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Abstract: The purpose of the present study is to offer an optimal model to predict the tensile index
of the paper being consumed to make veneer impregnated with different weight ratios of modified
starch (from 3.18 to 36.8%) to urea formaldehyde resin (WR) containing different formaldehyde to
urea molar ratios (MR, from 1.16:1 to 2.84:1) enriched by different contents of silicon nano-oxide (NC,
from 0 to 4%) using multiple linear regression (MLR) and adaptive neuro-fuzzy inference system
(ANFIS) and compare the precision of these two models to estimate the response being examined
(tensile index). Fourier-transform infrared spectroscopy (FTIR) and transmittance electron microscopy
(TEM) were also used to analyze the results. The results of studying the adhesive structure using
FTIR analysis showed that as the WR increased to the maximum level and MR increased to the
average level (3%), more ether and methylene linkage forms due to cross-linking. TEM analysis also
indicated that if an average level of silicon nano-oxide is applied, there will be more cross-linking due
to the more uniform distribution and suitable interactions between the adhesive and nanoparticles.
The modeling results showed that the ANFIS model estimates have been closer to the actual values
compared to the MLR model. It can be concluded that the model offered by ANFIS has a higher
potential to predict the tensile index of the paper impregnated with the combined adhesive of UF
resin and modified starch. However, the MLR model could not offer a good estimate to predict
the response. According to the preferred approach to predict the most effective property of resin
coated paper, modelling would be useful to the research community and the results are beneficial in
industrial applications without spending more cost and time.

Keywords: impregnated paper; tensile index; modified starch; nano silica; urea/formaldehyde resin;
ANN; MLR

1. Introduction

The most common method to decrease formaldehyde release in wood products is to
decrease the formaldehyde to urea molar ratio. However, it decreases the cross-linking
and resin efficiency according to its mechanical strength consequently. Hence, in addition
to decreasing the molar ratio, the combination of UF resin with other bio-based polymers
such as starch can be used in the synthesis process. Using oxidized starch together with
urea can make a hybrid system to produce wood composites without any formaldehyde
release [1], while the bonding strength of the adhesive [2] and its strength improve [3,4].

The combination of nano-composite technology and decorative paper impregnating
is a well-known way to modify and improve the properties of impregnated paper-based
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veneers. Based on the studies conducted, the presence of Si–O–Al and Si–O–Si bonds was
confirmed due to the presence of silicon nanoparticles in the starch polymer chain, while
thermogravimetry analysis showed an improvement of the dimensional stability of starch
adhesive, and a partial addition of the modified starch to resin improved the bonding
strength in the plywood [5]. Nanoparticles are used widely to improve the mechanical,
surface and visual properties of coatings, because many pores and gaps are filled [6]. Due
to the amorphous nature of UF resin, the crystallinity of nanoparticles can decrease so
that UF-nanofiller systems form [7]. According to Zheng et al. and Shi et al. [8,9], it
became evident that adding nano-silica could improve the mechanical properties of resin.
In addition, many of these nano-oxides have improved the resistance to abrasion and
self-cleaning of some paints [9]. Therefore, it can be expected that nanomaterials can be
also used as modifiers of cellulose and paper veneers [10]. However, due to their high
surface energy, these materials tend to agglomerate [11]. It was showed that the usage of
cellulose nanocrystals could improve mechanical properties such as tensile strength due to
compatibility of nanoparticles with matrix [12,13].

To examine the effect of different independent factors on the responses being examined,
different traditional and modern methods can be used. The regression analysis is used as
a traditional tool to produce the model and is usually used to describe the quantitative
relation between one response variable and one or more dependent variables by fitting
the linear equation with the observed data [14]. The multiple linear regression (MLR)
is the most common form of the linear regression analysis as a statistical method. MLR
analysis is usually used to find the related coefficients in the model equations. The precision
and correctness of the regression models improve using the MLR, while they decrease as
the independent variables increase. Meanwhile, nonlinear dynamic modeling techniques
such as ANNs and ANFS are powerful tools to solve complicated problems, control the
quality, extract data and solve linear and nonlinear multivariate regression problems [15].
ANFIS is a scheme able to train ANNs to derive IF-THEN fuzzy rules using suitable fuzzy
membership functions [16]. The advantage of ANFIS compared to ANN is the production
of IF-THEN rules that can be described linguistically. The models offered by ANFIS include
the relation between the input and output data through releasing the fuzzy linguistic rules.
However, ANNs work in a form of the related trained weights, while they consume more
time [17].

Many researchers have evaluated some basic engineering properties of wood com-
posites using different mathematical techniques including linear/nonlinear regression,
artificial neural network, genetic programming, etc., and have shown that these methods
are valuable tools to solve different problems in composite material engineering applica-
tions and optimizations [18–25].

Two saturation and impregnated stages are performed to produce melamine-veneers.
Due to the high price of melamine formaldehyde, only the UF resin is used in the first stage.
Then, MF resin is used for final coating [26]. Paper sheets impregnated by thermoset resins
are usually used to improve the physicomechanical properties, decrease formaldehyde gas
emission and provide surface protection of wood-based composite products such as MDF
and particleboard [27], while veneer can also emit formaldehyde gas.

So far, no study has been conducted on the possibility of using modern optimization
methods to predict the properties of impregnated paper-based veneers. Hence, due to some
scientific reports on the applicability of different optimization methods in other contexts
of wood products, it is necessary to apply a reliable method to estimate the strengths of
paper-based veneer strengths quickly and correctly. In this study, MLR and ANFIS are
used to provide the test specimens using the second-order design. Hence, the purpose
of the present study is to develop a suitable model to estimate the tensile index of paper
impregnated with the UF resin made with different formaldehyde to urea molar ratios
(MR) containing different weight ratios of the modified chemical starch to UF resin (WR)
mixed with different nano-silica percentages.
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2. Materials and Methods
2.1. Nano Silica

Silicon nano-oxide was prepared from Merck Co. (Darmstadt, Germany) with the
specific surface area 210 m2/g, purity 99.5% and average dimensions of particles 20 nm.

2.2. Preparation of the Starch Adhesive

Natural corn starch was used to make the natural adhesive. After loading 20 g starch,
40 mL distilled water and 2 g Sodium hypochlorite (NaOCl, equivalent to 1.25 cc) in a
100 cc beaker and putting in on a heater at the temperature 30 ◦C, the mixture was mixed
for 30 min as the pH was stabilized at 9.5 (if necessary, NaOH 0.5 molar was added). After
mixing the mixture well and neutralizing its medium using sulfuric acid 20% (H2SO4) and
mixing it at the temperature 30 ◦C for 10 min on the mixing heater, the resulting mixture
was put into the falcons and was centrifuged for 20 min at 2000 rpm to separate its water.
Afterwards, when the mixture was removed from the centrifuge, the extra water was
removed and the starch deposited in the falcons was washed by distilled water for several
times. Using the Buchner funnel equipped with a filter paper and vacuum pump, the extra
water was removed and it was dried at the room temperature.

After putting the beaker containing 10 g modified starch inside the bain-marie bath,
20 mL HCl 0.5 mol (hydrochloric acid 2%) was added to the mixture drop by drop with
a pipette. After increasing the bath temperature gradually and stabilizing the mixture
temperature in the beaker at 65 ◦C and mixing the mixture, the adhesive became thicker in
12 min before it was thixotropic. When the mixture became thick and after removing the
beaker containing the adhesive solution from the bath (pH = 1.3), the reaction mixture was
neutralized by the solution NaOH 0.5 mol (pH = 7–7.5). After neutralizing it, the adhesion
of the adhesive was evident visually and sensually. To achieve a suitable concentration,
the temperature of the neutralized adhesive reached 90–95 ◦C for 10–15 min using the
bain-marie bath. Finally, the adhesive mass was put in the freezer for 24 h to be frozen
to grind it, increase its durability and facilitate its suitable distribution when adding to
the reaction medium at the time of UF resin synthesis and after getting dried in the room
temperature. After putting the mixture in the freeze dryer and freeze-drying it for 24 h, the
starch adhesive was ground well in a ball mill for 30 min at 260 rpm. The main physical
and chemical properties of the used materials are illustrated in Table 1.

Table 1. Main properties of chemical used materials.

Material Properties

Nano silica Specific surface area: 210 m2/g, purity 99.5%, mean dimensions 20 nm
NaOCl Molecular mass: 74.44 g/mol, density: 1.11 g/mL, purity: 15%, pH: 11
NaOH Molecular mass: 39.99 g/mol, density: 2.13 g/mL, purity: 99.5%, pH: 13
H2SO4 Molecular mass: 98.078 g/mol, density: 1.834 g/mL, purity: 98.5%
HCl Molecular mass: 36.46 g/mol, density: 1.2 g/mL, purity: 98%, pka: −6.3
Urea Molecular mass: 60.06 g/mol, density: 1.33 g/cm3, purity: 40%, pH: ≈7
Formaldehyde Molecular mass: 30.03 g/mol, density: 0.81.53 g/cm3, purity: 37.5%, pH: 2.5

2.3. Preparation of the UF-Starch Adhesive

Based on the design of experiment (DOE) used (Table 2) and to distribute Nano silica
uniformly in UF resin, since it was not possible for nanoparticles to distribute in resin during
the ultrasonic process due to the high temperature and the possible resin coagulation, a
certain amount of nano-silica was weighed first and added to formalin (pH = 3). After
30 min at the frequency 70 Hz, a suitable distribution of particles was achieved in the
formalin solution. According to the formaldehyde to urea molar ratios inserted in the DOE,
formaldehyde (according to formalin concentration percent 37.5%) and urea (according to
the purity 47%) were weighed to make five types of UF resin. In all five different molar
ratios, all first-stage urea was added to the system in proportion to starch to urea weight
ratio, while the second-stage urea was replaced by the modified starch and added to the
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reaction medium at the end of the synthesis period. A three-necked flask equipped with
a condenser, alcoholic thermometer and pH-meter was used. Immersing the flask in the
bain-marie bath containing herbal oil and stabilizing its temperature at 30 ◦C, the whole
formalin containing nano-silica and then the first part of urea were loaded in the flask while
being mixed by a magnetic stirrer. The complex temperature and pH of the compound
was 7 at 30 ◦C. Adding several drops of NaOH 0.5 mol with the concentration 20%, the
compound’s pH increased to 8–8.5. Increasing the reaction temperature to 90–95 ◦C, the
mixture was mixed for 15 min. Increasing the temperature from 30 to 90–95 ◦C, pH was
measured two to four times, so that it decreased to 6–6.5 while mixing and heating the
mixture. At this temperature, adding some drops of sulfuric acid 1% (to decrease the time
it takes for the pH to be equal to 4–4.5 more quickly) and in 15 min, a homogeneous single-
phase solution was created. Next, the condenser was removed from the flask and two other
blocked necks were opened in order that the extra water evaporated at the temperature
90–95 ◦C for 10–20 min. Afterwards, since the pH was acidic, adding some drops of NaOH,
the mixture was neutralized (pH = 7–7.5). At this pH, the reaction complex was remixed
for 20–30 min at 60–70 ◦C and it was concentrated. Then, after putting the mixture inside
a beaker and putting in a cold bath and decreasing its temperature to 50–60 ◦C, the resin
mixture temperature decreased to 20–25 ◦C. The compound’s pH showed a weak basic
medium (adding a little NaOH if necessary). Then, based on the DOE, the starch replaced
by the second stage urea was added to the mixture and was put on the mixing heater
for 30 min at the temperature 55–60 ◦C in order to ensure that the starch was distributed
uniformly and dissolved completely. Afterwards, the UF-starch adhesive was dried at
the environment temperature. Finally, 2–3 mL ammonia 20% was added to the adhesive
solution to stabilize it.

Table 2. Experimental design and response (tensile index, T.I.).

Run
Coded Values Actual Values

T.I.
x1 x2 x3 MR WR. NC

1 1.68 0 0 2.84 20 3 42
2 1 −1 −1 2.5 10 1.5 26.1
3 −1.68 0 0 1.16 20 3 28.6
4 0 1.68 0 2 36.8 3 47.7
5 −1 −1 −1 1.5 10 1.5 10
6 0 −1.68 0 2 3.18 3 22
7 0 0 −1.68 2 20 0.477 11.1
8 −1 −1 1 1.5 10 4.5 30.8
9 −1 −1 −1 1.5 10 1.5 12.5

10 0 0 −1.68 2 20 0.477 11.2
11 0 0 1.68 2 20 5.52 26
12 −1 1 1 1.5 30 4.5 38.4
13 −1 −1 −1 1.5 10 1.5 13.7
14 1 1 1 2.5 30 4.5 35.1
15 −1.68 0 0 1.16 20 3 22.8
16 −1 1 −1 1.5 30 1.5 30
17 0 0 −1.68 2 20 0.477 10.1
18 −1 1 −1 1.5 30 1.5 32.2
19 −1 −1 1 1.5 10 4.5 30
20 −1 1 −1 1.5 30 1.5 27.9
21 0 1.68 0 2 36.8 3 48.9
22 0 −1.68 0 2 3.18 3 26.4
23 0 1.68 0 2 36.8 3 47.5
24 1 −1 −1 2.5 10 1.5 25.6
25 1 −1 −1 2.5 10 1.5 25.6
26 0 −1.68 0 2 3.18 3 28.9
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Table 2. Cont.

Run
Coded Values Actual Values

T.I.
x1 x2 x3 MR WR. NC

27 1 1 −1 2.5 30 1.5 40.5
28 0 0 0 2 20 3 31.6
29 0 0 0 2 20 3 31.2
30 0 0 0 2 20 3 30.5
31 0 0 0 2 20 3 31
32 −1.68 0 0 1.16 20 3 21.6
33 −1 1 1 1.5 30 4.5 40.8
34 0 0 0 2 20 3 31
35 1 1 1 2.5 30 4.5 40
36 1 1 1 2.5 30 4.5 40.2
37 −1 −1 1 1.5 10 4.5 16.2
38 −1 1 1 1.5 30 4.5 40.6
39 0 0 0 2 20 3 30.2
40 1 −1 1 2.5 10 4.5 32.6
41 0 0 1.68 2 20 5.52 27.3
42 1 −1 1 2.5 10 4.5 30.6
43 1 1 −1 2.5 30 1.5 42
44 1 −1 1 2.5 10 4.5 33.2
45 0 0 1.68 2 20 5.52 25
46 1 1 −1 2.5 30 1.5 41.7
47 1.68 0 0 2.84 20 3 35.7
48 1.68 0 0 2.84 20 3 34.3

2.4. Characterization of Complex by FTIR and TEM

To examine the changes in the surface functional groups, Fourier-Transform Infrared
(FT-IR) spectroscopy analysis was performed using the pelletized specimens. About 100 mg
of potassium bromide (KBr) was mixed with 2 mg of the adhesive samples changed into
flour with a perfect coagulation. The prepared specimens were scanned using a Thermo
Scientific Nicolet 6700 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
in the wave number range from 600 to 4000 cm−1.

The Transmission Electron Microscopy (TEM) allows one to understand the internal
structure, spatial distribution and distribution of nanoparticles inside the polymer matrix
qualitatively and indicates the defective structure directly and visually. The analysis was
performed by the transmission electron microscope at 80 kV, JEOL JEM-1230. The TEM
specimens with the thickness 50–70 nm were prepared by ultramicrotomy of the specimens
capsulated in the epoxy matrix.

2.5. Preparation of the Impregnated Paper Test Specimens

First, the special papers consumed in the industry of melamine veneer production
with the density 60 g/m2 and the dimensions 20 cm × 30 cm were impregnated in an
experimental coater by the adhesive with the concentration 50% based on Table 2. After
impregnating them, the veneers were exposed to thermal treatment in an oven for 5 min at
140 ◦C. After 72 h air conditioning in the air conditioning room, the test specimens were
prepared with the dimensions 25 mm × 180 mm with three replicas for any treatment by a
cutter. The machine direction tensile strength of the specimens (Equation (1)) was obtained
in the tensile strength tester (Gotech GT-7010-China, D2EP micro-computer tensile strength
tester) equipped with the load cell 5 kN and the loading speed 25 mm/min to the time of
failure based on the TAPPI T-494om-01 Standard [28]:

T =
F
b

(1)

where, F is the force applied and b is the specimen’s width.
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After determining the tensile strength, the tensile index of the specimens was com-
puted by the following equation:

TI = 1000
(

T
R

)
, N·m/g (2)

where, T is the force applied divided by the specimen’s width (F/b, tensile strength) and R
is the specimen’s grammage after being impregnated.

2.6. Design of Experiment (DOE)

The specimens were prepared as the factorial test design according to the independent
variables being used including F to U molar ratio at five levels (x1: 1.16:1, 1.5:1, 2:1, 2.5:1
and 2.84:1), the modified starch to urea weight ratio at five levels (x2: 3.18:96.82, 10:90,
20:80, 30:70 and 36.8:63.2) and silicon nano-oxide percentage at five levels (x3: 0.477, 1.5, 3,
4.5 and 5.52%, based on resin dry weight) and the dependent variable “tensile index”. For
this purpose, the Design of Expert Software Ver. 13 was utilized using the response surface
methodology (RSM).

2.7. Modeling
2.7.1. The Multiple Linear Regression (MLR) Model

The MLR model is a technique to model the linear relation between two or more
variables. MLR is based on the least squares. The model is fit in a way that the sum of the
squares of differences in the values observed and predicted is the least [29]. Equation (3)
offers an MLR model:

Y = a1X1 + a2X2 + a3X3 + · · ·+ anXn + C (3)

where Y is the dependent variable, X1, X2 and X3 are independent variables and a1, a2, a3
are the regression coefficients and C is the intercept.

2.7.2. The Adaptive Neuro-Fuzzy Inference System (ANFIS) Model

ANFIS is a neuro-fuzzy system connecting the fuzzy logic system to the neural network
and making an intelligent hybrid system and benefiting from both the fuzzy logic and
neural network in a way that its efficiency is proved in many of the very precise models [30].
Using a given input and output data set, the ANFIS toolbox function makes a fuzzy
inference system (FIS) in which the membership function parameters are verified using
the back-propagation algorithm alone or combined by a least squares type of the hybrid
method. The neuro-adaptive learning method works similarly to the neural networks and
provides a training method for fuzzy modeling.

3. Results and Discussion
3.1. Statistical Analyses

Table 2 shows the results of the paper tensile index as the output of applying the
production conditions of the impregnated paper. Table 3 can interpret the sequential model
sum of squares as a summary of some models being used. The model guessed by the
software being used, i.e., quadratic vs. 2FI, has the sum of squares equal to 1070, the df 3,
the mean squares 355, F-value of 40.2 and p-value < 0.0001. The quadratic vs. 2FI model was
chosen due to the p-value < 0.05% meaning that the model is significant. The lack of fit of
test is defined as an inaccuracy test with the effect of the p-value and F-value results. Then
according to sources, the software suggested a quadratic model with the sum of squares
67.5, df 3, mean squares 13.5, F-value 1.66 and p-value 0.172. A quadratic source was chosen
because it had the highest p-value or >0.05 (5%). Based on the summary statistics which is
a summary of some models based on the R2 value, the significance is quadratic with the
standard deviation 2.97, R2 0.929, adjusted R2 0.912, predicted R2 0.884 and Press 546. The
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data suggested by the model have requirements based on the standard deviation and have
a low press. However, the R2, adjusted R2 and predicted R2 have high values.

Table 3. Sequential model fitting for tensile index.

Sequential Model of Squares

Source Sum of
Squares Df Mean

Square F-Value p-Value

Mean vs. Total 4.31 × 104 1 43,100
Linear vs. Mean 3040 3 1010

2FI vs. Linear 255 3 84.9 27 <0.0001
Quadratic vs. 2FI 1070 3 355 2.48 0.0741

Cubic vs. Quadratic 26.1 4 6.53 40.2 <0.0001 Sug.
Residual 310 34 9.11 0.717 0.586 Alia.

Total 47,800 48 997

Lack of Fit Tests

Linear
2FI

1.39 × 103

1.13 × 103
11
8

126
142

15.5
17.4

<0.0001
<0.0001

Quadratic 67.5 5 13.5 1.66 0.172 Sug.
Cubic

Pure error
41.4
268

1
33

41.4
8.13 5.09 0.0308 Alia.

Model Summary Statistics

Std. d. R2 Adjusted
R2

Predicted
R2 Press

Linear 6.13 0.648 0.624 0.574 2000
2FI 5.85 0.702 0.658 0.621 1780

Quadratic 2.97 0.929 0.912 0.884 546 Sug.
Cubic 3.02 0.934 0.909 0.861 651 Alia.

Table 4 shows the ANOVA results to determine the significance of the design used.
The ANOVA results show that the input linear parameters (x1, x2 and x3) significantly
affect the tensile index (p < 0.01). It should be noted that the increase in the tensile index
is due to the increase in MR, MR and an average level of NC. Based on Table 3, it is
observed that the quadratic model used is significant and can be used in the optimization
process by the artificial neural network models. Meanwhile, the interactions of x1x2, x1x3
and x2x3 together with the square effects of each variable x2 and x3 (x2

2 and x3
3) have

also significantly affected the response according to the p-values. Among different effects
described in the Table and based on the F-value, it is observed that the direct effect of x2
has the highest effect (with the value 210) on the level of the response being examined. The
non-significance of the lack of fit value also shows the suitable fit among the data.

Table 4. Response model and statistical parameters obtained from ANOVA for central composite design.

Source Sum of Squares Df Mean Squares F-Value p-Value

Model 4.36 × 103 8 545 62.2 <0.0001

x1-MR 591 1 591 67.5 <0.0001
x1-WR 1.84 × 103 1 1.84 × 103 210 <0.0001
x3-NC 609 1 609 69.5 <0.0001

x1x2 39.9 1 39.9 4.56 0.0391
x1x3 151 1 151 17.3 0.000171
x2x3 63.5 1 63.5 7.26 0.0104

x2
2 195 1 195 22.3 <0.0001

x3
2 573 1 573 65.4 <0.0001

Residual 341 39 8.76
Lack of Fit 73.1 6 12.2 1.5 0.209
Pure Error 268 33 8.13
Cor Total 4.7 × 103 47
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3.2. Characterization Analysis

The FTIR spectrum of the (500–4000 cm−1) natural starch (NS), modified starch (MS),
combination of UF resin and modified starch MR1.5WR10 (F to U molar ratio and starch
to urea weight ratio equal to 1.5 and 10%, respectively) and combination of UF resin and
modified starch MR2.5WR30 (F to U molar ratio and starch to urea weight ratio equal to
2.5 and 30%, respectively) are given in Figure 1. The band 3000 cm−1 to 3800 cm−1 has
intensified as WR and MR increased, showing the presence of more free hydroxyl groups
due to the scission of chain in the alkaline oxidation process. Hence, this occurrence can
be due to the reaction of NaOH with OH-groups forming the –O−Na+ group and rupture
of hydrogen bond structure supplying the stability of the starch molecule and exposing
the OH-groups [31]. When starch is treated, the intensity of the OH– absorption peak near
3285 cm−1 decreases due to the decrease in OH-content after oxidation. However, the peak
intensity of the UF-MS mixture has increased due to the increase in the MR. Furthermore,
in this peak range showing the overlapping of the modified starch OH-groups and N-H
stretching of primary amide in the UF resin, it is observed that as U is replaced by more
modified starch, the peak intensifies, showing that even as the modified starch weight ratio
increases, higher U to F molar ratios can be used. It means that even using higher levels
of the modified starch, the peak intensity decreases as the U to F molar ratio increases due
to the formation of more mono-, di-, and tri-hydroxymethyl urea [32] that interacts more
with aldehyde groups chemically. Hence, it can be expected that as the starch-weight ratio
increases in resin containing more urea, better properties can be expected from the adhesive.

The double peak in the range from 2925 cm−1 to 2880 cm−1 belonging to the symmetric
and asymmetric stretching vibration of –CH2 and –CH has increased the –CH and –CH2
polarity, increasing the WR and MR in the presence of -O−Na+ with respect to the increment
in absorption peak. When decreasing the WR and MR, the –CH and –CH2 absorption peaks
decrease. The weak C–H bond is related to the increase in the U to F molar ratio as the WR
decreases. Changes in this peak related to starch, modified starch and adhesive containing
a low F to U molar ratio and weight ratio follow a similar trend. However, as the WR ratio
and MR increase, the peak intensifies that can be related to the increase in the ether and
methylene linkage in the coagulated adhesive and the resulting cross-linking. Therefore, it
can be said that using more starch and increasing the U to F molar ratio, polycondensation
can occur due to copolymerization and partial intermolecular hydrogen bonds.

In the band 1645 cm−1 belonging to the stretching vibration band of C=O group of
amide I and II and amide I N-H scissors [33], it is observed that the peak intensity has
increased after the oxidation, showing that more aldehydes are formed in the oxidation
process. Simultaneously, as more modified starch is consumed, the peak intensity reaches
the maximum level as the MR is maximized. According to the curve (b), it is observed that
in practice not only MR but also the increase in the WR have increased the aldehyde group
in the adhesive. Hence, the disappearance of stretching of the specimens with more U to F
molar ratio shows the possibility of the reaction between aldehyde and carboxyl groups on
the amylose and amylopectin chain of the oxidized starch and –NH and –NH2 groups to
form the UF-MS adhesive through the polycondensation reaction [2]. The overlapped peaks
at 1527 cm−1 formed in the specimens containing the modified starch are related to the N-H
bending vibrations of amide II intensified as the MR has increased. However, no new peak
is observed in the modified starch after the oxidation and only the peak has intensified as
F to U ratio is increased. The peak at 1385 cm−1 showing the C–H stretching and bending
modes of methylene in the UF specimens containing the modified starch resulting from the
shift in the peak at 1337 cm−1 in the starch and the modified starch [34] has also intensified,
indicating ester COO–R- group in both UF-MS adhesives. The absorption band at 1240 cm−1

shows the presence of C–O–C bonds in UF-MS [35] while as the molar ratio has increased,
the peak width has increased, showing the formation of asymmetric stretching vibration in
the form of ester connection with –COOH in the formed glucose as the U to F molar ratio has
increased due to the presence of –OH on dimethylol urea. However, it was observed that this
peak in the pure UF resin does not exist normally [33]. The band 1145 cm−1 related to the
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C–N stretching shows a significantly lower intensity in the modified starch. In addition, its
intensity in the UF-MS adhesive with a lower formaldehyde molar ratio has decreased less.
However, as the modified starch is added and the F to U molar ratio has increased, the peak
has disappeared, showing that it can be happen the polycondensation reaction of –COOH of
the modified starch with urea nitrogen to form U-OS.

Ether groups can be identified by the presence of the peaks related to the C–O–C
bonds at 1050 cm−1 in the glycosidic ring [36]. The presence of the peak of the C–O–C
bond in more intense spectra in starch and modified starch and in the decreased intense
in modified starch + UF with less formaldehyde specimen and its absence in starch + UF
resin with more formaldehyde specimen show the chemical interaction to graft starch in
the copolymerization process with UF. NaOH can make the starch expose more hydroxyl
reduction ends by swelling starch granules and forming O–Na+- groups. Under the
synthesis conditions such as high shear stress and temperature, NaOH reacts with starch
molecule hydroxyl groups and gives a molecule containing di-carbonyl group through
rearrangement of the molecule [31]. In addition to the oxidation of the starch hydroxyl
groups, NaOH weakened the absorption peak of C–O–C bond of the starch molecule in
the range 990 cm−1 in oxidized starch and also in the specimens containing the UF resin
with a lower formaldehyde molar ratio. However, it has increased the peak intensity in
the range 600–800 cm−1 for the specimen with more modified starch and resin with more
formaldehyde. It shows that NaOH could create the unsaturated connection resulting from
the broken glycoside links containing heterocyclic rings and carboxylic acid molecules
so that due to the cross-linking reaction, the band 860 cm−1 showing di-carbonyl groups
disappeared in the adhesive specimens containing UF.
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Figure 2 shows TEM photos of the glue line containing nano-silica. Adding 1.5% nano-
silica has led to the suitable distribution of the nanoparticles in the matrix. The distance
between platelets of nanoparticles has increased and the polymer chain entered the platelets
space. This nanostructure is related to the flower-like unified structure [7] giving better
properties to the nanocomposite that is due to the individual separation of nanoparticle
layers in the continuous polymer matrix by the average distance which depends on the
nanoparticle loading (exfoliation). The comparison of the Figure 2a,b indicates that as
the nanoparticles loading increases to 4%, the intercalation degree of the nanoparticles’
layers in the UF resin polymer matrix that is not an ideal structure for a nanocomposite
is accompanied by huge aggregation or tactoids and does not offer nanocomposites with
better properties like an exfoliated structure. Based on the results obtained, it became
clear that increasing nanoparticles to 3% resulted in a significant increase in the strength.
However, as more nanoparticles were loaded in the polymer matrix, the strength did not
increase. This phenomenon can be related to the difficulty in the uniform distribution of
nanoparticles in the matrix at higher levels of nanoparticles loading.
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3.3. Evaluation of the Models

The diagram of the general block of ANFIS is composed of three inputs and one output
as shown in Figure 3. The output parameter or the paper’s tensile index evaluating the
mechanical efficiency depends on three input parameters, i.e., MR, WR and NC.
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Figure 3. Optimized structure of the ANFIS model.

ANFIS models were developed using the fuzzy logic toolbox of MATLAB R2015b
software. Sugeno fuzzy reasoning was used with two Gaussian membership functions for
each input. A defuzzifier linear formula was used in the output of each rule; and the total
output is the weighting average of each rule output. The structure of rules and the tuned
FIS are shown in Figure 3, including 18 rules with the logical connector AND for all rules.

To develop the ANFIS models to predict the strength of the impregnated paper, the
available data sets obtained by the experiments were used including 48 input vectors
and the corresponding output vectors. These data sets were determined randomly as the
training set. After training, the fuzzy inference calculations of the developed model were
performed. Then, to evaluate the performance of the ANFIS predictions, five input vectors
resulting from the test data sets were presented to the trained network and the predicted
network responses were compared with the experimental responses.

The effect of the developed MLR and ANFIS models to predict the response was
evaluated by determination coefficient (R2), root mean square error (RMSE), mean absolute
error (MAE) and Sum of Square Error (SSE). The results are presented in Table 5. R2 must
be close to 1 for a good relation between the predicted and actual values. It was observed
that the model offered by ANFIS has much higher and more satisfactory R2 values together
with a good fit of the model [37] (0.9612 for the training data sets and 0.9261 for all data
sets) compared with the values obtained by the MLR model both for the training data
sets (0.5174) and all data sets (0.4818). MSE is close to the line fit with the data points
and based on it, RMSE was calculated for the model including the square root of the MSE.
The RMSE of the ANFIS was much lower than the model offered by MLR, showing and
supporting the good fit of the model. MAE and SSE show the precision and correctness of
the model [38]. The lower values of these statistical indices show the better performance
of the model. They were determined for the developed models with their values given in
Table 5. Based on the statistics, the ANFIS model was much better than the MLR model. It
can be observed that the ANFIS model has been more precise according to the higher error
values of MAE and SSE for the training data sets (1.2942% and 112.22, respectively) and all
data sets (1.5812 and 355.96, respectively) compared to the MLR for the training data sets
(14.04% and 14,557, respectively) and all data sets (14.95% and 16,727, respectively).
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Table 5. Comparison of statistically criteria of models.

Training Data Set All Data Set

MLR ANFIS MLR ANFIS

R2 0.5174 0.9612 0.4818 0.9261
RMSE 17.48 1.8168 18.66 2.7232
MAE 14.04 1.2942 14.95 1.5812
SSE 14,557 112.22 16,727 355.96

The plots of the experimental and predicted values are drawn in Figure 4 supporting
the observed high R2 values (Table 5) for both models. The R2 value must be close to 1
in order that the good relation between the experimental and predicted values is proved.
Additionally, both models showed a considerably different R2 value so that the value
obtained by the ANFIS model is closer to 1 compared to the MLR model, indicating the
more suitable estimate of the ANFIS model to predict the response compared to the MLR
model. As it is observed, almost all data are scattered around the regression line, showing
that only 8% of all variations are not described by the developed ANFIS models.
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Figure 4. Correlation between the actual data of tensile index (MPa) and predicted ones by ANFIS
and MLR models in both training and all data (blue triangles and red circles marks belong to MLR
and ANFIS models, respectively).
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In Figure 5, the residual distribution of both optimization techniques is depicted. The
variation in residuals is completely different for both methods so that the error values are
large for the MLR and they are very low for ANFIS and show a low variation compared to
the MLR. It shows that the MLR presents a regression equation that could not predict the
response being examined appropriately and states the effect of the experimental parameters
and their interaction on the response with a lower precision compared to the ANFIS. ANFIS
gives an opportunity to adapt to the experimental design to make the model. The ANFIS
approach has been flexible and can add new data to make a reliable model; therefore, it is
more reasonable and stable to interpret the tensile index of the papers through the ANFIS
architecture process.

Superiority of ANFIS approaches toward estimation of response can be proved ac-
cording to other statistical indicators so that the experimental values are offered like the
estimated values of both models against the number of runs. The distribution of differences
between the residual error values estimated by the ANFIS and MLR can be observed in Fig-
ure 6. It is observed that the variation in the values predicted by the ANFIS model is much
less than those predicted by the MLR model. It means that the experimental data are fit with
a high precision using the ANFIS model compared to the MLR model and the prediction
variation of the ANFIS approach is less than the other. ANFIS integrates both advantages
of the fuzzy logic and neural network techniques to model data. Artificial intelligent
methods such as ANFIS, etc., are able to train to estimate the nonlinear functions while
other methods can only be limited to special models such as second-order polynomial.
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The fuzzy inference diagrams of the ANFIS model with 18 rules are presented in
Figure 7. Accordingly, the response being examined can be affected by changing the input
variables. Using the middle level of MR, maximum WR of adhesive containing the middle
level of nano-silica percentage, the response becomes the maximum, reaching 48.3 MPa.
In other words, matching the ANFIS output with the experimental tensile index, the
prediction accuracy of response was proved based on the ANFIS model. The 3D diagrams
show the interaction of the independent variables being examined (Figure 8) and the level
of the response dependency to the changes in the variables so that the changes in the
response is finally similar to the final output calculated in Figure 8. In the interaction of MR
and WR, the maximum strength is where the values of both factors are at the maximum
(Figure 8a). However, the strength will be at the maximum if the MR is at the maximum
in the interaction of MR and NC, while the nano percentage is at the middle level (2%)
(Figure 8b). The interaction of WR and NC also shows that as the WR increases and the
nano-silica becomes at the minimum, the tensile index will be at the maximum (Figure 8c).
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Figure 7. Rule viewer of FIS model for training data (yellow colors and curves show the optimum
value of every input and used function, respectively, in each rule).
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When applying the quadratic model to design the experiments and describe the
interaction of the factors being examined, the model can be used to describe the direct effect
of all three factors. Hence, curves are formed showing the actual effect of the factors on
the response.

At the same time, using the ANFIS and MLR models, the precision of the estimate of
the effect of each independent variable being examined can be measured by comparing
them with the actual affecting values. Figure 9 compares the tensile index estimated by
the ANFIS and MLR models with its actual values. It is observed that the effects of the
independent variables MR, WR and NC on the response estimated by the ANFIS and MLR
are distinct from each other so that the responses estimated by ANFIS are very consistent
with the actual responses. However, the responses estimated by the MLR model are not
consistent with the actual data. It is also evident based on the statistics such as R2, RMSE,
MAE and SSE (Table 5). It is observed that the effect of WR is more than other factors
according to the slope of the tangent on the related curve, showing that WR could affect
the response more than other factors. Based on the ANOVA analysis (Table 3), F-values
of WR (210) are much more than those of other terms whether in the direct, interactive or
square effects of the factors, showing the much higher effect of this factor though other
factors also had significant effects. It is observed that as WR increases continuously, the
tensile index increases continuously. However, it is observed that although the increase in
MR has increased the tensile index continuously, the intensity of the increase is very slow.
It is also evident in the F-value in the ANOVA table. It is observed that the direct effect of
nano-silica has been almost at the middle level of the maximum consumption and its effect
on the tensile index is negative whether before or after it.
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Figure 9. Comparison of the direct effect of independent variables on the actual tensile index values
and those predicted by the ANFIS and MLR approaches.

As the starch increases, the UF-OS system viscosity decreases, because the hemiacetal
ring of sugars opens and the glycoside bonds break resulting in the decrease in the polymer
chain length. The decrease in viscosity leads to the increase in the flowability of the adhe-
sive, increasing the resin penetration inside the paper [39]. However, as the temperature
increases gradually and becomes the maximum, the adhesive viscosity increases to several
times, where the adhesive containing more starch due to the more effective influence of
starch to create cross-linking of the UF resin at a certain temperature when it is coagulated
becomes more viscous [4]. It results in a stronger connection in the substrate as the starch
to UF weight ratio increases and the adhesive penetration increases. Since the decrease in
the F to U ratio decreases the coagulation rate and the cross-linked density [4], the increase
in the modified starch to UF weight ratio plays the role of a cross-linked factor in the UF
resin coagulation process.

As the MR increases, the methylene (–CH2–) and methylol (–CH2OH) bridges decrease.
It is related to the high resin formaldehyde ratio and the increase in aldehyde and carboxyl
groups of the modified starch in resin due to the less urea added. At first, urea may react
with formaldehyde to form urea methylol due to the unstable ether connections while
formaldehyde level has remained constant in resin. Urea reacts with the –CHO groups
of the oxidized starch to form U-OS-based polymer. As the F to U molar ratio increases,
methylene connection (–CH2) increases and methylol groups (CH2OH) decrease, indicating
that methylene bonds (–CH2–) are the dominant type, extremely conjugating oxidized
starch and urea [40].

When treating starch with NaOH, some compounds with a low molecular weight
are produced [41] which is due to the separation of the intermolecular hydrogen bonds
in amylopectin [42]. During it, the rigidity and as a result, the stability of the molecular
structure of starch decrease and amylose chains become more movable and the granule
architecture declines [43]. The increase in the modified starch content decreases the flow
time. It can be described by the fact that at higher starch levels, less time is needed for
coagulation, because the presence of higher carbonyl functional groups accelerates the
formation of chemical connections in the veneer. Due to the higher water absorption
properties, the adhesive has a higher moisture and less coagulation time so that different
pre-coagulation degrees of dried papers can be described by it. The higher final moisture
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means that the paper is treated more mildly than papers with a lower final moisture when
drying. Hence, the adhesive will bear less pre-coagulation time in the moister paper and
the time to complete the cross-linking increases. However, according to the time spent
to treat the papers thermally, it seems that the better penetration of adhesive in paper
on one hand and the enough time of resin coagulation on the other hand have increased
the tensile strength of paper. XRD studies have also shown that chemical treatment has
changed and made special peaks small. However, the pattern of XRD curves of starch and
modified starch is similar [1]. It means that the crystalline domain of the modified starch
is damaged to some extent [2]. At the same time, in the combination of modified starch
and UF, all peaks disappeared, because the modified starch and urea converted into OS-U
adhesive [44]. In the TGA analysis, the modified resin has shown that it has a lower peak
and initial temperatures, meaning that adding starch accelerates the UF resin coagulation.
However, as the F to U molar ratio decreases, the resin coagulation decreases due to the
decrease in the cross-linking density. The application of higher levels of starch plays the
role of the cross-linked factor in the resin coagulation process. Hence, the decrease in the
F to U molar ratio results in faster resin coagulation as the modified starch is added [40].
The weight loss of the starch and aminoplast adhesive is less than the aminoplast resin.
Moreover, this combined system also has a higher thermal stability that is related to the
formation of chemical connections between starch and aminoplast resins. It is due to the
UF and starch chemical connection that has made the UF-OS resin stronger [4].

The increase in the storage modulus (G’) indicating the elastic properties due to the
structural connections of the 3D network of amylose and inflated granule composite system
shows the increase in the formation of 3D networks and cross-linking of starch speci-
mens [45]. By applying the treatment and increasing the hydroxyl groups gradually, the
ability to contact the resin polymer and as a result, the grafting improve and the hydrogen
bonds between starch chains decrease and the starch destruction process stops [40]. Accord-
ing to the loss modulus parameter (G”, showing the viscous properties of the molecular
network structure) affecting the loss tangent (tanδ), i.e., the ratio G”/G’ [46], the treatment
has decreased the starch aggregation and improved its distribution in the resin polymer to
form better grafting reaction.

The starch morphology shows a granular structure with a smooth surface which is
aggregated to some extent while the oxidized starch has a destroyed structure with rough
surface profiles due to the starch oxidation reaction with oxidizer and the broken polymer
chain [47]. The complete disappearance of the starch shape and its conversion into the
bar shape in the OS-U adhesive indicates the occurrence of the polycondensation reaction
between the oxidized starch and urea. Adding starch to aminoplast resins makes the
surface shape show the interaction between two components so that as the starch increases,
the specimens’ surface becomes rougher and indicates ductile fracture, which is due to the
covalence connections between starch and resin molecules improving the ductile fracture
behavior [4]. Furthermore, the presence of the compact adhesive system can indicate that
the interaction of nanoparticles and the OS-U adhesive has occurred [1,5].

SiO2 is a more amorphous substance compared to the UF resin [11]. X-ray diffraction
analyses showed that as the amorphism increased due to adding nano-silica to the UF resin,
the peak width increased in the range 22◦θ. Confirming the interaction between resin and
nano-silica, the resin surface morphology analysis indicated that as silica nanoparticles were
added to the UF resin matrix, more small bright regions emerged so that after performing
the Energy-dispersive X-ray spectroscopy analysis, it became clear that the presence of
these regions is the result of the presence of silica nanoparticles. On the other hand, as
more nanoparticles were added to the matrix, the aggregation degree was strongly affected.
Confirming the interactions between resin and silica nanoparticles, the analysis of the
FTIR peaks results also showed that the peak position at 3350 cm−1 has shifted to lower
wave numbers, so that it can be concluded that due to the presence of silanol groups at
the nano-SiO2 surface that are very active, a hydrogen bond is formed or condensation
reactions occur [11]. By improving the interaction between nano-silica and matrix, these
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changes can be due to the complete coating of SiO2 particles by resin so that silica porous
spherical particles become smooth and form well. Based on the EDS, it was also indicated
that no Si element has appeared in the product, indicating that SiO2 microspheres are
coated completely [48]. Adding starch results in an increase in the resin curing temperature
due to the interaction of hydroxyl and carbonyl groups in starch with resin polymer chain
so that a bond is created with it or in condensation reaction and as a result, the polymer
chain needs more energy to form the cross-link and complete the curing process [33]. Since
the presence of nanoparticles makes it possible to transfer temperature more quickly in the
adhesive compound, the need to increase the temperature quickly due to the increase in
the modified starch and the subsequent increase in the functional groups resulting from
glucose rings will be met. Hence, the cross-link is supported more.

4. Conclusions

In the present research, the application of the MLR and ANFIS was examined to predict
to the tensile index of the paper impregnated by the UF resin containing the modified
starch adhesive. The following conclusions are the findings of the research:

1. The correlation analysis showed that there is a significant relationship between the
tensile index of the paper impregnated by resin and the MR, WR and NC.

2. The comparison of the models produced to estimate the tensile index showed that
R2 was more in the ANFIS model while RMSE, MAE and SSE values were less in
the ANFIS model. According to the statistics, the ANFIS model has showed a better
performance to predict the response being examined compared to the MLR.

3. The starch modified by some functional groups including carbonyl, hydroxyl, etc.,
can react with the UF resin confirmed by FTIR spectroscope. Based on the TEM
analysis, adding silica nanoparticles resulted in more matrix connection and its better
distribution, but when increasing nanoparticles to the maximum level, the uniform
distribution of nanoparticles was affected negatively.

4. Increasing nano-silica beyond the middle level, the tensile index increased continu-
ously as the WR increased. Increasing the MR and NC to the middle level, the tensile
index increased. The intensity of the effect of the increase in the modified starch
consumption has been much more than that of the effect of MR and NC.
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