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Abstract: The objective of this study is to determine the analytic expressions of the Helmholtz
free energy, the equilibrium vacancy concentration, the melting temperature, the jumps of volume,
enthalpy the mean nearest neighbor distance and entropy at melting point, the Debye temperature
for the BCC defective, the limiting temperature of absolute stability for the crystalline state, and for
the perfect binary interstitial alloy. The results obtained from the expressions are combined with
the statistical moment method, the limiting condition of the absolute stability at the crystalline state,
the Clausius–Clapeyron equation, the Debye model and the Gruneisen equation. Our numerical
calculations of obtained theoretical results were carried out for alloy WSi under high temperature
and pressure. Our calculated melting curve and relation between the melting temperature and the
silicon concentration for WSi are in good agreement with other calculations. Our calculations for
the jumps of volume, enthalpy and entropy, and the Debye temperature for WSi predict and orient
experimental results in the future.

Keywords: statistical moment method; defective and perfect interstitial alloy WSi; equilibrium
vacancy concentration; jumps of volume; enthalpy and entropy at melting point

1. Introduction

Metals and interstitial alloys [1–5] have been investigated by several research groups
in the last decades due to their applications in various fields [6–9]. Many theoretical and
experimental studies about the mechanical and thermodynamic properties of metals and
interstitial alloys gained scientific and technological attention and represent an active
area of research that requires integrating modern scientific insights [10–14] from multiple
disciplines [15–19].

Different researchers have studied the dependence of the mechanical and thermo-
dynamic properties of materials on the temperature (T), pressure (P), and concentration
of components for these materials. It is known that point defects such as vacancies have
important contributions to the properties of materials [18–24]. At the melting point, the
equilibrium vacancy concentration of metals changes from 10−4 to 10−2 [20]; therefore, it
has a significant influence on the thermodynamic quantities of crystals at high tempera-
tures. W has very high melting temperatures and can provide fundamental information
on the equilibrium vacancy concentrations in metals and alloy metals with structured
Body-Centered-Cubic (BCC) and their temperature dependences [20–22]. At P = 0.1 MPa,
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W has a BCC structure with lattice constant (a), a = 3.1649 × 10−10 m at T = 300 K and a
melting point at T = 3690 K. The melting curve of W was studied by the optical method
at P = 5 GPa and T = (4050 ± 200) K with dT/dP = 75 K/GPa [25] and up to P = 90 GPa
and T ~ (4000 ± 100) K using the Laser-Heated Diamond Anvil Cell (LHDAC) for optical
measurements [26].

In various studies, researchers determined the melting temperature (Tm) of a crystal
only from the solid phase and applied the statistical moment method (SMM) [27–33]. From
the SMM method, the stability temperature (TS) can be determined at different pressures,
and the corresponding calculations to find Tm from TS, and then TS at crystalline state
is defined by

(
∂P
∂V

)
Ts

= 0. Then, the isothermal compressibility of the crystal is equal

to infinite. Several SMM calculations are more consistent with experiments than those
obtained from other calculations.

In this research, the melting temperature, the jumps of volume, enthalpy and entropy
at the melting point, and the Debye temperature for the BCC defective and perfect binary
interstitial alloy by combining the SMM, the limiting condition of the absolute stability of
the crystalline state, the Clapeyron-Clausius equation, the Debye model and the Gruneisen
equation are studied. The theoretical results are numerically performed for alloy WSi, and
some of our calculated results are compared with experiments and other calculations.

2. Content of Research
2.1. Melting Temperature, Jumping of Volume, Enthalpy and Entropy at Melting Point, and Debye
Temperature of the BCC Defective and Perfect Binary Interstitial Alloy

In our model, the interstitial alloy AB with the concentration cB << cA, was applied.
In it, the A metal has atoms in the center and peaks of cubic, while the atoms of B are in
the center of cubic. With the parameters k, γ1, γ2, γ, the cohesive energy u0 with the sphere
center at the position of B, radii r1B and r2B are determined as follows [1–4,29,33]:

u0B =
1
2

ni

∑
i=1

ϕAB(ri) = ϕAB(r1B) + 2ϕAB(r2B), r2B =
√

2r1B, (1)

kB =
1
2 ∑

i

(
∂2 ϕAB

∂u2
iβ

)
eq

=
1

r1B

dϕAB(r1B)

dr1B
+

d2 ϕAB(r2B)

dr2
2B

+
1

r2B

dϕAB(r2B)

dr2B
, (2)

γB = 4(γ1B + γ2B), (3)

γ1B = 1
48 ∑

i

(
∂4 ϕAB
∂u4

iβ

)
eq
= 1

24
1

8r2
1B

d2 ϕAB(r1B)

dr2
1B

− 1
8r3

1B

dϕAB(r1B)
dr1B

+ 1
48

d4 ϕAB(r2B)

dr4
2B

+

1
8r2B

d3 ϕAB(r2B)

dr3
2B

− 5
16r2

2B

d2 ϕAB(r2B)

dr2
2B

+ 5
16r3

2B

dϕAB(r2B)
dr2B

,
(4)

γ2B = 6
48 ∑

i

(
∂4 ϕAB

∂u2
iα∂u2

iβ

)
eq
= 1

4r2
1B

d2 ϕAB(r1B)

dr2
1B

− 1
4r3

1B

dϕAB(r1B)
dr1B

+ 1
8

d4 ϕAB(r2B)

dr4
2B

+

1
4r2B

d3 ϕAB(r2B)

dr3
2B

+ 7
8r2

2B

d2 ϕAB(r2B)

dr2
2B

− 7
8r3

2B

dϕAB(r2B)
dr2B

,
(5)

where uiβ, ni, and r1B = r01B + y0A1(T) are the displacements of the ith atom in the direction
of β, α, β = x, y, z, α 6= β, the number of atoms on the ith coordination sphere with radius
ri(i = 1, 2), and the nearest neighbor distance between the interstitial atom B and the
main metal A in the alloy at temperature T; y0A1(T) and r01B are the displacements of
atom A1 (atom A in the body center of the cubic unit cell) from the equilibrium position at
temperature T, determined from the minimum condition of the cohesive energy u0B, and
the nearest neighbor distance between the interstitial atom B and the main metal A in the
alloy at temperature 0 K; ϕAB is the interaction potential between atom A and atom B. The
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cohesive energy u0 and the alloy parameters k, γ1, γ2, γ for atom A1 (atom A in the body
center of the cubic unit cell) in the approximation of three coordination spheres with the
sphere center at the position of A1 and the radius r1A1 of the third coordination sphere are
determined as follows [1–4,29,33]:

u0A1 = u0A + ϕAB
(
r1A1

)
, (6)

kA1 = kA +
1
2∑

i

(∂2 ϕAB

∂u2
iβ

)
eq


r=r1A1

= kA +
d2 ϕAB

(
r1A1

)
dr2

1A1

+
2

r1A1

dϕAB
(
r1A1

)
dr1A1

, (7)

γA1 = 4
(
γ1A1 + γ2A1

)
, (8)

γ1A1 = γ1A +
1

48∑
i

(∂4 ϕAB

∂u4
iβ

)
eq


r=r1A1

= γ1A +
1
24

d4 ϕAB(r1A1)

dr4
1A1

+
1

4r2
1A1

d2 ϕAB(r1A1)

dr2
1A1

− 1
4r3

1A1

dϕAB(r1A1)

dr1A1

, (9)

γ2A1 = γ2A +
6

48∑
i

( ∂4 ϕAB

∂u2
iα∂u2

iβ

)
eq


r=r1A1

= γ2A +
1

2r1A1

d3 ϕAB(r1A1)

dr3
1A1

− 3
4r2

1A1

d2 ϕAB(r1A1)

dr2
1A1

+
3

4r3
1A1

dϕAB(r1A1)

dr1A1

, (10)

where r1A1 ≈ r1B is the nearest neighbor distance between atom A1 and the other atoms in
the alloy.

The u0, k, γ1, γ2, γ are the cohesive energy and the alloy parameters for atom A2 (atom
A in the peaks of the cubic unit cell) in the approximation of three coordination spheres,
with A2 and radius r1A2 of the third coordination sphere as follows [1–4,29,33]:

u0A2 = u0A + ϕAB
(
r1A2

)
, (11)

kA2 = kA +
1
2∑

i

(∂2 ϕAB

∂u2
iβ

)
eq


r=r1A2

= kA + 2
d2 ϕAB

(
r1A2

)
dr2

1A2

+
4

r1A2

dϕAB
(
r1A2

)
dr1A2

, (12)

γA2 = 4
(
γ1A2 + γ2A2

)
, (13)

γ1A2 = γ1A + 1
48 ∑

i

[(
∂4 ϕAB
∂u4

iβ

)
eq

]
r=r1A2

= γ1A + 1
24

d4 ϕAB(r1A2 )

dr4
1A2

+ 1
4r1A2

d3 ϕAB(r1A2 )

dr3
1A2

−

1
8r2

1A2

d2 ϕAB(r1A2 )

dr2
1A2

+ 1
8r3

1A2

dϕAB(r1A2 )

dr1A2
,

(14)

γ2A2 = γ2A + 6
48 ∑

i

[(
∂4 ϕAB

∂u2
iα∂u2

iβ

)
eq

]
r=r1A2

= γ2A + 1
4

d4 ϕAB(r1A2 )

dr4
1A2

−

1
4r1A2

d3 ϕAB(r1A2)
dr3

1A2
+ 3

2r2
1A2

d2 ϕAB(r1A2)
dr2

1A2

− 3
2r3

1A2

dϕAB(r1A2)
dr1A2

,

(15)

where r1A2 = r01A2 + y0B(T), r01A2 and u0A2 , y0B(T) are the nearest neighbor distances
between atom A2 and the other atoms in the alloy, and is determined from the minimum
condition of the cohesive energy in the displacement of atom B from the equilibrium
position at temperature T. In Equations (6)–(15), u0A, kA, γ1A, γ2A are the cohesive energy
and the metal parameters for atom A in the clean metal A in the approximation of two
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coordination spheres with the sphere center at the position of A and radii r1A and r2A and
have the following forms [29,33]:

u0A = 4ϕAA(r1A) + 3ϕAA(r2A), r2A =
2√
3

r1A, (16)

kA =
4
3

d2 ϕAA(r1A)

dr2
1A

+
8

3r1A

dϕAA(r1A)

dr1A
+

d2 ϕAA(r2A)

dr2
2A

+
2

r2A

dϕAA(r2A)

dr2A
, (17)

γA = 4(γ1A + γ2A). (18)

γ1A = 1
54

d4 ϕAA(r1A)

dr4
1A

+ 8
9r1A

d3 ϕAA(r1A)

dr3
1A

− 20
9r2

1A

d2 ϕAA(r1A)

dr2
1A

+ 20
9r3

1A

dϕAA(r1A)
dr1A

+

1
24

d4 ϕAA(r2A)

dr4
2A

+ 1
4r2

2A

d2 ϕAA(r2A)

dr2
2A

− 1
4r3

2A

dϕAA(r2A)
dr2A

,
(19)

γ2A = 1
54

d4 ϕAA(r1A)

dr4
1A

+ 5
9r1A

d3 ϕAA(r1A)

dr3
1A

+ 5
18r2

1A

d2 ϕAA(r1A)

dr2
1A

− 5
18r3

1A

dϕAA(r1A)
dr1A

+

1
2r2A

d3 ϕAA(r2A)

dr3
2A

− 9
8r2

2A

d2 ϕAA(r2A)

dr2
2A

+ 9
8r3

2A

dϕAA(r2A)
dr2A

.
(20)

The equations of state for the BCC alloy AB at P and T, and at P and T = 0 K, respec-
tively, are determined by the following relations [29,33]:

Pv = −r1

[
1
6

∂u0

∂r1
+ θxcthx

1
2k

∂k
∂r1

]
, v =

4r3
1

3
√

3
, (21)

Pv = −r1

[
1
6

∂u0

∂r1
+

}ω0

4k
∂k
∂r1

]
. (22)

where r1, v, x = }ω
2θ , θ = kBoT, ω =

√
k
m , kBo are the nearest neighbor distance between

two atoms in the alloy, the volume of the cubic unit cell per atom, and the Boltzmann
constant. If the form of the interaction potential between two atoms X (X = A, A1, A2, B) is
known, from Equation (22) we can find the nearest neighbor distance between two r01X(P,0)
and the alloy parameters kX(P, 0), γ1(P, 0), γ2(P, 0), γ(P, 0) for atom X at T = 0 K and P.
From that, we can determine the displacement yX(P, T) of atom X from the equilibrium
position at T and P as follows [29,33]:

yX(P, T) =

√
2γX(P, 0)(kBoT)2

3k3
X(P, 0)

AX(P, T),AX(P, T) = a1X(P, T) +
6

∑
i=2

[
γX(P, 0)kBoT

k2
X(P, 0)

]i

aiX(P, T),

YX(P, T) ≡ xX(P, T)cothxX(P, T), xX(P, T) =
}ωX(P, 0)

2kBoT
, ωX(P, 0) =

√
kX(P, 0)

m
,

a1X = 1 + 1
2 YX , a2 = 13

3 + 47
6 YX + 22

6 Y2
X + 1

2 Y3
X , a3X = −

(
25
3 + 121

6 YX + 50
3 Y2

X + 16
3 Y3

X + 1
2 Y4

X

)
,

a4X = 43
3 + 93

2 YX + 169
3 Y2

X + 83
3 Y3

X + 22
3 Y4

X + 1
2 Y5

X ,
a5X = −

(
103
3 + 749

6 YX + 363
2 Y2

X + 391
3 Y3

X + 148
3 Y4

X + 53
6 Y5

X + 1
2 Y6

X

)
,

a6X = 65 + 561
2 YX + 1489

3 Y2
X + 927

2 Y3
X + 733

3 Y4
X + 145

2 Y5
X + 31

3 Y6
X + 1

2 Y7
X .

(23)

The nearest neighbor distance r1X(P, T) is given by the following relations [1–4]:

r1B(P, T) = r01B(P, 0) + yA1(P, T), r1A(P, T) = r01A(P, 0) + yA(P, T),
r1A1(P, T) ≈ r1B(P, T), r1A2(P, T) = r01A2(P, 0) + yB(P, T).

(24)
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The mean nearest neighbor distance r1A(P, T) between two atoms A in the alloy is
derived from the following expressions [1–4]:

r1A(P, T) = r01A(P, 0) + y(P, T),
r01A(P, 0) = (1− cB)r01A(P, 0) + cBr′01A(P, 0), r′01A(P, 0) =

√
3r01B(P, 0),

y(P, T) = (1− 7cB)yA(P, T) + cByB(P, T) + 2cByA1(P, T) + 4cByA2(P, T),
(25)

where r01A(P, 0), r′01A(P, 0), r1A(P, T), r01A(P, 0) and cB are the mean nearest neighbor
distances between two atoms A in the clean metal A at pressure P and temperature 0 K; the
region containing the interstitial atom C of the alloy at P and T = 0 K, and the concentration
of the interstitial atoms B and nearest neighbor distance between two atoms A in the alloy
at P and T and at P and T = 0 K. The Helmholtz free energy of the BCC perfect interstitial
alloy AB with the condition cB << cA (cA, cB, respectively, are the concentrations of atoms
A and B) can be calculated with the following relations [1–4]:

ψAB = (1− 7cB)ψA + cBψB + 2cBψA1 + 4cBψA2 − TSC,

ψX ≈ U0X + ψ0X + 3N
{

θ2

k2
X

[
γ2XY2

X −
2γ1X

3

(
1 + YX

2

)]
+

2θ3

k4
X

[
4
3 γ2XYX

(
1 + YX

2

)
− 2
[
γ2

1X + 2γ1Xγ2X
](

1 + YX
2

)
(1 + YX)

]}
,

ψ0X = 3Nθ
[
xX + ln

(
1− e−2xX

)]
, YX ≡ xXcothxX ,

(26)

where N is the number of atoms in the alloy, ψX is the Helmholtz free energy of atom
X in the clean material X, and SC is the configurational entropy of the interstitial alloy AB.

The concentrations of atoms A, A1, A2 and B are determined by the following relations:

cA = 1− 7cB, cA1 = 2cB, cA2 = 4cB, cB << cA. (27)

From the condition of absolute stability limit expressed as:(
∂P

∂vAB

)
T=TS

= 0 or
(

∂P
∂aAB

)
T=TS

= 0 (28)

and from the equation of state for the interstitial alloy AB expressed as:

P = − aAB
vAB

∑
X

cX
∂u0X
∂r1X

+
3γT

GkBoT
vAB

, (29)

the absolute stability temperature for the crystalline state can be derived in the following
expression [3,4,29,32,33]:

TS =

2PvAB +
a2

AB
6 ∑

X
cX

∂2u0X
∂r2

1X
− }a2

AB
4 ∑

X

cXωX
kX

[
1

2kX

(
∂kX
∂r1X

)2
− ∂2kX

∂r2
1X

]
a2

ABkBo
4 ∑

X

cX
k2

X

(
∂kX
∂r1X

)2 , (30)

where aAB ≡ r1A(P, T),vAB =
4a3

AB
3
√

3
and γT

G = − aAB
6 ∑

X

cX
kX

∂kX
∂r1X

YX, YX ≡ xXcothxX. γT
G are

the Gruneisen parameters of the alloy. The right side of Equation (30) must be determined
at TS. By solving Equation (30) the value of TS can be obtained.

The melting temperature Tm is derived from the absolute stability temperature TS by
the following relation [3,4,29,32,33]:

Tm ≈ TS +
am − aS

kBoγS
G

PvS
aS

+ ∑
X

cX
18

(∂u0X
∂r1X

)
T=TS

+ aS

(
∂2u0X

∂r2
1X

)
T=TS

, (31)

where am = aAB(Tm), aS = aAB(TS), vS = vAB(TS) and γS
G = γT

G(TS). Here, approxi-
mately γS

G is constant in the range of temperature from TS to Tm.
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Temperature TS(0) at zero pressure has the following relation [3,4]:

TS(0) =
aAB

18γT
GkBo

∑
X

cX
∂u0X
∂r1X

, (32)

where aAB, ∂u0X
∂r1X

, γT
G are determined at TS(0).

Temperature TS at pressure P can be calculated with the following relation [3,4]:

TS ≈ TS(0) +
vABP

3kBo
(
γT

G
)2

(
∂γT

G
∂T

)
aAB

TS. (33)

Here, vAB, γT
G, ∂γT

G
∂T are calculated at TS. Approximately, the Tm ≈ TS. Equation (33)

can be solved by the approximate iteration method applied at low pressure.
In the case of high pressure, temperature Tm at pressure P is calculated by the following

relation [3,4]:

Tm(P) =
Tm(0)B1/B′0

0
G(0)

G(P)(
B0 + B′0P

)1/B′0
, (34)

where Tm(P), Tm(0), G and BT are the melting T at P and at zero P, respectively; the bulk
modulus and the isothermal elastic modulus are calculated by the following relations [1–4,29,33]:

G = E
2(1+ν)

, ν ≡ νAB ∼= νA, B0 ≡ BT(0), B′0 =
(

dBT
dP

)
P=0

,

BT(P) = 1
χT(P) =

2P+
a2

AB
3VAB

(
∂2ψAB
∂a2

AB

)
T

3
(

aAB
a0AB

)3 ,
(

∂2ψAB
∂a2

AB

)
T
≈ ∑

X
cX

(
∂2ψX
∂r2

1X

)
T

,

1
3N

(
∂2ψX
∂r2

1X

)
T
= 1

6
∂2u0X
∂r2

1X
+ θ

[
YX
2kX

∂2kX
∂r2

1X
− 1

4k2
X

(
∂kX
∂r1X

)2(
YX + Z2

X
)]

, ZX ≡ xX
sinhxX

,

E = 1
πr1A A1A

1− 7cB + cB

∂2ψB
∂ε2 +2

∂2ψA1
∂ε2 +4

∂2ψA2
∂ε2

∂2ψA
∂ε2

,

A1A = 1
kA

[
1 + 2γ2

Aθ2

k4
A

(
1 + 1

2 YA

)
(1 + YA)

]
,

∂2ψX
∂ε2 =

{
2 ∂2u0X

∂r2
1X

+ 3}ωX
kX

[
∂2kX
∂r2

1X
− 1

2kX

(
∂kX
∂r1X

)2
]}

r2
01X+

(
∂u0X
∂r1X

+ 3θYX
kX

∂kX
∂aX

)
r01X ,

(35)

where ε is the strain of the alloy, and νAB, νA are the Poisson ratios of alloy AB and the
main metal A, respectively.

The equilibrium vacancy concentration nv of the alloy is determined from the mini-
mum condition of the real Gibbs thermodynamic potential GR

AB of the defective alloy AB,
and has the following relation form:

nv =
n
N

= exp

(
−

g f
vAB

kBoT

)
, (36)

where n and g f
vAB are the numbers of vacancies in the alloy and the change in the Gibbs

thermodynamic potential when a vacancy is formulated, and is determined from the
distribution of atomic concentrations cX as follows:

g f
vAB = ∑

X
cX g f

vX , (37)

g f
vX = −u0X

2
+ (BX − 1)ψX + P∆vX , (38)
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where BX ≈ 1 + u0X
ψX

. Therefore, g f
vX ≈ −

u0X
4 and according to ref. [34]:

nv = exp

∑
X

cXu0X

4kBoT

. (39)

At constant P and constant interstitial atom concentration, the melting temperature
TR

m of a defective crystal is the function of the equilibrium vacancy concentration nv.
Approximately, the following relations can be applied [2,34]:

TR
m(P) ≈ Tm(P) +

(
∂Tm
∂nv

)
nv = Tm(P) + T2

m(P)

Tm(P)
∂g f

vAB
∂(kBoT)

−
g f

vAB
kBo

,

∂g f
vAB

∂(kBoT) = −
a0ABαT

4kBo
∑ cX

∂u0X
∂r1X

,

αT = kBo
a0AB

daAB
dθ = − kBoχT

3

(
a0AB
aAB

)2 aAB
vAB

1
3N

∂2ψAB
∂θ∂aAB

, ∂2ψAB
∂θ∂aAB

≈ ∑
X

cX
∂2ψX

∂θ∂r1X
,

1
3N

∂2ψX
∂θ∂aX

= 1
2kX

∂kX
∂aX

Z2
X + 2θ

k2
X

[
γ1X
3kX

∂kX
∂aX

(
2 + YXZ2

X
)
− 1

6
∂γ1X
∂aX

(
4 + YX + Z2

X
)
−(

2γ2X
kX

∂kX
∂aX
− ∂γ2X

∂aX

)
YXZ2

X

(40)

where αTX , αT , respectively, are the thermal expansion coefficients of atom X in alloy AB.
The jumping of volume at melting point for the alloy can be found from the following

expression [35]:

∆vm =
εθa3

AB√
2k〈u〉2

(
1 +

6γ2θ2

k4

)
, (41)

where ε is a constant depending on the nature of the alloy and we take the value 0.01 as
for metal [36], and 〈u〉 = y = ∑

X
cXyX is the mean displacement of the main metal atom

A from the equilibrium position as in Equation (25). In order to determine the jumping
of volume ∆vm at pressure P and temperature T, it is necessary to determine aAB, 〈u〉 at
pressure P and temperature T. The alloy parameters k, γ are determined with respect to
aAB at pressure P and temperature T.

After finding the melting temperature Tm and the melting Tm (P), we can calculate the
slope of this curve, and the derivative ∂Tm

∂P . If Tm, ∂Tm
∂P and ∆vm, are known, the jumping of

enthalpy at melting point from the Clausius–Clapeyron equation can be derived according
to the following relation:

∆Hm =
Tm∆vm

∂Tm
∂P

(42)

and the jumping of entropy at melting point:

∆Sm =
∆Hm

Tm
. (43)

Firstly, we find the isothermal compressibility χT of the BCC interstitial alloy AB
according to Equation (35) and the thermal expansion coefficient αT of the alloy according
to Equation (40). The specific capacity at a constant volume of the alloy is given by the
following relations [2,29,33]:

CVAB = ∑
X

cXCVX ,

CVX = 3NkBo

{
Z2

X + 2θ
k2

X

(
2γ2X + γ1X

3
)
YXZ2

X + γ1X
3
(
1 + Z2

X
)
− γ2X

(
Z4

X + Y2
XZ2

X
)]}

.
(44)

The Gruneisen parameter of the alloy has the following relation [29,33]:

γG =
3αV

χTCVV
. (45)
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Then, from the mean nearest neighbor distance aAB the quantities V, χT , αT , CV and
γG at pressure P and temperature T can be determined. For the BCC lattice, the following
relation is known:

V(P, T)
V0(0, T)

=

[
aAB(P, T)
a0AB(0, T)

]3

. (46)

Graf et al. [37] proposed the following expression for the Gruneisen parameter:

γG = γG0

(
V
V0

)q
, (47)

where γG = γG(P, T), γG0 = γG(0, T) and q are material constants and q > 0. Therefore,
by using the SMM, γG, γG0, V

V0
can be calculated from aAB, and by using Equation (49) the

value of q can be calculated.
According to the Debye model, the Gruneisen parameter is defined as follows:

γG = −∂ ln ωD

∂ ln V
= −

∂ ln kBoTD
}

∂ ln V
, (48)

where ωD is the Debye frequency and TD is the Debye temperature.
By substituting the Gruneisen parameter from Equation (47) into Equation (48) and

taking the integration, we derived the dependence of the Debye temperature TD(P) at P
on the Debye temperature TD0, and the Gruneisen parameter γG0 at zero P, as well as the
volume ratio V

V0
[7]:

TD(P) = TD0 exp
{
−γG0

q

[(
V
V0

)q
− 1
]}

. (49)

The Debye temperature TD0 of the alloy at zero pressure is given by the following relation:

TD0 =
}ωD(0, T)

kBo
. (50)

The Debye frequency ωD(0, T) at zero pressure and temperature T is related to the Ein-
stein frequency ωE(0, T) at zero pressure and temperature T by the following relation [38]:

ωD(0, T) ≈ 4
3

ωE(0, T) ≈ 4
3

√
k(0, T)

m
, (51)

where k(0,T) is the harmonic parameter of the alloy at zero pressure and temperature T.
Therefore, it can be obtained through the following expression:

TD0 =
4}

3kBo

√
k(0, T)

m
. (52)

Equations (1)–(40) are used in our previous papers [1–9] on elastic, thermodynamic
and melting properties of metals and interstitial alloys. Equations (41)–(52) only are used
to study the jumps of volume, enthalpy and entropy, and the Debye temperature of metals.
In this study, for the first time, we apply Equations (41)–(52) to study the jumps of volume,
enthalpy and entropy, and the Debye temperature of the BCC interstitial alloy AB.

2.2. Numerical Results and Discussions for Alloy WSi

In order to study alloy WSi, we applied the Mie–Lennard-Jones (MLJ) pair interaction
potential as follows [39]:

ϕ(r) =
D

n−m

[
m
( r0

r

)n
− n

( r0

r

)m]
, (53)
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where D, r0, m and n are the depths of potential well corresponding to the equilibrium
distance—they are determined empirically. Then, the potential parameters for the interac-
tion W–Si are determined by the following relations [28]:

DW−Si =
√

DW−WDSi−Si, r0W−Si =
1
2
(r0W−W + r0Si−Si). (54)

We find nW-Si, mW-Si by fitting the experimental data and the theoretical result for the
Young modulus of the interstitial alloy WSi at room temperature. The Mie–Lennard-Jones
potential’s parameters for the interactions of W–W and Si–Si are given in Table 1.

Table 1. Mie–Lennard-Jones potential’s parameters for the interactions W–W and Si–Si.

Interaction D (10−16 erg) r0 (10−10 m) m n

W–W [31] 15,564.744 2.7365 6.5 10.5
Si–Si [31] 45,128.34 2.2950 6 12

Our computed results are summarised from Tables 2–9 and are illustrated in Figures 1–9.
We calculated the silicon concentration and pressure of the volume, the isothermal com-
pressibility, the Gruneisen parameter and the Debye temperature, the thermal expansion
coefficient, the specific heat at constant volume in Tables 2–7 and in Figures 1–6. According
to our obtained results, for WSi at the same temperature and silicon concentration when
pressure increases, the volume, the isothermal compressibility, the thermal expansion
coefficient, the Gruneisen parameter decreases, the Debye temperature increases, and the
specific heat at constant volume. For WSi at the same temperature and pressure when
the silicon concentration increases, the volume, the specific heat at constant volume, the
Gruneisen parameter increases, the thermal expansion coefficient, the Debye temperature
decreases and the isothermal compressibility.

Table 2. Si concentration and pressure dependence of volume V
(
10−29m3) for WSi at T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

cSi = 0% 1.442 1.412 1.372 1.339 1.311
V (10−29 m3) cSi = 1% 1.474 1.439 1.396 1.362 1.333

cSi = 3% 1.537 1.496 1.446 1.408 1.377
cSi = 5% 1.603 1.554 1.498 1.456 1.422

Table 3. Si concentration and pressure dependence of isothermal compressibility χT

(
10−12Pa−1

)
for WSi at T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

cSi = 0% 1.666 1.501 1.271 1.107 0.984
χT cSi = 1% 1.845 1.647 1.375 1.186 1.045(

10−12Pa−1
)

cSi = 3% 2.338 2.035 1.639 1.378 1.192

cSi = 5% 3.160 2.643 2.017 1.638 1.381

Table 4. Si concentration and pressure dependence of thermal expansion coefficient αT

(
10−6 K−1

)
for WSi at T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

- cSi = 0% 3.320 3.025 2.583 2.264 2.021
αT cSi = 1% 3.893 3.39 2.819 2.435 2.151(

10−6K−1
)

cSi = 3% 5.456 4.356 3.414 2.851 2.459

- cSi = 5% 8.040 5.859 4.264 3.412 2.856
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Table 5. Si concentration and pressure dependence of specific capacity at constant volume
CV(J/mol.K) for WSi at T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

cSi = 0% 23.402 23.294 23.089 22.896 22.713
CV cSi = 1% 23.544 23.294 22.982 22.728 22.499

(J/mol.K) cSi = 3% 23.826 23.295 22.768 22.389 22.071
cSi = 5% 24.109 23.295 22.554 22.051 21.642

Table 6. Si concentration and pressure dependence of the Gruneisen parameter γG. for WSi at
T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

cSi = 0% 2.218 2.207 2.181 2.160 2.142
γG cSi = 1% 2.386 2.298 2.249 2.222 2.202

cSi = 3% 2.721 2.483 2.391 2.351 2.325
cSi = 5% 3.057 2.673 2.536 2.485 2.454

Table 7. Si concentration and pressure dependence of Debye temperature TD for WSi at T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

cSi = 0% 362.73 398.07 450.56 498.53 544.14
TD(K) cSi = 1% 330.05 365.98 418.01 464.84 509.11

cSi = 3% 270.57 307.84 358.63 403.04 444.60
cSi = 5% 219.02 257.24 306.32 348.15 386.97

Table 8. Si concentration and pressure dependence of volume jumping ∆vm
(
10−30m3) for WSi at

T = 300 K.

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa

cSi = 0 2.43 2.16 1.84 1.62 1.44
∆vm cSi = 1% 2.74 2.41 2.03 1.77 1.58(

10−30m3) cSi = 3% 3.49 2.99 2.47 2.13 1.88
cSi = 5% 4.45 3.71 3.00 2.56 2.24

Table 9. Jumping of volume, and enthalpy and entropy at melting point (using the melting curve
calculated by the SMM for the defective model).

P (GPa) 0 30 50 70

Tm (K) 3387.5 4312.5 4825 5312.5
dTm
dP (K/GPa) 34.6 27.5 25 25

∆vm
(
10−30m3) 2.743 2.301 1.772 1.576

∆Hm (meV) 268.55 360.84 341.996 334.9
∆Sm (kB) 0.079 0.084 0.071 0.063
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Table 8. Si concentration and pressure dependence of volume jumping mv   30 310 m
for 

WSi at T = 300 K . 

  P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa P = 70 GPa 

 Sic  0 2.43 2.16 1.84 1.62 1.44 

mv  Sic  1% 2.74 2.41 2.03 1.77 1.58 

 30 310 m
 Sic  3% 3.49 2.99 2.47 2.13 1.88 

 Sic  5% 4.45 3.71 3.00 2.56 2.24 

Table 9. Jumping of volume, and enthalpy and entropy at melting point (using the melting curve 

calculated by the SMM for the defective model). 

P (GPa) 0 30 50 70 

Tm (K) 3387.5 4312.5 4825 5312.5 

mdT

dP
 (K/GPa) 34.6 27.5 25 25 

30 3(10 m )mv   2.743 2.301 1.772 1.576 

ΔHm (meV) 268.55 360.84 341.996 334.9 

ΔSm (kB) 0.079 0.084 0.071 0.063 

Figure 8. Tm(P) for WSi at cSi = 1% obtained from the SMM for the perfect model and the SMM for
the defective model [3].



J. Compos. Sci. 2021, 5, 153 15 of 17

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 18 of 20 
 

 

0 10 20 30 40 50 60 70

1.5

2.0

2.5

3.0

3.5

4.0

4.5
 cSi=0

 cSi=1%

 cSi=3%

 cSi=5%


v
m

 (
1
0

-3
0
m

3
)

P(GPa)
 

Figure 9. For WSi at T = 300 K. 

3. Conclusions 

The analytic expressions for structural and thermodynamic quantities such as the 

alloy parameters, the mean nearest neighbor distance, the melting temperature, the 

Helmholtz free energy, the equilibrium vacancy concentration, the cohesive energy, en-

thalpy and entropy, the isothermal compressibility, the limiting temperature of absolute 

stability for the crystalline state, the thermal expansion coefficient, the jumps of volume, 

the heat capacity at constant volume, the Gruneisen parameter and the Debye tempera-

ture for the defective and perfect binary interstitial alloy with a BCC structure are de-

rived by combining the limiting condition of the absolute stability of the crystalline state 

with the statistical moment method, the Clapeyron–Clausius equation, the Debye model 

and the Gruneisen equation. Our numerical calculations of the melting curve and the 

relation are carried out for alloy WSi under a pressure of up to P = 80 GPa. Our calcu-

lated melting curve and relation between the melting temperature and the silicon con-

centration for WSi are in good agreement with other calculations. Our calculations for 

the melting curve, the jumping of volume, enthalpy and entropy, and the Debye tem-

perature for WSi predict and orient experimental results in the future. 

Author Contributions: H.N.Q.: conceptualization, methodology, validation, investigation, writ-

ing—original draft preparation, data curation. H.N.D.: writing—original draft preparation. D.N.T.: 

writing—original draft preparation, writing—review and editing. V.C.L.: writing—original draft 

preparation. Ș.Ţ.: writing—review and editing. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data that support the findings of this study are available from 

the corresponding author upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hoc, N.Q.; Tinh, B.D.; Hien, N.D. Elastic moduli and elastic constants of interstitial alloy AuCuSi with FCC structure under 

pressure. High Temp. Mater. Proc. 2019, 38, 264–272. 

2. Tinh, B.D.; Hoc, N.Q.; Vinh, D.Q.; Cuong, T.D.; Hien, N.D. Thermodynamic and elastic properties of interstitial alloy FeC with 

BCC structure at zero pressure. Adv. Mater. Sci. Eng. 2018, 5251741. 

Figure 9. For WSi at T = 300 K.

According to Figure 7 [3], when cSi increases from 0 to 5.5%, the Tm of WSi decreases
(from 3810 to T = 2459 K) from the SMM for the perfect model, (from T = 3609 K to
T = 2366 K) from the SMM for the defective model and from T = 3695 K to T = 2460 K from
CALPHAD [40]. The melting slope dTm

dcSi
for WSi at zero pressure is 245.6 K/% from the

SMM for the perfect alloy, 226 K/% from the SMM for the defective alloy and 224.5K/%
from CALPHAD [40]. The SMM calculations for the melting slope of the defective alloy
are in good agreement with the CALPHAD calculations.

Figure 8 shows the melting curve of WSi at cSi = 1% obtained from the SMM for the
perfect model and the SMM for the defective model [3]. In the range of pressure from
P = 0 GPa to P = 80 GPa, the Tm of the perfect W0.99Si0.01 increases from T = 3564 K to
T = 6088 K and the Tm of the defective W0.99Si0.01 increases from T = 3383 K to T = 5534 K.

3. Conclusions

The analytic expressions for structural and thermodynamic quantities such as the alloy
parameters, the mean nearest neighbor distance, the melting temperature, the Helmholtz
free energy, the equilibrium vacancy concentration, the cohesive energy, enthalpy and
entropy, the isothermal compressibility, the limiting temperature of absolute stability for
the crystalline state, the thermal expansion coefficient, the jumps of volume, the heat
capacity at constant volume, the Gruneisen parameter and the Debye temperature for
the defective and perfect binary interstitial alloy with a BCC structure are derived by
combining the limiting condition of the absolute stability of the crystalline state with the
statistical moment method, the Clapeyron–Clausius equation, the Debye model and the
Gruneisen equation. Our numerical calculations of the melting curve and the relation are
carried out for alloy WSi under a pressure of up to P = 80 GPa. Our calculated melting
curve and relation between the melting temperature and the silicon concentration for WSi
are in good agreement with other calculations. Our calculations for the melting curve, the
jumping of volume, enthalpy and entropy, and the Debye temperature for WSi predict and
orient experimental results in the future.
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19. Quoc, T.T.; Trong, D.N.; Ţălu, Ş. Study on the influence of factors on the structure and mechanical properties of amorphous
aluminium by molecular dynamics method. Adv. Mater. Sci. Eng. 2021, 5564644, 1–10. [CrossRef]

20. Kraftmakher, Y. Equilibrium vacancy and thermal property of metals. Phys. Rep. 1998, 299, 79–198. [CrossRef]
21. Siegel, R.W. Vacancy concentrations in metals. J. Nucl. Mater. 1978, 69–70, 117–146. [CrossRef]
22. Maier, K.; Peo, M.; Saile, B.; Schaefer, H.E.; Seeger, A. High-temperature positron annihilation and vacancy formation in refractory

metals. Philos. Mag. A 1979, 40, 701. [CrossRef]
23. Pamato, M.G.; Wood, I.G.; Dobson, D.P.; Hunt, S.A.; Vocadlo, L. The thermal expansion of gold: Point defect concentrations and

pre-melting I a face-centered cubic metal. J. Appl. Crystallogr. 2018, 51, 470–480. [CrossRef]
24. Hung, V.V.; Hai, N.T. Investigation of the thermodynamic properties of anharmonic crystals with defects and influence of

anharmonicity in EXAFs by the moment method. Int. Mod. Phys. B 1998, 12, 191. [CrossRef]

http://doi.org/10.1515/htmp-2018-0027
http://doi.org/10.1155/2018/5251741
http://doi.org/10.3938/jkps.74.801
http://doi.org/10.1016/j.cjph.2019.02.018
http://doi.org/10.1063/1.5089228
http://doi.org/10.1007/s11664-019-07829-9
http://doi.org/10.1016/j.materresbull.2020.110874
http://doi.org/10.7566/JPSJ.89.114602
http://doi.org/10.1142/S0217984918502044
http://doi.org/10.1142/S0217979218300098
http://doi.org/10.1021/acsomega.9b02050
http://www.ncbi.nlm.nih.gov/pubmed/31528815
http://doi.org/10.1142/S1756973720300014
http://doi.org/10.1016/j.jallcom.2019.152133
http://doi.org/10.1016/j.matchemphys.2020.123075
http://doi.org/10.1021/acsomega.0c04941
http://www.ncbi.nlm.nih.gov/pubmed/33324850
http://doi.org/10.3390/jcs5010018
http://doi.org/10.1016/j.matchemphys.2020.123275
http://doi.org/10.1155/2021/5564644
http://doi.org/10.1016/S0370-1573(97)00082-3
http://doi.org/10.1016/0022-3115(78)90240-4
http://doi.org/10.1080/01418617908234869
http://doi.org/10.1107/S1600576718002248
http://doi.org/10.1142/S0217979298000144


J. Compos. Sci. 2021, 5, 153 17 of 17

25. Vereshchagin, L.F.; Fateeva, N.S. Melting temperatures of refractory metals at high pressures. High Temp. High Press. 1977, 9,
619–628.

26. Errandonea, D.; Schwager, B.; Ditz, R.; Gessmann, C.; Boehler, R.; Ross, M. Systematics of transition-metal melting. Phys. Rev. B
2001, 63, 132104. [CrossRef]

27. Saxen, S.K.; Zhang, J. Thermodynamical and pressure-volume-temperature systematics of data on solids, examples: Tungsten
and MgO. Phys. Chem. Miner. 1990, 17, 45–51. [CrossRef]

28. Moriarty, J.A. Ultra-high pressure structural phase transitions in Cr, Mo and W. Phys. Rev. B 1992, 45, 2004–2014. [CrossRef]
29. Tang, N.; Hung, V.V. Investigation of the thermodynamic properties of anharmonic crystals by the momentum method, (I) General

results for FCC crystals. Phys. Stat. Sol. 1988, 149, 511. [CrossRef]
30. Tang, N.; Hung, V.V. Investigation of the thermodynamic properties of anharmonic crystals by the momentum method, (II) Com-

parison of calculations with experiments for inert gas crystals. Phys. Stat. Sol. 1990, 161, 165. [CrossRef]
31. Tang, N.; Hung, V.V. Investigation of the thermodynamic properties of anharmonic crystals by the momentum method, (III) Ther-

modynamic properties of the crystals at various pressures. Phys. Stat. Sol. 1990, 162, 371. [CrossRef]
32. Tang, N.; Hung, V.V. Investigation of the thermodynamic properties of anharmonic crystals by the momentum method, (IV) The

limiting of absolute stability and the melting temperature of crystals. Phys. Stat. Sol. 1990, 162, 379. [CrossRef]
33. Hung, V.V. Statistical Moment Method in Studying Elastic and Thermodynamic Properties of Crystals; HNUE Publishing House: Hanoi,

Vietnam, 2009.
34. Cuong, T.D.; Anh, P.D. Modification of the statistical moment method for the high-pressure melting curve by the inclusion of

thermal vacancies. Vacuum 2020, 179, 109444. [CrossRef]
35. Hung, V.V. Investigation of the change in volume, entropy and specific heat for metals on melting. In Proceedings of the 22nd

National Conference of Theoretical Physics, Do Son, Vietnam, 3–5 August 1997; pp. 199–203.
36. Good, R.J.; Hope, C.J. New combining rule for intermolecular distances in intermolecular potential functions. J. Chem. Phys. 1970,

53, 540–543. [CrossRef]
37. Graf, M.J.; Greeff, C.W.; Boettger, J.C. High-pressure Debye-Waller and Grüneisen parameters of gold and copper. AIP Conf. Proc.

2004, 706, 65–68.
38. Girifalco, L.A. Statistical Physics of Materials; John Wiley & Sons: Hoboken, NJ, USA, 1973.
39. Magomedov, M.N. On calculating the Debye temperature and the Gruneisen parameter. Z. Fiz. Khimii 1987, 61, 1003–1009.

(In Russian)
40. Guo, Z.; Yuan, W.; Sun, Y.; Cai, Z.; Qiao, Z. Thermodynamic assessment of the Si-Ta and Si-W systems. J. Phase Equilibria Diffus.

2000, 30, 564–570. [CrossRef]

http://doi.org/10.1103/PhysRevB.63.132104
http://doi.org/10.1007/BF00209225
http://doi.org/10.1103/PhysRevB.45.2004
http://doi.org/10.1002/pssb.2221490212
http://doi.org/10.1002/pssb.2221610115
http://doi.org/10.1002/pssb.2221620206
http://doi.org/10.1002/pssb.2221620207
http://doi.org/10.1016/j.vacuum.2020.109444
http://doi.org/10.1063/1.1674022
http://doi.org/10.1007/s11669-009-9579-x

	Introduction 
	Content of Research 
	Melting Temperature, Jumping of Volume, Enthalpy and Entropy at Melting Point, and Debye Temperature of the BCC Defective and Perfect Binary Interstitial Alloy 
	Numerical Results and Discussions for Alloy WSi 

	Conclusions 
	References

