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Abstract: The objective of this study is to determine the analytic expressions of the Helmholtz
free energy, the equilibrium vacancy concentration, the melting temperature, the jumps of volume,
enthalpy the mean nearest neighbor distance and entropy at melting point, the Debye temperature
for the BCC defective, the limiting temperature of absolute stability for the crystalline state, and for
the perfect binary interstitial alloy. The results obtained from the expressions are combined with
the statistical moment method, the limiting condition of the absolute stability at the crystalline state,
the Clausius—Clapeyron equation, the Debye model and the Gruneisen equation. Our numerical
calculations of obtained theoretical results were carried out for alloy WSi under high temperature
and pressure. Our calculated melting curve and relation between the melting temperature and the
silicon concentration for WSi are in good agreement with other calculations. Our calculations for
the jumps of volume, enthalpy and entropy, and the Debye temperature for WSi predict and orient
experimental results in the future.

Keywords: statistical moment method; defective and perfect interstitial alloy WSi; equilibrium
vacancy concentration; jumps of volume; enthalpy and entropy at melting point

1. Introduction

Metals and interstitial alloys [1-5] have been investigated by several research groups
in the last decades due to their applications in various fields [6-9]. Many theoretical and
experimental studies about the mechanical and thermodynamic properties of metals and
interstitial alloys gained scientific and technological attention and represent an active
area of research that requires integrating modern scientific insights [10-14] from multiple
disciplines [15-19].

Different researchers have studied the dependence of the mechanical and thermo-
dynamic properties of materials on the temperature (T), pressure (P), and concentration
of components for these materials. It is known that point defects such as vacancies have
important contributions to the properties of materials [18-24]. At the melting point, the
equilibrium vacancy concentration of metals changes from 10~* to 10~2 [20]; therefore, it
has a significant influence on the thermodynamic quantities of crystals at high tempera-
tures. W has very high melting temperatures and can provide fundamental information
on the equilibrium vacancy concentrations in metals and alloy metals with structured
Body-Centered-Cubic (BCC) and their temperature dependences [20-22]. At P = 0.1 MPa,
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W has a BCC structure with lattice constant (a), 2 = 3.1649 x 1071 m at T = 300 K and a
melting point at T = 3690 K. The melting curve of W was studied by the optical method
at P=5GPaand T = (4050 £ 200) K with dT/dP =75 K/GPa [25] and up to P = 90 GPa
and T ~ (4000 £ 100) K using the Laser-Heated Diamond Anvil Cell (LHDAC) for optical
measurements [26].

In various studies, researchers determined the melting temperature (T};) of a crystal
only from the solid phase and applied the statistical moment method (SMM) [27-33]. From
the SMM method, the stability temperature (T's) can be determined at different pressures,
and the corresponding calculations to find T, from T, and then T at crystalline state

is defined by (g—‘l;) . 0. Then, the isothermal compressibility of the crystal is equal

to infinite. Several SMM calculations are more consistent with experiments than those
obtained from other calculations.

In this research, the melting temperature, the jumps of volume, enthalpy and entropy
at the melting point, and the Debye temperature for the BCC defective and perfect binary
interstitial alloy by combining the SMM, the limiting condition of the absolute stability of
the crystalline state, the Clapeyron-Clausius equation, the Debye model and the Gruneisen
equation are studied. The theoretical results are numerically performed for alloy WSi, and
some of our calculated results are compared with experiments and other calculations.

2. Content of Research
2.1. Melting Temperature, Jumping of Volume, Enthalpy and Entropy at Melting Point, and Debye
Temperature of the BCC Defective and Perfect Binary Interstitial Alloy

In our model, the interstitial alloy AB with the concentration cg << c4, was applied.
In it, the A metal has atoms in the center and peaks of cubic, while the atoms of B are in
the center of cubic. With the parameters k, 71, 2, 7, the cohesive energy uy with the sphere
center at the position of B, radii 715 and r,p are determined as follows [1-4,29,33]:

1y
UoB = 7 Y @ap(ri) = @a(ris) +2¢ap(r28), 728 = V2r1, @
i=1

e 1d d? 1d
Z( 4’AB> _ 1 dgap(np)  dpap(rap) 1 (PAB(T’ZB), @
eq

B =
2 aulzﬁ 1B d”lB dl’%B 2B erB

i

vB = 4(71B + 72B), 3)

_ 1 *pap _ 1 1 d@ap(np) 1 deap(rig) | 1 d*@ap(r2p)
MB = 48?( oy ) T WA A, W o B ag,

# 4)
1 Poap(rep) 5 dpap(ras) 4+ -5 doap(rap)
8rB  drip 16r2,  drig 16r3, drp 7
6 *pap 1 d*@ap(r1p) 1 doap(rig) | 1d*@ap(r2p)
18 = &% =1 Zoamlng) _ 1 +1 +
48 ; Bulzaau%ﬁ eq 41’%8 dr%B 4r‘I’B drip 8 drgB (5)
1 Boap(rap) + 7 Poap(rog) 7 doag(ras)

3 2 2 3
4rp  dryg 8oy drig 8r3p  drs

where u;g, n;, and r1p = 1015 + Yo4, (T) are the displacements of the ith atom in the direction
of B,a, B = x,y,z,& # B, the number of atoms on the ith coordination sphere with radius
ri(i = 1,2), and the nearest neighbor distance between the interstitial atom B and the
main metal A in the alloy at temperature T; yo, (T) and rp;p are the displacements of
atom A; (atom A in the body center of the cubic unit cell) from the equilibrium position at
temperature T, determined from the minimum condition of the cohesive energy up, and
the nearest neighbor distance between the interstitial atom B and the main metal A in the
alloy at temperature 0 K; ¢ 4p is the interaction potential between atom A and atom B. The



J. Compos. Sci. 2021, 5,153

30f17

_ 1 *pas
Y14, = MA T+ 48; ( aufﬂ

6
Y24, = 124+ @; (

cohesive energy ug and the alloy parameters k, y1, 2, y for atom A; (atom A in the body
center of the cubic unit cell) in the approximation of three coordination spheres with the
sphere center at the position of A; and the radius r1 4, of the third coordination sphere are
determined as follows [1-4,29,33]:

uoa, = Uoa + @ap(r14,), (6)
d > (114 2 doap(ria
= a Z ( qvAB) gy L ( 1)+r 90[#( .
. 1, 14, 14,
q 'r‘:T’lAl
Ya, = 4114, +724,), 8
1 d*¢ap(ria,) 1 d*@ap(ria,) 1 deap(ria,) 9
_71A+24 d4 +42 dz 43 d ’ ()
eq 1A] rlAl rlAl rlA] rlAl
7':7‘1,41
ot (PAB _ 1 d¢ap(ria,) 3 d*ap(ria,) 3 deap(ria,)
aza _72A+2 3 - 2 2 3 d /(10)
Yia®Uip eq] p—y ay A, dria,  drig, 4ria, "4y
=1,

where 114, & r1p is the nearest neighbor distance between atom A; and the other atoms in
the alloy.

The uy, k, y1, 2, v are the cohesive energy and the alloy parameters for atom A, (atom
A in the peaks of the cubic unit cell) in the approximation of three coordination spheres,
with A; and radius 71 4, of the third coordination sphere as follows [1-4,29,33]:

uoa, = Uoa + @ap(r14,), (11)
02 d? r 4 d r
py =kt Z <PAB ka2 40232( 14,) N 9023( 1A2), 12)
1A2 rlAZ 7’1A2
eq r=r14,
Ya, = 4(714, + 724,). (13)
1 1 *oap(ria,) 1 9ap(ria,)
’YlAZ ’)/lA ZZ [( aq)AB> ‘| - ’)/1A + 24 d?’ 2 + 471A2 dV%A 25—
FLNTE e, - 2 (14)
1 P9ap(ria,) 41 dpap(ria,)
Sr%AZ dV%AZ 87?/\2 dria, 7
ot d*ap(r1a,)
Y24, = V24 + %Z [(au2¢82€ﬁ> 1 =724+ }L%—
! 1 r=ri4, 2 (15)

1 d3<PA33(71A2) 23 d ¢ABZ(71A2) _ 33 dpap(ria,)
4r14, ar 4o 271A2 drlAz 2"1A2 dria,

7

where r14, = 1914, + YoB(T), 7014, and uga,, yop(T) are the nearest neighbor distances
between atom A, and the other atoms in the alloy, and is determined from the minimum
condition of the cohesive energy in the displacement of atom B from the equilibrium
position at temperature T. In Equations (6)—(15), uga, k4, Y14, 724 are the cohesive energy
and the metal parameters for atom A in the clean metal A in the approximation of two
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coordination spheres with the sphere center at the position of A and radii r14 and 7,4 and
have the following forms [29,33]:

2

uoa = 4@aa(ria) +39aa(r24), 124 = —=114, (16)
V3
Ky = 4d%paa(r1a) 48 dpan(ria) n d>pan(r2a) n 2 deaa(ra) 17
3 d?’%A 3T1A drlA dT%A T2A erA ’
Ya = 4(114 +724)- (18)
_ 1 #aa(ria) 8 dpaa(ria) 20 P@aa(ria) 20 dpaa(ria)
MAZ s gr T ea s, 92, dl, TR, dna T
14, 14, 1A 14 1A (19)
1 @*¢anlraa) 1 d°@aa(raa) 1 deaa(raa)
24 a3, a2, drZ, 43, dra 7
_ 1 daa(ria) 5 Boaa(ria) 5 d@aa(ria) 5 dpaa(ria)
124 = 517 g4 9ria ar T 152 dar? T 18, dna T
LR o 1A 1A 1A (20)
1 @ean(ra) 9 F@aalra) 9 dpaa(raa)
2r4  drd, 82,  drZ, 83, dra

The equations of state for the BCC alloy AB at P and T, and at P and T = 0 K, respec-
tively, are determined by the following relations [29,33]:

B 1 dug 10k 4r
Po=-n {631’1 + GXCthxzkarl:| )0 = ﬁ’ (21)
_ 1 auo ﬁwo dk
Po = 1 |:6 8r1 4k ar1:| ' (22)

where r; v, x = f;—“’, 0 = kgoT, w = \/%, kg, are the nearest neighbor distance between
two atoms in the alloy, the volume of the cubic unit cell per atom, and the Boltzmann
constant. If the form of the interaction potential between two atoms X (X = A, Ay, Ay, B) is
known, from Equation (22) we can find the nearest neighbor distance between two ry;x(P,0)
and the alloy parameters kx (P,0), v1(P,0), y2(P,0), v(P,0) for atom X at T =0 K and P.
From that, we can determine the displacement yx(P, T) of atom X from the equilibrium
position at T and P as follows [29,33]:

i

’)/Xuj, O)kBOT

—5——=—| a;x(P,T),
k% (P,0) !

~ [29x(P,0) (kpoT)? B °
yx(P,T) = \/ 3K3(P,0) Ax(P,T),Ax(P,T) = mx(P,T) + l;

YX(P/ T) = xX(P/ T>C0thxX<Pl T)/ XX(P, T) - 2kB T m
(o]

arx = 1 + %Yx,az = ? + %YX + %Y% + %Yg’(,ﬂg,x = — (% + %YX + 53£Y§( + %Y;’( + %Y;L(),
= §+ $r 0 L $ri 4 Brpe by,
asx = — (12 + Z2vx + v3 + v} + Wovd + Bv] + I1§),
Aox = 65+ 1Y + V% + VR + Y+ P2VR + YL+ oY,

(23)

The nearest neighbor distance r1x (P, T) is given by the following relations [1-4]:

rB(P,T) = rp1g(P,0) +ya,(P,T),r14(P,T) = r14(P,0) +ya(P, T),

24
ra, (P, T) ~ rip(P, T), rin, (P, T) = rova, (P, 0) + y5(P, T). @)
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The mean nearest neighbor distance 714 (P, T) between two atoms A in the alloy is
derived from the following expressions [1-4]:
1a(P,T) =r01a(P,0) +y(P,T),
r014(P,0) = (1 — cp)ro1a(P,0) + cpry 4(P,0), 75, 4(P,0) = v/3ro1p(P,0), (25)
y(P,T) = (1 7cg)ya(P,T) + coys(P, T) +2c5y, (P, T) + 4cgy a, (P, ),

where r914(P,0), 75, 4(P,0), r14(P, T), r014(P,0) and cp are the mean nearest neighbor
distances between two atoms A in the clean metal A at pressure P and temperature 0 K; the
region containing the interstitial atom C of the alloy at P and T = 0 K, and the concentration
of the interstitial atoms B and nearest neighbor distance between two atoms A in the alloy
at Pand T and at P and T = 0 K. The Helmholtz free energy of the BCC perfect interstitial
alloy AB with the condition cg << cy4 (c4, cp, respectively, are the concentrations of atoms
A and B) can be calculated with the following relations [1-4]:

Yap = (1 —7c)Pa + cpyp + 2cptpa, +4cppa, — TSc,
2
Px ~ Uox + Pox +3N{,f%( [VzXYp% 2'“’( (1 + X )] +

%3 [%'YZXYX (1 + YTX) —2[v3¢ + 271x72x] (1 + 7)‘) 1+ Yx)] },
Pox = 3NO [XX + 11‘1(1 — 672xx)],YX = xxcothxy,

(26)

where N is the number of atoms in the alloy, ¢x is the Helmholtz free energy of atom
X in the clean material X, and Sc is the configurational entropy of the interstitial alloy AB.
The concentrations of atoms A, A1, A; and B are determined by the following relations:

CA:1—7CB,CA1 :ZCB,CA2:4CB,CB << ca. (27)

From the condition of absolute stability limit expressed as:

<aP) —Oor(ap) =0 (28)
aUAB T=Ts aaAB T=Ts

and from the equation of state for the interstitial alloy AB expressed as:

T
P— 7“;3 cx aMQX i 3’YGkBOT
AR T Orix UAB

, (29)

the absolute stability temperature for the crystalline state can be derived in the following
expression [3,4,29,32,33]:

a’ o%u ek g cxwyx | 1 ( ok 92k
2Pvp + %Z 12<X ABZ A X T(aﬁf{) - ar%j:

TS - X 2 ’ (30)
”ABkBozcix dkx
4 X k%( arlx
T D T a cy ok _ T
where agp = r114(P, T), 04 = 3{ and 'yG = —ﬁz ki arf;YXrYX = xxcothxy. 7 are

the Gruneisen parameters of the alloy. The right side of Equation (30) must be determined
at Ts. By solving Equation (30) the value of Ts can be obtained.

The melting temperature T, is derived from the absolute stability temperature T's by
the following relation [3,4,29,32,33]:

ay, —ag | Pog cx | (dugx %upx
Ty ~ Ts + —+) = ( > +as< , (1)
S X 18 ar‘lX T:TS aT%X T TS

kBo')’G as

where Ay = ﬂAB(Tm)/ as = aAB(Ts), Ug = UAB(TS) and ’)/é = ’)’(];(TS)~ Here, approxi—
mately ’yé is constant in the range of temperature from T's to Ty,.
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Temperature Ts(0) at zero pressure has the following relation [34]:

Ts(0) = asp dupx

c , 32
187 Ckeo & X Or1x (32)

where 245, ?fr’;’; , 7& are determined at Ts(0).
Temperature Ts at pressure P can be calculated with the following relation [3,4]:

vAgP oL
Ts ~ Ts(0) + ABZ< 76) Ts. (33)
aAB

Here, v 43, 'yG, aaT are calculated at Ts. Approximately, the T, ~ Ts. Equation (33)
can be solved by the approximate iteration method applied at low pressure.

In the case of high pressure, temperature T, at pressure P is calculated by the following
relation [3,4]:
1/B),
T (0)B, G(P)
co) (Bo + ByP) "%

where Ty, (P), Tin(0), G and By are the melting T at P and at zero P, respectively; the bulk
modulus and the isothermal elastic modulus are calculated by the following relations [1-4,29,33]:

Tn(P) =

(34)

E — ~ — dB
G - m,v = VAB = VA,B(] = BT(O),B6 = (7PT)P:0,

2P+3”é13 (32(1;/«3) . .
_ 1 _ AB \ 91y Pap ~ Y
Br(P) = xr(P) 5 4t ( ; Y cx a@x T,

(2az) da%p X X
0AB )
1 azl[JX 1 azuox Yy asz 1 dkx 2 — XX
SN ( Irix T ~ 0ok 0 Zkx a3y, 43 \9nx (YX * ZX) Zx = sinhxx /
Pyp azl[)Al aZ¢A2 (35)
E = _ 1 1—7cp+c 92 +2 92 +4 962
= mriadia BT B 29y !
92

1 2956
A= 1+ (1+2YA)(1+YA),
Py 2uyx hwy | 0%kx 1 ( Okx 2 dupx | 30Yx dky
5 =42 o, +3% a7, Ty (arlx) r01X+(8r1X + *aax)rmX/

where ¢ is the strain of the alloy, and v4p, v4 are the Poisson ratios of alloy AB and the
main metal A, respectively.

The equilibrium vacancy concentration 7, of the alloy is determined from the mini-
mum condition of the real Gibbs thermodynamic potential GX, of the defective alloy AB,
and has the following relation form:

ny = % = exp (—%), (36)

kBo

where n and g{] 4 p are the numbers of vacancies in the alloy and the change in the Gibbs
thermodynamic potential when a vacancy is formulated, and is determined from the
distribution of atomic concentrations cy as follows:

ngB = ZCXg£x1 (37)
X

5{, = —74— (Bx — 1)¢x + PAvy, (38)
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where By ~ 1+ % Therefore, g}, ~ —*% and according to ref. [34]:
%CXMOX
= - 39
Mo = P g T 39)

At constant P and constant interstitial atom concentration, the melting temperature
TR of a defective crystal is the function of the equilibrium vacancy concentration 7.
Approximately, the following relations can be applied [2,34]:

o, T2 (P
TR(P) = Tu(P) + (5 ) no = T (P) + — 14—,
T, (p) aZJAB __%vAB
; " a(kgoT)  kBo
98pAB  _ _ AQABAT Jupx
e T) = ~ dkny = X 3y
ar — KBo daap _  kpoXt (d0ap Z‘ZA;BL Ppap  PPap ~Yc Pyx (40)
T A0AB do 3 aasB UVAB 3N aGBaAB’ E)GaaAB X Xaﬂarlx’
1 PPx _ 1 dkx 2 20 [7x 9kx 2\ _ 19nx 2\ _
3N ay = 2y lx g |3 S (24 YxZ%) — g9k (4 + Yx + Z5)
272x dkx _ 972x 2
(( X ax aﬂx Y ZX

where aTy, o, respectively, are the thermal expansion coefficients of atom X in alloy AB.
The jumping of volume at melting point for the alloy can be found from the following

expression [35]:
efa’ 67202
Avy, = AB <1+ > 41

" Vak(u)? k4 )

where ¢ is a constant depending on the nature of the alloy and we take the value 0.01 as
for metal [36], and (u) =y = }_cxyx is the mean displacement of the main metal atom
X

A from the equilibrium position as in Equation (25). In order to determine the jumping
of volume Av,, at pressure P and temperature T, it is necessary to determine a4p, (u) at
pressure P and temperature T. The alloy parameters k, <y are determined with respect to
ap at pressure P and temperature T.

After finding the melting temperature T, and the melting T, (P), we can calculate the
slope of this curve, and the derivative aaLIT. IfT,, aagg" and Aoy, are known, the jumping of
enthalpy at melting point from the Clausius—Clapeyron equation can be derived according
to the following relation:

TmAo
AHy = 55— (42)
JoP
and the jumping of entropy at melting point:
AH
AS, = —=. (43)
T

Firstly, we find the isothermal compressibility 1 of the BCC interstitial alloy AB
according to Equation (35) and the thermal expansion coefficient a1 of the alloy according
to Equation (40). The specific capacity at a constant volume of the alloy is given by the
following relations [2,29,33]:

Cvap = Y cxCyx,
X

(44)
Cyx = 3NkBO{Z§( + % (272x + BE)YxZ% + WX (14 Z%) — 7ox (Z5 + Y3 Z%) ] }
The Gruneisen parameter of the alloy has the following relation [29,33]:
3aV
G (45)

T xiCy Vv



J. Compos. Sci. 2021, 5,153

8of 17

Then, from the mean nearest neighbor distance a 45 the quantities V, x1, ar, Cy and
G at pressure P and temperature T can be determined. For the BCC lattice, the following
relation is known:

3
V(P,T) _ [aAB(P,T)] ' (46)
Vo(0,T)  Laoap(0,T)
Graf et al. [37] proposed the following expression for the Gruneisen parameter:
VvV \1
YG = YGo (Vo) , (47)

where vg = vg(P, T), vco = vg(0, T) and g are material constants and g > 0. Therefore,
by using the SMM, vg, Yco, VKO can be calculated from a 4p, and by using Equation (49) the
value of g can be calculated.

According to the Debye model, the Gruneisen parameter is defined as follows:

dlnwp  dlninl
olnvV ~ 9lnV ’

G = (48)

where wp is the Debye frequency and Tp is the Debye temperature.

By substituting the Gruneisen parameter from Equation (47) into Equation (48) and
taking the integration, we derived the dependence of the Debye temperature Tp(P) at P
on the Debye temperature Ty, and the Gruneisen parameter ygg at zero P, as well as the

volume ratio % [7]:
q
wo-men B[ )

The Debye temperature Ty of the alloy at zero pressure is given by the following relation:

th(O, T)

o (50)

Tpo =

The Debye frequency wp (0, T) at zero pressure and temperature T is related to the Ein-
stein frequency wg (0, T) at zero pressure and temperature T by the following relation [38]:

wp(0,T) ~ %wE(O, T) ~ %\/ k(?f), (51)

where k(0,T) is the harmonic parameter of the alloy at zero pressure and temperature T.
Therefore, it can be obtained through the following expression:

4k [k(0,T)
73](]30 m

Tpo (52)
Equations (1)—(40) are used in our previous papers [1-9] on elastic, thermodynamic
and melting properties of metals and interstitial alloys. Equations (41)-(52) only are used
to study the jumps of volume, enthalpy and entropy, and the Debye temperature of metals.
In this study, for the first time, we apply Equations (41)—(52) to study the jumps of volume,
enthalpy and entropy, and the Debye temperature of the BCC interstitial alloy AB.

2.2. Numerical Results and Discussions for Alloy WSi

In order to study alloy WSi, we applied the Mie-Lennard-Jones (MLJ) pair interaction
potential as follows [39]:

= 2 () ()7

r r
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where D, ry, m and n are the depths of potential well corresponding to the equilibrium
distance—they are determined empirically. Then, the potential parameters for the interac-
tion W-5i are determined by the following relations [28]:

1
Dw_si = v/ Dw_wDsi_si, row—si = E(”OW—W + 708i—Si)- (54)

We find nw.g;, myw.si by fitting the experimental data and the theoretical result for the
Young modulus of the interstitial alloy WSi at room temperature. The Mie-Lennard-Jones

potential’s parameters for the interactions of W-W and Si-Si are given in Table 1.

Table 1. Mie-Lennard-Jones potential’s parameters for the interactions W-W and Si-Si.

Interaction D (10-16 erg) 7o (1010 m) m n
W-W [31] 15,564.744 2.7365 6.5 10.5
Si-Si [31] 45,128.34 2.2950 6 12

Our computed results are summarised from Tables 2-9 and are illustrated in Figures 1-9.
We calculated the silicon concentration and pressure of the volume, the isothermal com-
pressibility, the Gruneisen parameter and the Debye temperature, the thermal expansion
coefficient, the specific heat at constant volume in Tables 2-7 and in Figures 1-6. According
to our obtained results, for WSi at the same temperature and silicon concentration when
pressure increases, the volume, the isothermal compressibility, the thermal expansion
coefficient, the Gruneisen parameter decreases, the Debye temperature increases, and the
specific heat at constant volume. For W6i at the same temperature and pressure when
the silicon concentration increases, the volume, the specific heat at constant volume, the
Gruneisen parameter increases, the thermal expansion coefficient, the Debye temperature
decreases and the isothermal compressibility.

Table 2. Si concentration and pressure dependence of volume V (10_29m3) for WSi at T = 300 K.

P=0GPa P=10GPa P =30 GPa P =50 GPa P =70 GPa
csi = 0% 1.442 1.412 1.372 1.339 1.311

V (1072 m3) csi =1% 1.474 1.439 1.396 1.362 1.333
csi = 3% 1.537 1.496 1.446 1.408 1.377
csi = 5% 1.603 1.554 1.498 1.456 1.422

Table 3. Si concentration and pressure dependence of isothermal compressibility xr <10*12Pa_1>
for WSi at T = 300 K.

P=0GPa P=10GPa P=30GPa P=50GPa P=70GPa

csi = 0% 1.666 1.501 1.271 1.107 0.984
xr s =1% 1.845 1.647 1.375 1.186 1.045
(10*121?;{1) csi = 3% 2.338 2.035 1.639 1.378 1.192
s =5% 3.160 2.643 2.017 1.638 1.381

Table 4. Si concentration and pressure dependence of thermal expansion coefficient a (10*6 K’1>
for WSi at T =300 K.

P=0GPa P=10GPa P=30GPa P=50GPa P=70GPa

- csi = 0% 3.320 3.025 2.583 2.264 2.021
ar cs = 1% 3.893 3.39 2.819 2.435 2.151
(10—6K—1) s = 3% 5.456 4.356 3.414 2.851 2.459

- csi =5% 8.040 5.859 4.264 3.412 2.856
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Table 5. Si concentration and pressure dependence of specific capacity at constant volume
Cy (J/mol.K) for WSi at T = 300 K.

P=0GPa P=10GPa P=30GPa P=50GPa P=70GPa

csi =0% 23.402 23.294 23.089 22.896 22.713

Cy csi =1% 23.544 23.294 22.982 22.728 22.499
(J/mol.K) csi =3% 23.826 23.295 22.768 22.389 22.071
csi =5% 24.109 23.295 22.554 22.051 21.642

Table 6. Si concentration and pressure dependence of the Gruneisen parameter . for WSi at

T =300 K.
P=0GPa P=10GPa P=30GPa P=50GPa P=70GPa

csi = 0% 2.218 2.207 2.181 2.160 2.142

VG s =1% 2.386 2.298 2.249 2222 2.202

csi = 3% 2.721 2.483 2.391 2.351 2.325

csi = 5% 3.057 2.673 2.536 2.485 2.454

Table 7. Si concentration and pressure dependence of Debye temperature Tp for WSi at T = 300 K.

P=0GPa P=10GPa P=30GPa P=50GPa P=70GPa

csi = 0% 362.73 398.07 450.56 498.53 544.14
Tp(K) csi =1% 330.05 365.98 418.01 464.84 509.11
csi =3% 270.57 307.84 358.63 403.04 444.60
csi =5% 219.02 257.24 306.32 348.15 386.97

Table 8. Si concentration and pressure dependence of volume jumping Avy, (10*30m3) for WSi at

T =300 K.
P=0GPa P=10GPa P=30GPa P=50GPa P=70GPa
cg = 243 2.16 1.84 1.62 1.44
Avy, cg =1% 2.74 2.41 2.03 1.77 1.58
(107%m3)  c5 =3% 3.49 2.99 2.47 2.13 1.88
cg =5% 4.45 3.71 3.00 2.56 2.24

Table 9. Jumping of volume, and enthalpy and entropy at melting point (using the melting curve
calculated by the SMM for the defective model).

P (GPa) 0 30 50 70
Ty (K) 3387.5 43125 4825 53125

4 (K/GPa) 34.6 27.5 25 25
Avy (1073%m?) 2.743 2.301 1.772 1.576
AH,;, (meV) 268.55 360.84 341.996 3349

AS,y (kg) 0.079 0.084 0.071 0.063
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Figure 3. For WSi at T = 300 K.
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According to Figure 7 [3], when cg; increases from 0 to 5.5%, the T, of WSi decreases
(from 3810 to T = 2459 K) from the SMM for the perfect model, (from T = 3609 K to
T = 2366 K) from the SMM for the defective model and from T = 3695 K to T = 2460 K from
CALPHAD [40]. The melting slope ZCL;': for WSi at zero pressure is 245.6 K/ % from the
SMM for the perfect alloy, 226 K/ % from the SMM for the defective alloy and 224.5K/%
from CALPHAD [40]. The SMM calculations for the melting slope of the defective alloy
are in good agreement with the CALPHAD calculations.

Figure 8 shows the melting curve of WSi at cg; = 1% obtained from the SMM for the
perfect model and the SMM for the defective model [3]. In the range of pressure from
P =0 GPa to P = 80 GPa, the T, of the perfect W 99Sip g increases from T = 3564 K to
T = 6088 K and the T}, of the defective W 99Sig o1 increases from T = 3383 K to T = 5534 K.

3. Conclusions

The analytic expressions for structural and thermodynamic quantities such as the alloy
parameters, the mean nearest neighbor distance, the melting temperature, the Helmholtz
free energy, the equilibrium vacancy concentration, the cohesive energy, enthalpy and
entropy, the isothermal compressibility, the limiting temperature of absolute stability for
the crystalline state, the thermal expansion coefficient, the jumps of volume, the heat
capacity at constant volume, the Gruneisen parameter and the Debye temperature for
the defective and perfect binary interstitial alloy with a BCC structure are derived by
combining the limiting condition of the absolute stability of the crystalline state with the
statistical moment method, the Clapeyron-Clausius equation, the Debye model and the
Gruneisen equation. Our numerical calculations of the melting curve and the relation are
carried out for alloy WSi under a pressure of up to P = 80 GPa. Our calculated melting
curve and relation between the melting temperature and the silicon concentration for WSi
are in good agreement with other calculations. Our calculations for the melting curve, the
jumping of volume, enthalpy and entropy, and the Debye temperature for WSi predict and
orient experimental results in the future.
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