclave process
as a manufacturing use case. This is done by the fact that available data were acquired
for materials with a layup orientation of predominantly zero degrees. Since the selected
laminate configuration used in the following numerical studies differs significantly, the
chosen spatial stochastic parameters were initially assumed to be more conservative with
a potential slightly higher amplitude. However, this step needs to be validated by an
extensive experimental campaign which is a remaining issue of this contribution to be
addressed in the future. Combined with the geometrical dimension of the reference model,
a ratio between the correlation length of the random field and the geometrical model size
results in 0.25 for the selected numerical study. For a comprehensive analysis of the stochas-
tic problem description, it is to be addressed whether the ratio has an influence on the
distribution of the resulting KDF. Since this involves further computationally demanding
studies this issue is not taken into consideration in this contribution.

Based on the selected random field model, the numerical approximation of the covari-
ance matrix using the KL approach is done with the software library OpenTURNS [47]. For
the design of experiments as part of the stochastic evaluation process shown in Figure 5, an
ordinary Latin hypercube sampling method [48] is used to sample the uncorrelated normal
variables for the particular eigenfunctions. The method is modified to slightly favor the
first eigenfunctions compared to higher modes.

Due to the high computational requirement, all conducted studies were executed on a
high-performance computer. For computing purposes, the so-called HPC cluster CARA
was used, located at the German Aerospace Center in Dresden, Germany. It comprises
nearly 146,000 physical CPU cores in total, distributed on 2280 compute nodes based on
AMD EPYC 7601 processors. Each node provides 128 GB of physical memory. Due to
the high I/O throughput of the different steps in the implementation of the numerical
approach, only 500 cores assigned with a single stochastic sample computation each were
used within each of the studies.

5.2. Deterministic FE Analysis

As a precedent step of the stochastic analysis, a deterministic analysis of a specific
realization of the random field was made to verify the numerical approach, as explained
in Sections 2 and 3. In Figure 8a, the results of the KDF computation using the model
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parameters of Section 5.1 are shown and highlighted for the ply at half of the laminate
thickness. In addition, Figure 8b shows the corresponding realization of the random field
with parameters described in the previous section.

KDF
0.25 0.8 1.0 1.19

(a)

value of the random field

−1.27 −1.0 −0.5 0.50.0 1.03

(b)
Figure 8. (a) KDF plot of deterministic analysis for Rx loadcase; (b) random field example used for
deterministic analysis.

In Table 2, the required computation time for different process steps of the KDF
computation based on a deterministic analysis of the defective and pristine configuration is
illustrated. As expected, most of the runtime is taken by finite element computation.

Table 2. Computation time.

Computation Step Elapsed Time

FE model generation 31.75 s
Defective FE analysis 120.09 s

Result postprocessing 5.44 s

FE model generation 25.75 s
Pristine FE analysis 112.83 s

Result postprocessing 5.30 s

KDF estimation 10.53 s

Total runtime 311.69 s

In order to evaluate the mechanical problem in a statistically appropriate manner, an
initial convergence study was conducted to find out suitable parameters in terms of the
mesh densities of the underlying finite element model used. Initially, the mesh density
in the x-direction coincident with the load direction of the selected loadcase was varied
for each of the layers of the laminate, leading to numerical model size between 50 and
350 thousand degrees of freedom. Compared to the geometric dimension of the model,
the element edge length in the x-direction lies between 0.4 mm for the finest mesh size and
1.0 mm for the coarsest mesh configuration. Figure 9 shows the results of the computed
KDF for the upper half of the ply of the selected laminate configuration. Due to the
homogenization approach and the waviness parametrization on the midsurface of the
symmetric laminate, the KDF of the lower laminate plies can be assumed to be nearly
equal to the values of the upper laminate layers and, therefore, can be skipped here for
better readability.
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In Figure 9 it can be seen that, except for a few plies, the resulting KDF of the different
layers of the laminate lie in a narrow band irrespective of the position of the ply within the
laminate and the selected mesh density. Since the few plies that are exposed to a larger
variance of the KDF for different mesh densities are not likely to fail at first compared to
others, no significant influence on the proper choice of the mesh density used for stochastic
analysis is detected.
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Figure 9. Convergence of KDF according to mesh refinement in the x-direction.

Furthermore, a clear separation is visible between plies subjected to a large material
degradation because of the low KDF and plies with a small reduction of the tension strength
property due to high KDF. The latter correlates with the ply angle coincident with the load
direction of the loadcase, which results in a high resistance and a KDF of nearly 1, which
means almost no degradation. It should be noted at this point that the convergence study
was only conducted for one parameter configuration of the huge amount of parameter sets
of possible random field realizations.

Additionally, a second study with respect to a mesh refinement in the laminate thick-
ness direction was performed. Figure 10 shows the results for this evaluation. In the
numerical study, the number of elements through the thickness of each ply of the laminate
was defined beginning from 1 as coarse mesh to 6 elements, leading to a fine discretization.
The maximum number of elements yields almost 350,000 elements.
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Figure 10. Convergence of KDF according to mesh refinement in the z-direction (layer thickness direction).

In accordance with the result shown in Figure 9 before, the results in Figure 10 reveal a
similar behavior. As a conclusion, a lower mesh density is sufficient for use in the stochastic
analysis due to a marginal influence of the mesh density on the failure of the weakest plies
with a low KDF. The circumstance that only a random field was evaluated exemplarily
can be weakened because the large amplitude in the deterministic model may represent a
configuration at the boundary whose occurrence is less likely compared to other waviness
field realizations based on the random field model.

5.3. Probabilistic Analysis

In the following section, the results of numerical studies carried out with a focus on
particular stochastic effects will be presented.

5.3.1. Statistical Distribution of KDF across Layers

Based on the deterministic results, the actual probabilistic analysis was done. Since
the physical problem shows less sensitivity against the spatial resolution of the laminate
model, a coarser mesh model was therefore selected which also reduces the computational
effort in the stochastic procedure. To get statistically meaningful results, a huge number of
independent samples need to be evaluated. As a random sampling algorithm, the Latin
hypercube sampling method was used with 5000 samples in total. The number of input
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variables is equal to the number of decoupled standard normal distributions as a result of
the KLE approach and was set to 50 in the stochastic analysis procedure. Figure 11 shows
the mean-averaged KDF values of all samples with variance attached.
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Figure 11. Distribution of mean of KDF for Rx within the selected laminate configuration with
related variances as second bar element of the stochastic results. For each layer, the ply angle is
additionally printed.

From Figure 11, a fully symmetric result with respect to the laminate center plane can
be recognized, which was expected through the specific application of boundary conditions
in the homogenization approach and applied loads as well as the chosen laminate stacking
sequence. Complementary to Figures 9 and 10, it can be seen that most plies with an
orientation coincident with the load direction are not affected by undulations for a huge
number of configurations due to a high mean KDF and low variance.

In Figure 12, the full histograms for each layer above the midsurface in the laminate are
depicted. While the major fraction exhibits a normal or Weibull-like distribution, some of
the plies show a complex dispersion of the KDF with a larger variance and a concentration
of higher values approaching 1, which means no degradation. An initial analysis of the
available results using the Puck failure criterion, which distinguishes between fiber and
matrix fracture, indicates a complex failure mechanism. This is a crucial subject to be
analyzed in future studies.
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Figure 12. Distribution of KDF histograms for Rx at specific layers within selected laminate configuration.

5.3.2. Relation between KDF and Waviness Parameters

Due to the limited expressiveness of the statistical results, it is of interest whether a
simple parameter reduction of the complex waviness geometries is sufficient to describe the
material behavior in a more comprehensible way. The reason for this is the assumption that
failure initiation is closely related to large local gradients or amplitudes in the waviness
geometry. Studies in the literature [11,17,19,49] already have shown such a relation for
specific two-dimensional waviness parametrizations. However, the question arises if
that approach can be easily transferred to the three-dimensional problem setting of this
contribution. According to this issue, two exemplary metrics were selected for further
consideration, and are evaluated on each ply:

1. Ratio of waviness amplitude to laminate thickness;
2. Maximum curvature in the fiber orientation direction.

It should be mentioned that the former metric is only evaluated once on the reference
random field at the midsurface of the laminate, where the latter metric takes also the
position of each ply in the laminate into account. Both metrics are evaluated for each
random field sample in the probabilistic analysis study.

Ratio of Waviness Amplitude to Laminate Thickness

For the first selected metric, the maximum and minimum of the random field H(x, θ)
are estimated. The distance between the minimum and maximum is then evaluated as the
amplitude of the field. Compared to trigonometric waviness parametrization as frequently
applied in the literature, where the amplitude is one of the input parameters of the model,
the amplitude in a random waviness field can only be estimated at runtime. Fortunately,
this does not lead to a large increase in run-time. After having the amplitude computed, it
is scaled with the thickness tlam of the laminate, resulting in a value range between zero
and one that is named in the following as ratio r:

r =
max(H)−min(H)

tlam
(13)

In Figure 13, the different KDFs for each ply dependent on the previously explained
amplitude metric are plotted. For a better visual analysis, plies with the same orientation
are colored accordingly. The computed ratios lie in the range between 0.173 and 0.706.
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Figure 13. Scatter plot of waviness ratio compared to resulting KDF for property Rx. Plies that share
the same fiber orientation angle are colored equally.

In addition, Figure 14 highlights three exemplary waviness field samples with an
almost equal ratio (r ≈ 0.3) but a huge difference in the resulting KDF at the midsurface
ply in the laminate.

Figure 14. Selection of three exemplary random fields with a similar waviness ratio at the midsurface
of the laminate.

Without a claim of completeness, some first observations can be made from the figures:

• Only a minor ply fraction of the full laminate is subjected to a large decrease (>30 per-
cent) of the KDF for higher waviness ratios.

• A large decrease of the KDF occurs only on plies with orientation angles of zero
degrees and 45 degrees.

• For all different ply orientations except zero degrees, a similar result pattern (decreas-
ing, constant within some range) can be observed.



J. Compos. Sci. 2022, 6, 353 18 of 22

• A large reduction due to a low KDF can already be identified for small to moderate
waviness ratios (0.2 < r < 0.3).

• Even for moderate waviness ratios (r ≈ 0.4) there is a large remaining scatter in the
KDF for different random field samples between an unaffected resulting material
behavior (KDF ≈ 1.0) and a large degradation of the tensile strength property.

At this point, it should be mentioned that the observations only correspond to the
selected laminate stacking sequence unless proven for other laminate configurations. For a
different sequence, the results may be completely different.

To undergird these first visual inspections from a statistical point of view, correlation
coefficients are derived from the scatter results. As representative methods, Spearman’s
rank and Pearson’s correlation coefficients [50] are used to assess the relationship between
the result variables. Figure 15 shows the correlation results for both selected coefficients.
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Figure 15. Correlation coefficients for tensile KDF related to waviness ratio.

From the figure, a weak correlation can be drawn for most of the KDFs for each
ply within the laminate. On the other hand, the KDF of plies with an orientation angle
of 45 degrees near the midsurface of the laminate exhibit a moderate correlation with a
negative minimum of −0.49.

Maximum Curvature in Fiber Orientation Direction

In the second step, the maximum fiber curvature is analyzed as a metric. The determi-
nation is realized by an initial coordinate transformation of the discretized mesh of random
field parallel to the fiber direction of each laminate ply and a numerical computation of
the second derivative of the local field value by using a finite-difference approach. In
Figure 16, the results for this metric are displayed. Compared with Figure 13, it shows
similar results so that even for small curvatures in the waviness field, the resulting KDF
lies in a larger range.
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Figure 16. Scatter plot of maximum curvature in fiber orientation direction compared to resulting
KDF for Rx. Plies that share the same fiber orientation angle are colored equally.

Finally, Figure 17 shows the results for the corresponding Spearman’s rank and Pear-
son’s correlation coefficients. Compared with the waviness amplitude metric, similar
quantitative values can be recognized with a slightly larger maximum negative correlation
coefficient of about −0.51.
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Figure 17. Correlation coefficient for tensile KDF related to fiber orientation aligned
maximum curvature.

Summary of the Metric Assessment

According to the results shown previously, no simplified relationships between the
preselected metrics—amplitude-to-thickness ratio and maximum fiber curvature—as rep-
resentative parameters for the stochastic waviness geometry and the resulting material
properties described by the KDF can be inferred. The remaining scatter estimated from
the results may, therefore, have further unknown manifold origins. One crucial aspect
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to be mentioned here is the choice of the Puck failure criterion, which might not be able
to describe the complex material failure comprehensively. On the other hand, the large
scatter can be accompanied by a higher-dimensional correlation structure in the result data
induced by the complex geometrical pattern of the waviness field. For a proper assessment,
sophisticated geometrical metrics would be required as part of a separate detailed analysis
of the random field. Instead of maximum amplitude, all local extreme points may be taken
into account, for instance. Yet, numerical gradient evaluations as key ingredients that
seem to be reasonable for this purpose may suffer from robustness issues. A promising
alternative approach is the so-called topological data analysis [51]. However, this hampers
the ease of use of a spatial numerical defect assessment in industry-related scenarios, since
this requires accurate measurement techniques to capture complex waviness formations in
CFRP materials used for validation of the developed numerical approach.

6. Conclusions

This paper proposes a stochastic approach for the strength assessment of spatial out-
of-plane fiber waviness defects in composite materials based on high-fidelity numerical
models. The methodology relies on a homogenization approach at the laminate level, which
is able to resolve the complex stress distribution due to fiber waviness. The stochastic
waviness model relies on the Gaussian random field concept supplemented by a Karhunen–
Loève expansion method as a numerical approximation. The proposed methodology and
results contribute to deriving valid decisions in terms of repairing and inspection processes
in future industrial scenarios applied to physically built composite structures. For a ma-
ture use in this context, intensive investigation on spatial distributions and amplitudes of
waviness defects supported by optical measurement techniques are a key need that are the
authors aware of. From a numerical point of view, different aspects need to be analyzed
further. One crucial aspect is the analysis of the complex failure mechanism which led to a
larger variance for partial result data, which was likely induced by the selected Puck failure
criterion. For a robust derivation of the main failure aspects, different criteria for CFRP
materials need to be analyzed additionally. Furthermore, there is still a huge computational
effort to assess proper statistical properties for the considered material parameters, which
is to be highlighted. Due to the high number of stochastic parameters, common surrogate
models are likely to fail with the given input sample data and result distributions. Ap-
proaches such as [52] for use in higher dimensions may be promising candidates but need
to be analyzed in detail in the potential nonlinear context of this contribution.

Regardless of the accuracy of such types of surrogate models, sampling methods used
for input generation in the stochastic analysis are only able to cover a small fraction of
the possible parameter space due to the time-consuming FEM-based evaluation process
and finite computational resources. Analytical methods to efficiently compute the stress
distribution within orthotropic CFRP materials are an essential key for the efficient use of
the spatial stochastic model. However, such approaches still do not exist for use in a generic
three-dimensional physical problem such as the one analyzed in this paper. Therefore,
the determination of large real-world inspection data as stochastic input still remains a
necessary step for proper and efficient use of stochastic numerical analysis in assessment
processes of manufacturing-induced material defects. The same also holds for the validation
of the achieved numerical results based on a suitable experimental strength assessment.
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