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Abstract: Oxidative polymerization conducted the synthesis of polyaniline in the presence of iron
gluconate in the water. Iron gluconate is present in the resulting polyaniline (PANI). The PANI
composite exhibited multiple signals in electron spin resonance, including half-field resonance
of multiple spin states, the center-field resonance of polarons as radical cations in conducting
polymer, and a signal from a defect in the main chain. Infrared (IR) absorption spectroscopy
measurements confirmed the chemical structure of the PANI composite. The composite exhibits
the mixed magnetism of PANI as a conducting polymer and Fe ions in the composite according
to superconducting interference device (SQUID) measurements. Combining organic-conjugated
polymers and inorganic materials can result in a unique magnetism.
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1. Introduction

Polymer magnetism has been studied since 1980 to synthesize organic magnets [1–3].
Oxy-radicals have been mainly used as the spin species for magnetic polymers. A variety of
organic magnetic materials have been synthesized via π-electron frameworks. For example,
poly(para-phenylenevinylene) derivatives bearing oxyradicals that exhibit ferromagnetic
behavior at low temperatures have been synthesized. The magnetic polymers, on the
other hand, are generally unstable in ambient air. As a result, the metal-free magnetic
polymer’s instability is a disadvantage in applications. Recently, polymers with magnetism
were investigated using a combination of inorganic materials [4–8]. The combination of
inorganic materials and conducting polymers is used in this study to create air-stable
magnetic-electrical conducting plastics. Magneto-active materials with chemical-physical
functionalities have recently been developed [9–11].

Further, the composite formation can expect magnetic interaction between inorganic
magnetic materials and organic conducting polymers. We employ iron gluconate (IG) as
a chiral filler to polyaniline. The composite is prepared in the polymerization process
of aniline (monomer) in the presence of IG as a convenient procedure. Recently, chiral
conjugated polymers have been developed [12–15]. Composite magnetic polymer with
chiral filler can produce magneto-optically active polymers. Our research goal on the
polyaniline/optically active compound composite is a preparation of magneto-optically
active soft devices.

Aniline was polymerized with ammonium persulfate in the presence of IG to produce
a polymer of the polyaniline (PANI) composite with magnetism in this study. The resulting
composite was subjected to infrared absorption (IR) and UV-visible optical absorption
spectroscopy. Furthermore, the magnetic properties of the composite were assessed us-
ing electron spin resonance (ESR) and a superconducting quantum interference device
(SQUID).

2. Synthesis and Characterization Method

The synthesis of polyaniline-based composite in the presence of IG was carried out for
obtaining the magnetic composite (Scheme 1). First, in a round bottom flask with a 1 cm
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stirring bar, IG (2.004 g), aniline (monomer, 0.504 g), and sulfuric acid (0.512 g) were mixed
in 100 mL of distilled water. Then, 2.502 g of ammonium persulfate was added and stirred
at approximately 0 ◦C. After 24 h, the reaction mixture was filtered and washed with a
large volume of water. The solution was filtered. The product was washed with a large
volume of methanol. Then, the solution was filtered again. The final product was dried
under reduced pressure to yield 0.339 g of a blue-violet powder labeled as IG–PANI.
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Scheme 1. Synthesis for polyaniline–iron gluconate composite (labeled IG–PANI). Molecular struc-
ture of IG. 
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methylpyrroridone (NMP) are shown in Figure 1. Absorption due to the π−π* transition 
of the main chain was observed at 354 nm. At 631 nm, there was broad absorption due to 
the doping band consisting of benzenoid and quinonoid structures [16–18]. The absorp-
tion band of IG–PANI is 9 nm blue-shifted from that of pure PANI (λmax (polarons): 640 nm), 
indicating IG made distortion of the main chain of PANI to decrease effective conjugation 
length. No distinct absorption from ion ions (i.e., d-d transition) was observed at this 
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Scheme 1. Synthesis for polyaniline–iron gluconate composite (labeled IG–PANI). Molecular struc-
ture of IG.

For Fourier transform infrared absorption spectroscopy measurements with an FT-IR
4600, the KBr method was used (JASCO, Tokyo). The ESR of a solid sample packed into
a 5-mm quartz tube was measured using an X-band JEOL JES TE-200 spectrometer. The
magnetic susceptibility of the polymer was measured using a superconductor interference
device (SQUID) (Quantum Design CA, Magnetic property measurement system, MPMS).

3. Results and Discussion

The ultraviolet−visible (UV–vis) absorption spectra of IG–PANI dissolved in N-
methylpyrroridone (NMP) are shown in Figure 1. Absorption due to the π−π* transition
of the main chain was observed at 354 nm. At 631 nm, there was broad absorption due to
the doping band consisting of benzenoid and quinonoid structures [16–18]. The absorption
band of IG–PANI is 9 nm blue-shifted from that of pure PANI (λmax (polarons): 640 nm),
indicating IG made distortion of the main chain of PANI to decrease effective conjugation
length. No distinct absorption from ion ions (i.e., d-d transition) was observed at this range.
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Figure 1. Ultraviolet–visible absorption spectra of pure PANI and IG–PANI.

The polarons in the main chain of PANI were generated by sulfuric acid, which was
used as a dopant during the polymerization reaction.

Infrared absorption (IR) measurement with the KBr method for the composite was
carried out to confirm the chemical structure. Figure 2 displays the IR results for IG, pure
PANI, and IG–PANI. Absorption bands for IG at 1621 cm−1 and 1400 cm−1 are due to
asymmetric COO− stretching and symmetric COO− stretching [19]. An absorption at
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1086 cm−1 is assignable to C−O deformation (γC-O). Absorption bands due to quinonoid
(Q) and benzenoid (B) structures were observed for pure PANI and IG–PANI. Further, the
sequence of Q-B-Q and B-B-B in the main chain was confirmed in the IR [20]. Absorption
due to S = O and in-plane bending vibration (δ) of C-H was observed at a low wavelength
range. IG–PANI showed basically the same IR absorptions as pure PANI except for the
complicated signals at 1000−1200 cm−1, which contained absorptions due to OH moiety.
The IR results suggest that IG–PANI basically shows absorptions of PANI with quite a
small amount of iron gluconate. However, an absorption related to the iron atom was not
observed in this range.

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 3 of 6 
 

 

The polarons in the main chain of PANI were generated by sulfuric acid, which was 
used as a dopant during the polymerization reaction. 

Infrared absorption (IR) measurement with the KBr method for the composite was 
carried out to confirm the chemical structure. Figure 2 displays the IR results for IG, pure 
PANI, and IG–PANI. Absorption bands for IG at 1621 cm−1 and 1400 cm−1 are due to asym-
metric COO− stretching and symmetric COO− stretching [19]. An absorption at 1086 cm−1 
is assignable to C−O deformation (γC-O). Absorption bands due to quinonoid (Q) and ben-
zenoid (B) structures were observed for pure PANI and IG–PANI. Further, the sequence 
of Q-B-Q and B-B-B in the main chain was confirmed in the IR [20]. Absorption due to  
S = O and in-plane bending vibration (δ) of C-H was observed at a low wavelength range. 
IG–PANI showed basically the same IR absorptions as pure PANI except for the compli-
cated signals at 1000−1200 cm−1, which contained absorptions due to OH moiety. The IR 
results suggest that IG–PANI basically shows absorptions of PANI with quite a small 
amount of iron gluconate. However, an absorption related to the iron atom was not ob-
served in this range. 

 
Figure 2. IR absorption spectrum of IG–PANI. 

The ESR measurement results for IG–PANI in the form of a solid powder at room 
temperature (ca. 25 °C) are shown in Figure 3a−c. Iron resonance, structural defects, pol-
yaniline, and iron ion paramagnetic resonance are all present in the signal. The resonance 
in the center field at g = 2.001 (Figure 3a) could be caused by a paramagnetic species’ lattice 
defect (defect in the main chain). This type of ESR signal was observed for Rb3C60, except 
for the half-field resonance in the current sample. The ESR center signal of polarons as 
charge carriers (radical cations) overlapped with this signal. The linewidth of the center-
field signal (ΔHpp) is 81.9 mT. In addition, a signal from multiple spins was observed in 
the half-field range at g = 4.227 with a linewidth of 20.7 mT, as shown in Figure 3a,b (mag-
nification). This can be the triplet state of spins in the composite. Figure 3c shows a mag-
nification of the lattice defect signal (g = 2.001, ΔHpp = 2.2 mT). Figure 3d displays the ESR 
signal for pure PANI prepared with no IG, showing a narrow ΔHpp value at g = 2.004 (ΔHpp 
= 0.8 mT) and no signal at g = 4 (half-field resonance). The comparison of IG–PANI with 
pure PANI in the ESR demonstrated that the IG–PANI has completely different magnetic 
species against the pure PANI. Figure 3e depicts the g-value as a function of temperature. 
Further, Figure 3f displays a change in the ESR intensity and ΔHpp of the IG–PANI com-
posite at g = 2.001. The g-value was constant from high temperature to low temperature 

60080010001200140016001800

Ab
so

rb
an

ce
  (

ar
b.

 u
ni

ts
)

Wavenumber (cm–1)

ν A
r–

N
(B

BB
)

ν A
r–

N
(Q

BQ
)

ν Bν Q

ν S
=O

, 
δ C

–H

Pure PANI

IG/PANI

500

ν a
sy

m
C

O
O

–

Iron gluconate

ν O
H

ν s
ym

C
O

O
–

Figure 2. IR absorption spectrum of IG–PANI.

The ESR measurement results for IG–PANI in the form of a solid powder at room
temperature (ca. 25 ◦C) are shown in Figure 3a–c. Iron resonance, structural defects,
polyaniline, and iron ion paramagnetic resonance are all present in the signal. The res-
onance in the center field at g = 2.001 (Figure 3a) could be caused by a paramagnetic
species’ lattice defect (defect in the main chain). This type of ESR signal was observed for
Rb3C60, except for the half-field resonance in the current sample. The ESR center signal
of polarons as charge carriers (radical cations) overlapped with this signal. The linewidth
of the center-field signal (∆Hpp) is 81.9 mT. In addition, a signal from multiple spins was
observed in the half-field range at g = 4.227 with a linewidth of 20.7 mT, as shown in
Figure 3a,b (magnification). This can be the triplet state of spins in the composite. Figure 3c
shows a magnification of the lattice defect signal (g = 2.001, ∆Hpp = 2.2 mT). Figure 3d
displays the ESR signal for pure PANI prepared with no IG, showing a narrow ∆Hpp value
at g = 2.004 (∆Hpp = 0.8 mT) and no signal at g = 4 (half-field resonance). The comparison
of IG–PANI with pure PANI in the ESR demonstrated that the IG–PANI has completely
different magnetic species against the pure PANI. Figure 3e depicts the g-value as a function
of temperature. Further, Figure 3f displays a change in the ESR intensity and ∆Hpp of
the IG–PANI composite at g = 2.001. The g-value was constant from high temperature to
low temperature with cooling, indicating charge species of the composite was no change.
While the signal intensity was increased with the decrease of temperature, the line width
was constant.
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Figure 3. (a) Electron spin resonance (ESR) of IG–PANI at 100–500 mT range. (b) Half-field resonance.
(c) ESR signal at around g = 2 as the center-field resonance. (d) ESR signal of pure PANI. (e) g-values
vs. temperature. (f) Peak-to-peak peak line width (∆Hpp) of IG–PANI as a function of temperature.

Magnetic measurements using the SQUID reveal the entire magnetic behavior of the
sample.Figure 4a shows χ vs. T plots (χ = magnetic susceptibility). The χ value of the com-
posite was increased with temperature. 1/χ as a function of T shows an inflection point at ca.
270 K, implying the occurrence of a magnetic phase transition (Figure 4b). An extrapolation
at the high-temperature range directs to the zero value, implying ferromagnetic behavior.
χT vs. T as Currie plots indicate that the sample showed a maximum of χT at 262 K and
gradually decreased (Figure 4c) to a low-temperature range. Such behavior is usually
attributed to zero-field splitting or intermolecular antiferromagnetic coupling [21,22]. This
composite may contain ferromagnetic and antiferromagnetic components. χT vs. 1/T plots
as Ising plots demonstrate a magnetism change (Figure 4d). In the previous study, the
SQUID measurement results for pure PANI and PANI–poly(styrenesulfonic acid) indicated
that the polymer shows Pauli’s paramagnetism. However, such an inflection point in the χ

vs. T plots at the high-temperature range was not observable [23,24]. Therefore, the unique
magnetic behavior of IG–PANI was derived from the interaction of IG and PANI in the
composite form.
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The sample’s magnetism is complicated due to the mixed magnetism from the com-
posite’s polarons, iron ions, and lattice defects. In addition, external stimuli, such as light
irradiation, may cause magnetism to be tuned for the magnetic composite. The combi-
nation of magnetism in organic–inorganic material composites can result in magnetic
materials that are previously unseen. It is expected that the composite will be processable
for producing thin films, sheets, and textiles.
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