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Abstract: Today, among emerging materials, metal matrix composites, due to their excellent proper-
ties, have an increasing demand in the field of aerospace and automotive industries. However, the
difficulties associated with the processing of these composites have been a challenge to manufactur-
ing industries due to inhomogeneous mixing of the matrix with the reinforcement, oxidation, and
microstructural phase transformation during processing. Hence, in this paper, Ti-6Al-4V reinforced
with SiCp has been processed through a specially developed compression molding, followed by
vacuum sintering. The main objective of this paper was to determine the favorable vacuum sin-
tering conditions for Ti-6Al-4V reinforced with 15 Wt. % SiCp composites under a different aging
temperature (◦C), aging time (h), heating rate (◦C/min), and cooling rate (◦C /min) to improve the
process output parameters such as the hardness, surface roughness, and to reduce the porosity using
Taguchi’s Design of Experiments. Finally, the response surface methodology and random forest
regression have been used to predict the optimum process output parameters. From the extensive
experimentation and understanding gained from Taguchi’s Design of Experiments, the response
surface methodology and random tree regression approach can be successfully used to predict the
hardness, porosity, and surface roughness during the processing of Ti-6Al-4V-SiCp composites.

Keywords: Ti-6Al-4V-SiCp; Taguchi’s design of experiments; random tree regression; response
surface methodology; surface metallurgy; hardness

1. Introduction

In recent years, there has been a lot of demand for the replacement of novel materials
with conventional metals for their application in aeronautical, automotive, and marine
industries. Metal matrix composites (MMCs) are a new class of materials, having metal as
a matrix and fibers or particles as a reinforcement, due to its unique properties such as its
high strength to weight ratio, ductility, stiffness, and improved corrosion resistance [1,2].
However, there are challenges in the production of a few MMCs such as titanium matrix
composites (TMCs) which are prone to high levels of oxidation and embrittlement [3–6].
Powder metallurgical and near net shape manufacturing routes have always been preferred
for the production of TMCs owing to their advantages, such as a homogenous distribution
of the reinforcement [7–10]. Powder metallurgy involves the compaction of composites
followed by a sintering just below their melting points [11,12]. Researchers [13] suggested
that Titanium undergoes an oxidation above 600 ◦C and produces brittle Titanium Oxide
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which decreases the desirable properties of TMCs. Researcher [14], in his research, sug-
gested that the density, hardness, and surface roughness can be improved under a vacuum
sintering. Researchers [15–17] concluded that under a vacuum sintering, the process input
parameters such as the aging time (h), aging temperature, and heating and cooling rates has
a considerable effect on the process output characteristics on TMCs. Researchers [18–20]
suggested that the application of the Design of Experiments is one statistical tool applied in
the processing and machining of various metals/alloys and composite materials to obtain
the optimum process output parameters. Researchers [21–37] suggested that Taguchi’s De-
sign of Experiments (TDOE) is one of the most effective methods for obtaining an optimum
value with a minimal set of experiments. Researchers [38,39] applied an analysis of variance
(ANOVA) to obtain the percentage contribution of each of the input parameters selected.
Researchers [40,41] concluded that response surface methodology (RSM) is a mathematical
and statistical method which optimizes the response by evaluating the effects of various
factors and their interaction on the response variables. Researchers [42,43] suggested that
machine learning is a computational model designed to predict the output variables for a
given set of input variables. Random forest regression (RFR) is one of the machine learning
techniques which uses ensemble learning methods for the regression. Ensemble learning
methods combine the predictions from multiple machine learning algorithms and can make
a more accurate prediction than a single model [44]. Studies on problem solving by devel-
oping machine learning-based prediction models suggested that random forest algorithms
performed better than other algorithms in the utilization of machining data [45–52]. This
paper focuses on determining the favorable vacuum sintering conditions for Ti-6Al-4V
reinforced with 15 Wt. % SiCp composites under a different aging temperature (◦C), aging
time (h), heating rate (◦C/min), and cooling rate (◦C/min) to improve the process output
parameters such as the hardness and surface roughness, and to reduce the porosity using
Taguchi’s Design of Experiments. Finally, response surface methodology and random forest
regression have been used to predict the optimum process output parameters.

2. Methodology

A titanium alloy (Ti-6Al-4V) as a matrix reinforced with 15 Wt. % of Silicon Carbide
(SiC) and with a particle size of 100 µm has been used in this experimentation. Figure 1
shows the flowchart of the titanium silicon carbide composite processing technique used in
this study. The chemical composition, mechanical, and thermal properties of the titanium
alloy and silicon carbide are shown in Tables 1–4. Titanium silicon carbide composites
have been processed using specially developed single action split die assembled in a
compaction molding machine. The die is made of D3 die steel and is in accordance with
ASTM 925-15 [48]. The processed titanium silicon carbide composites are then pre sintered
at 5000C in a muffle furnace followed by vacuum sintered using an RHTC 80–710/15 HTV
sintering machine under a different aging temperature (◦C), aging time (h), heating rate
(◦C/min), and cooling rate (◦C/min). The samples have been mechanically characterized
to obtain the optimum hardness value using a Brinell Hardness Testing machine (Model:
Analog B 3000 (H)) in accordance with EN ISO 6506-1 standards with an indentation load
of 10kgfand allowing a dwell time of 20 s for the indentation using a stainless steel ball of a
10mm diameter. The surface roughness was measured using a ‘Talysurfsurtonic 3+ surface
roughness measuring instrument’ and the porosity was measured using a Gas PORG-200
porosimeter. Three sets of measurements for each sample were taken. The average values of
the hardness, porosity, and surface roughness of each sample is noted down. Taguchi’s L27
orthogonal array has been used to obtain the optimum process input parameters. Response
surface methodology is used to predict the process output parameters this experiment uses
as a second order of equation. The microstructure of the samples have been taken from
an Olympic System Optical Microscope with a 100 times magnification. The samples have
been polished using a bench grinder and etched using Kroll’s Reagent, (i.e., 1–3 mL of
hydrofluoric acid with 2–6 mL of nitric acid in 100 mL of water).
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Figure 1. Flowchart of titanium silicon carbide composite processing.

Table 1. Chemical composition (Wt. %) of titanium alloy (Ti-6Al-4V).

Element Al V Fe O C N Y H Ti

Wt (%) 6.1 4 0.16 0.11 0.02 0.01 0.001 0.001 Bal

Table 2. Chemical composition (Wt. %) of silicon carbide (SiC).

Element C Fe2O3 Si Al2O3 CaO SiO2 P S SiC

Wt (%) 1.17 0.66 1.43 0.25 0.14 0.8 0.32 0.04 Bal

Table 3. Mechanical and thermal properties of titanium alloy (Ti-6Al-4V).

Properties Values (Units)

Density 4.43 g/cm3

Melting point 1604–1660 ◦C

Beta transitional temperature 980 ◦C

Tensile strength, ultimate 1170 Mpa

Tensile strength, yield 1100 Mpa

Compressive strength 1070 Mpa

Modulus of elasticity 114 Gpa

Brinell hardness 379 BHN

Elongation at break 10%

Table 4. Mechanical and thermal properties of silicon carbide (SiC).

Properties Values (Units)

Density 3.1 g/cm3

Melting point 2730 ◦C

Beta transitional temperature 2000 ◦C

Tensile strength, ultimate 390 Mpa

Compressive strength 2000 Mpa

Modulus of elasticity 410 Gpa

Vicker’shardness 2720 Hv

Elongation at break 0%
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3. Design of Experiments

Taguchi’s Design of Experiments is an effective tool used to study the effect of one or
more of the process response variables. Further, it is also an efficient procedure used by
various researchers for planning experiments and for the yield of objective conclusions, as
well as for the possible interactions between the process parameters selected.

3.1. Taguchi’s Design of Experiments

Taguchi’s Design of Experiments has been used widely in engineering applications
to achieve the best levels of a quality characteristic under different conditions. Taguchi’s
approach to the design of experiments is easy to adopt and apply for users with a limited
knowledge of statistics which resulted in a wide popularity in the area of engineering
and the scientific community. In this experimental layout, the S/N ratio characteristic, the
smaller the better for the porosity and surface roughness and the larger the better for the
hardness, has been adopted as given in Equations (1) and (2).

The smaller the best characteristic:

S
N

= −10 log
1
n

(
∑ y2

)
(1)

Larger the better characteristic [26]:

S
N

= − log
1
n

(
∑

1
y2

)
(2)

where n is the number of observations and y is the observed data. In this paper, a Taguchi L27
orthogonal array is employed to identify the optimal vacuum sintering process parameters.
The levels and factors used for the vacuum sintering (TDOE) are shown in Table 5.

Table 5. Control factors and levels for vacuum sintering (TDOE).

Control Factors
Levels

1 2 3

Aging temperature (◦C) 1050 1150 1250

Aging time (h) 2 3 4

Heating rate (◦C/min) 5 15 25

Cooling rate (◦C/min) 1 3 5

3.2. Response Surface Methodology

During the processing of metal matrix composites, the hardness, porosity, and surface
roughness has been the important process output parameter when subjected to various
engineering applications due to the fact that these parameters certainly affect the wear
resistance, fatigue resistance, and corrosive resistance. Hence, to understand the quality
characteristics in advance, the response surface methodology has become a more popular
tool to understand the process output parameters in any experimental domain using a
second order model [36].

ŷ = βo +
k
∑

i=1
βixi +

k
∑

i=1
βiix2

i + ∑
i

∑
j

βijxixj + ε (3)

The β coefficients, used in the above model, can be calculated by the means of using
the least square method. The second-order model is normally used when the response
function is not known or nonlinear. The central composite design (CCD) of RSM is used
for establishing the empirical relationships among the process parameters. The levels and
factors used for the vacuum sintering (RSM) are shown in Table 6.
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Table 6. Control factors and levels for vacuum sintering (RSM).

Control Factors
Levels

1 3

Aging temperature (◦C) 1050 1250

Aging time (h) 2 4

Heating rate (◦C/min) 5 25

Cooling rate (◦C/min) 1 5

3.3. Random Forest Regression

Random forest regression is a non-parametric method derived from the classification
and regression trees. It is a combination of tree predictors where each tree depends on the
values of random vectors sampled independently, with the same distribution for all trees
in the forest. The experimental results based on L27 TDOE for the hardness, porosity, and
surface roughness of Ti-6Al-4V reinforced with 15 Wt. % SiC used as the input parameters
were trained on the random forest model. Table 7 shows the algorithm used for random
forest model in this paper.

Table 7. Algorithm for random forest regression.

Algorithm: Random forest modeling.

Input: Ti-6Al-4V- SiCp

Output: Hardness, porosity, and surface roughness

Steps followed for RFR:

Step 1: The loading of the data sets.
Step 2: The selection of the preprocessor.
Step 3: Classifying the data sets for training and testing.
Step 4: Training the model using the datasets.
Step 5: Loading the test data set for a comparison.
Step 6: Evaluating the prediction performance based on the accuracy and precision.

The performance of the model has been evaluated using the coefficient of determina-
tion (R2) as shown in the below equation [33].

R2 = 1 −
Yn − Ypred

Yn − Ymean
(4)

where n was the total number of datasets, yref were reference values in the dataset, and
Ypred were the predicted values of the models.

4. Results and Discussions

During the processing of Ti-6Al-4V-15 Wt. % SiC, the hardness, porosity, and surface
roughness have been the most effective way of understanding the mechanical character-
istics. Hence, in this section, the effect of the process input parameters such as the aging
temperature (◦C), aging time (h), heating rate (◦C/min), and cooling rate (◦C/min) on the
process output parameters such as the hardness (BHN), porosity (%), and surface roughness
(µm) using the TDOE, RSM, and RFR has been discussed in this section.

4.1. Hardness

A study on the hardness during the processing of Ti-6Al-4V-SiCp composites is the
most effective way of understanding the material characteristics because it certainly affects
the wear resistance properties. Figure 2 shows the comparison of the hardness under a
different aging temperature (◦C), aging time (h), heating rate (◦C/min), and cooling rate
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(◦C/min). From Figure 2, it is observed that the hardness value increased at an aging
temperature of 1250 ◦C, compared to a 1050 ◦C and 1150 ◦C aging temperature. This
is because a 1250 ◦C aging temperature resulted in microstructural changes, causing an
increase in the surface hardness of the composite. A further aging time of 3 h enabled a
proper adhesion of Ti-6Al-4V and SiCp to increase the hardness value. The heating rates
during the processing of the Ti-6Al-4V-SiCp composites showed no much difference on
the hardness. However, as the cooling rates increased, there was a significant increase in
the hardness value. This is because faster cooling rates resulted in the formation of brittle
carbide with the Ti-6Al-4V alloy followed by work hardening.
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Figure 2. Age temperature v/s hardness (BHN) at heating rate of 15 ◦C/min and cooling rate of
5 ◦C/min (constant).

The main effects plot for the hardness (Figure 3) indicates the selection of the aging
temperature (1250 ◦C), aging time (3 h), heating rate (5 ◦C/min), and cooling rate (5 ◦C/min)
results in the best combination to get the higher hardness value during the processing of
the Ti-6Al-4V-SiCp composites.
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The aging temperature (A), along with cooling rate (D), is a significant factor to be
taken into consideration while processing the Ti-6Al-4V-SiCp composites, as shown by the
analysis of the percentage of contribution (P percent) of the various factors (Table 5) for the
hardness. It can be seen that the interactions of the aging temperature with the cooling rate
(A × D) (P = 47.8%), and the interactions of the heating rate with the cooling rate (C × D),
(P = 48.54%) have a statistical and physical significance on hardness. The interactions of
the aging time with the cooling rate (B × D) “neither provide a statistical significance, nor
a percentage of physical significance of contribution” to the hardness.
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The result of the ANOVA for the response function of the hardness is presented in
Table 8. This analysis is carried out for a “level of significance of 5%, i.e., for a level of
confidence of 95%”. From the analysis in Table 9, it is evident that the F-calculated value is
greater than the F-table value (F0.05,14,14 = 13.63), and hence the developed second order
response function is quite adequate.

Table 8. Analysis of variance for SN ratios.

Source DF Seq SS Adj SS AdjMS F P P%

A 2 5.0606 5.0606 2.5303 124.7 0.000 0.0

B 2 0.7590 0.7590 0.3795 18.72 0.003 0.15

C 2 0.1894 0.1894 0.0947 4.67 0.060 3.15

D 2 1.0789 1.0789 0.5399 26.63 0.001 0.05

A × D 4 0.0191 0.0191 0.0047 0.24 0.908 47.8

B × D 4 0.0161 0.0161 0.0154 0.76 0.586 0.31

C × D 4 0.0165 0.0165 0.0041 0.20 0.927 48.54

Residual Error 6 0.1216 0.1216 0.0202

Total 26 7.3082 100

Table 9. Analysis of variance for hardness (BHN).

Source DF Seq SS Adj SS Adj MS F P

Regression 14 10,841.1 10,841.12 774.37 13.63 0.000

Residual error 14 795.5 795.53 56.82

Total 29 11,636.7

The second order response of the surface representing the hardness (BHN) can be
expressed as a function of the processing parameters, such as the aging temperature (◦C),
aging time (h), heating rate (◦C/min), and cooling rate (◦C/min), as shown in Equation (5).

Hardness(BHN) = 404.715 + 22.035A + 0.200B + 1.914C + 7.449D + 2.526A2 − 14.474B2 + 6.531C2 −
0.053D2 + 1.016AB + 4.578AC − 0.633AD + 0.605BC + 2.033BD + 0.580CD

(5)

To predict and verify the hardness during the processing of the Ti-6Al-4V-SiCp com-
posites, the verification tests are used. Figure 4 shows the experimental results along with
the results of the mathematical model and the random forest regression for the hardness.
The comparison of the experimental results with the mathematical model and RFR model
results obtained for 27 trials shows that the estimated value is accurate for all tests with
an error of 1.106% with the RSM and 8.981% with the RFR estimated values, respectively.
Figure 5 represents a scatter plot for the hardness values of the Ti-6Al-4V-SiCp composites.
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4.2. Porosity

A study on the porosity during the processing of the Ti-6Al-4V-SiCp composites is
one of the effective ways of understanding the material characteristics. Figure 6 shows
the comparison of the porosity under a different aging temperature (◦C), aging time (h),
heating rate (◦C/min), and cooling rate (◦C/min). From Figure 6, it is observed that
the porosity decreases as the aging temperature is at 1050 ◦C, compared to 1150 ◦C and
1250 ◦C aging temperatures. This is because 15 Wt. % SiC resulted in an increase in the
density and a decrease in the porosity. Further, the addition of a PVA binder of 3 Wt. %
enabled in the proper adhesion of Ti-6Al-4V and SiCp to increase the hardness value. The
compaction pressure during the processing of the Ti-6Al-4V-SiCp composites showed no
much difference on the hardness. However, at the compaction pressure of 4 ton/sq.inch,
there was a small increase in the hardness value. This is because the compaction pressure
resulted in an interlocking of the SiC particles with the Ti-6Al-4V alloy followed by a
strain hardening.
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Figure 6. Age Temperature v/s porosity (%). At heating rate of 25 ◦C/min and cooling rate of
5 ◦C/min (constant).

The main effects plot for the porosity (Figure 7), indicates that the selection of the
aging temperature (1050 ◦C), aging time (3 h), heating rate (15 ◦C/min), and cooling rate
(1 ◦C/min) result in the best combination to get the lower porosity values during the
processing of the Ti-6Al-4V-SiCp composites.

The aging temperature (A) along with the cooling rate (D) is a significant factor to
be taken into consideration while processing the Ti-6Al-4V-SiCp composites, as shown by
the analysis of the percentage of contribution (P percent) of the various factors (Table 10)
for the porosity. It can be seen that the interactions of the aging temperature with the
cooling rate (A × D) (P = 34.72%), interactions of the heating rate with the cooling rate
(C × D), (P = 42.1%), along with interactions of the aging time with the cooling rate (B × D),
(P = 22.96 have a statistical and physical significance on the porosity.
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Table 10. Analysis of variance for SN ratios.

Source DF Seq SS Adj SS Adj MS F P P%

A 2 8.4084 8.4084 4.2042 168.59 0.000 0.00

B 2 6.2052 6.2052 3.1026 124.41 0.000 0.00

C 2 0.7338 0.7338 0.3668 14.71 0.005 0.21

D 2 2.0230 2.0230 1.0114 40.56 0.000 0.00

A × D 4 0.0403 0.0403 0.0100 0.40 0.800 34.72

B × D 4 0.0876 0.0876 0.0219 0.88 0.529 22.96

C × D 4 0.0121 0.0121 0.0030 0.12 0.970 42.1

Residual error 6 0.1496 0.1496 0.0249

Total 26 17.660

The second order response surface representing the porosity (%) can be expressed as a
function of the processing parameters such as the aging temperature (◦C), aging time (h),
heating rate (◦C/min), and cooling rate (◦C/min), as shown in Equation (6).

Porosity (%) = 18.5123 − 0.5611A − 0.8271B + 0.0524C − 0.6652D + 0.5822A2 + 0.0732B2 + 0.8017C2 +

0.1782D2 + 0.1597AB − 0.0465AC − 0.0677AD + 0.2167BC − 0.0118BD + 0.2807CD
(6)

The result of the ANOVA for the response function of the hardness is presented in
Table 11. This analysis is carried out for a “level of significance of 5%, i.e., for a level of
confidence of 95%”. From the analysis in Table 11, it is evident that the F-calculated value
is greater than the F-table value (F0.05,14,14 = 10.00), and hence the developed second order
response function is quite adequate.

Table 11. Analysis of variance for Porosity (%).

Source DF Seq SS Adj SS Adj MS F P

Regression 14 38.0486 38.0486 2.7178 10.00 0.000

Residual error 14 3.8064 3.8064 0.2719

Total 29 61.4427

Figure 8 shows the microstructure of the compacted and vacuum sintered Ti-6Al-
4V-SiCp composites under different processing conditions. From the microstructural
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observation, it was observed that the composites processed under the aging temperature
(1050 ◦C) had a more void formation compared to the composites processed under the
aging temperature (1150 ◦C) and (1250 ◦C), respectively. Further, aging at 1250 ◦C resulted
in the formation of α-phase, which caused a decrease in the porosity values compared to
the aging temperature at 1150 ◦C. It was also observed that an increase in the SiCp resulted
in a crack formation due to a decrease in the bond strength and interlocking between the
matrix and reinforcement particle.
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To predict and verify the porosity during the processing of the Ti-6Al-4V-SiCp com-
posites, verification tests are used. Figure 9 shows the experimental results along with
the results of the mathematical model and random forest regression for the porosity. A
comparison of the experimental results with mathematical model and RFR model results
obtained for the 27 trials shows that the estimated value is accurate for all tests with an
error of 2.76% with an RSM and 1.3% with the RFR estimated values, respectively. Figure 10
represents a scatter plot for the porosity values of the Ti-6Al-4V-SiCp composites.
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4.3. Surface Roughness

A study on the surface roughness during the processing of the Ti-6Al-4V-SiCp com-
posites is one of the effective ways of understanding the material characteristics. Figure 11
shows the comparison of the surface roughness under a different aging temperature (◦C),
aging time (h), heating rate (◦C/min), and cooling rate (◦C/min). From Figure 11, it is
observed that at an aging temperature of 1150 ◦C and an aging time of 4 h resulted in an
improved surface roughness value (5.78 µm). This is because an aging temperature of
1150 ◦C and a 4 h aging time resulted in a better bonding and a decrease in the porosity
between the Ti-6Al-4V and SiC particles.

The main effects plot for the surface roughness (Figure 12) indicates the selection of
the aging temperature (1250 ◦C), aging time (2 h), heating rate (15 ◦C/min), and cooling
rate (5 ◦C/min) result in the best combination to get the lower surface roughness values
during the processing of the Ti-6Al-4V-SiCp composites.
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The aging temperature (A), heating rate (C), and cooling rate (D) are significant factors
to be taken into consideration while processing the Ti-6Al-4V-SiCp composites, as shown
by the analysis of the percentage of contribution (P percent) of the various factors (Table 12)
for the surface roughness. It can be seen that the interactions of the aging temperature with
the cooling rate (A × D) (P = 29.59%), the interactions f the heating rate with the cooling
rate (C × D), (P = 29.65%), along with the interactions of the aging time with the cooling
rate (B × D), (P = 29.62 have a statistical and physical significance on the surface roughness.

Table 12. Analysis of variance for SN ratios.

Source DF Seq SS Adj SS Adj MS F P P%

A 2 1.8327 1.8327 0.9163 10.10 0.012 0.35

B 2 7.4742 7.4742 3.7371 41.21 0.000 0.00

C 2 0.4671 0.4671 0.2335 2.57 0.156 4.63

D 2 0.3761 0.3761 0.1880 2.07 0.207 6.14

A × D 4 0.0117 0.0117 0.0029 0.03 0.997 29.59

B × D 4 0.0066 0.0066 0.0016 0.02 0.999 29.65

C × D 4 0.0093 0.0093 0.0023 0.03 0.998 29.62

Residual error 6 0.5442 0.5442 0.0906

Total 26 10.7218 3.369 100
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From the analysis in Table 13, it is evident that the F-calculated value is greater
than the F-table value (F0.05,14,14 = 3.53), and hence the developed second order response
function is quite adequate. The second order response surface representing the surface
roughness (%) can be expressed as a function of the processing parameters such as the
aging temperature (◦C), aging time (h), heating rate (◦C/min), and cooling rate (◦C/min),
as shown in Equation (7).

Surface Roughness (µm) = 6.12867 + 0.26917A − 0.41122B + 0.12733C − 0.00344D + 0.81829A2 + 0.01679B2 +

0.20799C2 + 0.03279D2 − 0.17588AB − 0.14200AC + 0.14562AD + 0.02013BC − 0.13350BD + 0.09413CD
(7)

Table 13. Analysis of variance for surface roughness (µm).

Source DF Seq SS Adj SS AdjMS F P

Regression 14 10.8982 10.8982 0.7784 3.53 0.012

Residual error 14 3.0889 3.0889 0.2206

Total 29 23.9554

Figure 13 shows the microstructure of the compacted and vacuum sintered Ti-6Al-4V-
SiCp composites under different processing conditions.

From the microstructural observation, it was observed that the composites processed
under the aging temperature (1050 ◦C) had a more void formation compared to the compos-
ites processed under the aging temperature (1150 ◦C) and (1250 ◦C), respectively. Further,
aging at 1250 ◦C resulted in the formation of the α-phase, which caused a decrease in the
porosity values compared to an aging temperature at 1150 ◦C. It was also observed that an
increase in the SiCp resulted in a crack formation due to a decrease in the bond strength
and interlocking between the matrix and reinforcement particle.

To predict and verify the surface roughness during the processing of the Ti-6Al-4V-
SiCp composites, verification tests are used. Figure 14 shows the experimental results along
with the results of the mathematical model and random forest regression for the surface
roughness. A comparison of the experimental results with the mathematical model and
RFR model results obtained for the 27 trials shows that the estimated value is accurate for
all tests with an error of 1.56% with the RSM and 2.75% with the RFR estimated values,
respectively. Figure 15 represents the scatter plot of the surface roughness values of the
Ti-6Al-4V-SiCp composites.
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Figure 14. Verification test results for surface roughness.
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5. Conclusions

The hardness, porosity, and surface roughness of the Ti-6Al-4V-SiCp composites
under different processing using Taguchi’s Design of Experiments, the response surface
methodology, and random forest regression have been studied. Based on the results, the
following conclusions are drawn:

The aging temperature (1250 ◦C), aging time (3 h), heating rate (15 ◦C/min), and
cooling rate (5 ◦C/min) are considered to be the optimum input parameters for achieving
higher hardness values during the processing of the Ti-6Al-4V-SiCp composites. For
achieving lesser porosity values during the processing of the Ti-6Al-4V-SiCp composites,
the aging temperature (1050 ◦C), aging time (3 h), heating rate (15 ◦C/min), and cooling
rate (1 ◦C/min) are preferred. Improved surface roughness values can be achieved under
an aging temperature of 1250 ◦C, aging time of 2 h, heating rate of15 ◦C/min, and cooling
rate of 5 ◦C/min during the processing of the Ti-6Al-4V-SiCp composites.

A second order response surface model generated for the hardness, porosity, and surface
roughness can be effectively used during the processing of the Ti-6Al-4V-SiCp composites.

Further, from the microstructural analysis it was observed that an aging temperature
at 1250 ◦C and rapidly cooling at 5 ◦C/min resulted in α-phase formation, which caused
an increase in the hardness values compared to the other set of input process parameters.

From the comparison of the experimental results with the mathematical model and RFR
model results for the 27 trials, it was observed that the estimated value is accurate for all tests
with an error of 1.106%,2.76%, and 1.3% with the RSM and 8.981%, 1.56%, and 2.75% with the
RFR estimated values for the hardness, porosity, and surface roughness, respectively.
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