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Abstract: Strain-mediated multiferroic composite structures are gaining scientific and technological
attention because of the promise of low power consumption and greater flexibility in material and
geometry choices. In this study, the direct magnetoelectric coupling coefficient (DME) of composite
multiferroic cylinders, consisting of two mechanically bonded concentric cylinders, was analytically
modeled under the influence of a radially emanating magnetic field. The analysis framework
emphasized the effect of demagnetization on the overall performance. The demagnetization effect
was thoroughly considered as a function of the imposed mechanical boundary conditions, the
geometrical dimensions of the composite cylinder, and the introduction of a thin elastic layer at the
interface between the inner piezomagnetic and outer piezoelectric cylinders. The results indicate that
the demagnetization effect adversely impacted the DME coefficient. In a trial to compensate for the
reduction in peak DME coefficient due to demagnetization, a non-dimensional geometrical analysis
was carried out to identify the geometrical attributes corresponding to the maximum DME. It was
observed that the peak DME coefficient was nearly unaffected by varying the inner radius of the
composite cylinder, while it approached its maximum value when the thickness of the piezoelectric
cylinder was almost 60% of the total thickness of the composite cylinder. The latter conclusion was
true for all of the considered boundary conditions.

Keywords: demagnetization effect; multiferroics; strain-mediation; dynamic response

1. Introduction

The complexity in describing the response of concentric cylinder multiferroic com-
posite structures for magnetoelectric coupling stems from the interactions between three
physics domains (namely, mechanics, electrostatics, and magnetism) based on the descrip-
tion of the kinematics [1]. Typically, strain-mediated multiferroic composite structures
consist of two or more phases of piezoelectric and piezomagnetic materials bonded to-
gether in different configurations [2–4]. In such a case, the magnetoelectric coupling is
bidirectional, where the application of a magnetic field through the piezomagnetic material
results in a spontaneous change in polarization within the piezoelectric phase through
the transduction of strain across the interface. Converse coupling is also present, where
an electric field applied across the piezoelectric material generates a mechanical strain
that is transduced at the interface, yielding a change in the state of magnetization in the
piezomagnetic material. It is, however, imperative to note that the cylindrical coordinate
system, i.e., the case of the ring or cylinder structure, gives rise to intricate physical inter-
actions including self-boundedness, shape anisotropy, magnetic shielding, non-uniform
strain distribution, and geometry- and field-dependent magnetic states, to name a few [5].
Such coupled interactions are the motivation for describing the behavior of these structures
as ‘complex.’

Four direct and four converse magnetoelastic effects delineate the strain-magnetization
interdependency, focusing on the interaction between the bias magnetic field and the piezo-
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magnetic materials. In the direct sense, the geometry changes in the direction of the
applied magnetic field in what is referred to as the Joule magnetostriction [1]. However,
the application of a magnetic field also induces a change in the state of magnetization,
resulting in a change in the volume (i.e., volume magnetostriction) and the elastic modu-
lus (commonly denoted as the ∆E effect) [1,6]. When considering the converse coupling
paradigm, there are inversely analogous effects: the Villari effect, the Nagaoka–Honda
effect, and magnetically induced changes in the elastic response, respectively [1]. Concur-
rent to these geometry-independent effects, three additional kinematically induced effects
include magnetic shielding, shape anisotropy, and the onion state of magnetization [7].
The magnetic field preferentially permeates through the walls of a ferromagnetic cylinder
due to the higher permeability than the surrounding air media, resulting in shielding the
air inclusion created by the cylinder walls. When applied diametrically, the magnetic
field creates a non-uniform state of magnetization in the cylinder, where the magnetic
field wraps around the cylinder walls in two symmetric half circles (i.e., onion state of
magnetization), yielding a strain gradation from the inner to the outer diameter [8–10].
Collectively, these bidirectional and spontaneous effects play a significant role in the overall
performance of strain-mediated multiferroic composites, given that a large volume fraction
of the structure is made of the piezomagnetic cylinder.

The quest to describe the full magneto-electro-mechanical response of strain-mediated
multiferroic concentric cylinder structures has been evident in the recent literature from
experimental, computational, and analytical approaches [5,8–46]. The outcomes of these
research efforts further culminate the justification for describing the concentric ring struc-
ture as complex. For example, composite ring structures have been experimentally studied,
which consisted of an outer piezoelectric cylinder (PZT, lead zirconate titanate) and an
inner piezomagnetic ring (Terfenol-D, an alloy of iron, terbium, and dysprosium) oper-
ating under the converse magnetoelectric coupling paradigm [5–11]. Experimentally, it
also has been shown that the direction of polarization of the piezoelectric cylinder, the
quality and method of interfacing the cylinders, the direction and magnitude of applied
bias magnetic field, the frequency and magnitude of the electric field, and the duration of
loading influence the overall response symbiotically [5–11].

Furthermore, several researchers investigated tri-layer cylinders consisting of negative
or positive magnetostrictive materials deposited on the interior and exterior surfaces
of a thin PZT cylinder using an electroless process [21,25]. They reported the direct
magnetoelectric response corresponding to axially and diametrically applied bias magnetic
field consisting of superimposed DC and AC components [21,25]. Overall, the outcomes of
the existing experimental reports in the literature align with the presumptions of Bichurin
and Viehland that the concentric composite cylinder structures are worthwhile to the
investigation for magnetoelectric coupling applications [43]. However, it is important
to note that there are no experimental investigations, to the knowledge of the authors
at the time of the publication of this paper, on the direct magnetoelectric coupling of
composite cylinders under the influence of a radially emanating magnetic field. This is due
to the practical challenges of experimentally replicating this situation, i.e., constructing a
magnetic field source with a radially emanating magnetic field, hence the persistent focus
on analytically investigating this boundary-value problem within the realm of continuum
mechanics. It is, however, important to note that previous experimental investigations of
concentric ring structures have demonstrated the multidirectional emanation of magnetic
flux when operating the composite ring under the converse magnetoelectric coupling
paradigm [30,44–46]. This configuration can then be used to generate and apply an AC
magnetic field.

Starting with the pioneer analytical work of Wang et al. using the effective medium
theory, to the recent reports by Youssef et al., these analytical models focus on mechanisti-
cally describing the dynamic magnetoelectric response of concentric cylinders [30,37–40,46].
Wang et al. assumed directly and perfectly bonded piezoelectric and magnetostrictive
cylinders, and investigated the effect of four mechanical boundary conditions on the overall
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direct magnetoelectric response [37–40]. Youssef et al. recently published a subsequent
analytical investigation to supplement Wang’s model by considering an expanded set of
mechanical boundary conditions [30,46]. They also accounted for the inclusion of an elastic
bonding layer; the systematic investigation of the strain distribution, given as the prime me-
diator between the applied magnetic field and the resulting change in polarization; and the
exploration of the failure due to the generated mechanical stresses in all constituents [30,46].
While these models appear to be comprehensive, they make no attempt to investigate the
demagnetization effect, negating the applied magnetic field and causing an additional
source of non-uniformity for the distribution of the magnetic field within the investigated
structure, as shown later. Wang et al. derived expressions for the demagnetizing factors for
solid long and short cylinders subjected to a uniform magnetic field along their longitudinal
axes [38,39]. Their derivation was mainly formulated as functions of susceptibility and
length-to-diameter ratio. Goode and Rowlands also obtained analytical expressions for the
demagnetizing energies for long, short, and medium length elliptic cylinders [47] in the
form of two partial series for each length. Goode and Rowlands noted that the solution was
not suitable for the medium length cylinders, as the series broke down, so they suggested
an interpolation based on replacing the ellipse cross section with a rectangle area [47]. The
focus of this analytical research then is to explicate the demagnetization influence on the
overall magneto-electro-mechanical response of strain-mediated multiferroic composites.
In all, the outcomes of the reported research are believed to be essential for the development
of magnetoelectric devices based on the cylinder geometry that is tolerant to mechanical
failure, since the demagnetization effect may result in strain localization, leading to damage.
At the outset, an effort has been dedicated to identifying the geometrical parameters that
lead to maximizing the direct magnetoelectric response of these composites.

2. Theory and Problem Formulation

The boundary value problem of a multiferroic composite cylinder structure (Figure 1)
consisting of bonded piezoelectric/piezomagnetic cylinders continues to be considered
in this research, where the direct magnetoelectric effect (Joule effect) is investigated. It is
worth noting, contrary to some prior work, that the active material cylinders are presumed
to be assembled using a passive elastic layer that is perfectly bonded to each of the cylin-
ders at separate surfaces. The basic formulation is based on the linear piezoelectric and
piezomagnetic constitutive relationships that have been reported a priori by Wang et al.
and Youssef et al., but, for the sake of completion [30,37–40,46], a brief introduction is
included below, since the derivation is required to substantiate the newly investigated
demagnetization effect.

Figure 1. Schematic of the geometry of the considered boundary-value problem.

2.1. Basic Formulation

The outer cylinder is taken to be made of a piezoelectric material that is assumed to
be radially polarized and mechanically orthotropic, while the inner cylinder is isotopically
piezomagnetic under the effect of a time-harmonic uniform radially emanating magnetic
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field (Hr = Hoe−iωt). The mechanics formulation follows plane strain assumptions in the
polar coordinate system (r, θ) per unit length of the cylinder. Therefore, the hoop and the
radial stresses (σθθ and σrr, respectively) for the piezomagnetic cylinder can be written as

σθθM = C11M
UrM

r
+ C13M

dUrM

dr
− q13M Ho (1)

σrrM = C31M
UrM

r
+ C33M

dUrM

dr
− q33M Ho (2)

by noting that: (1) the piezomagnetic material is electrically conductive such that {E} = 0;
(2) the response due to the application of a magnetic field in one direction is independent
from the magnetic response in the orthogonal directions (i.e., taken Bθ = 0 and Hθ = 0);
and (3) the cylinder is actuating under a radially applied magnetic field Hr = Ho, where
the time-harmonic factor (e−iωt) was dropped to simplify the derivation given that all terms
are similarly affected by it [37–40]. The Bessel differential equation for the piezomagnetic
cylinder (Equation (3)) is recovered after substituting the equations of stresses into the
expression for mechanical equilibrium.

d2UrM

dr2 +
1
r

dUrM

dr
+

(
k2

M −
µ2

M
r2

)
UrM =

QHo

r
(3)

where,

k2
M =

ρMω2

C33M
, µ2

M =
C11M
C33M

and Q =
q33M − q13M

C33M

Following the same procedure for the outer piezoelectric cylinder, the components of
the stresses in the polar coordinate system can also be written as shown in Equations (4)
and (5).

σθθE = C11E

UrE
r

+ C13E
dUrE

dr
− e13EEr (4)

σrrE = C31E
UrE

r
+ C33E

dUrE
dr
− e33EEr (5)

In this case, three assumptions are applied to the outer cylinder based on the behavior
of piezoelectric materials, which include: (1) the response of the piezoelectric cylinder is
independent of the magnetic field; (2) charge accumulation at the outer surfaces of the
cylinder is prohibited such that Dr = 0; and (3) the piezoelectric cylinder is considered
to be radially polarized given rise to the condition of Eθ = 0. Therefore, the equation of
the radial electric displacement (Dr) can be written by following the linear piezoelectric
constitutive relationship as shown in Equation (6).

DrE = e31E
UrE

r
+ e33E

dUrE
dr

+ ε33EEr (6)

Again, a Bessel differential equation of the radial displacement in the piezoelectric
cylinder as a function of the properties is given by

d2UrE

dr2 +
1
r

dUrE
dr

+

(
k2

E −
µ2

E
r2

)
UrE = 0 (7)

where,

k2
E =

ρEω2

CoD
, µ2

E =
C1D
CoD

, CoD = C33E + e33Ee3DE, C1D = C11E + e13Ee1DE e1D =
e31E
ε33E

and e3D =
e33E
ε33E

As previously reported, the general solutions of the Bessel differential equation, Equations (3)
and (7), are given in Equation (8) for the piezomagnetic cylinder and Equation (9) for the
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piezoelectric cylinder in terms of the first and second Bessel functions Jµ(�) and Y(�) of
order µ, respectively [37–40].

UrM (r) = AM JµM (kMr) + BM J−µM (kMr) + HoG(r) (8)

UrE(r) = AE JµE(kEr) + BE J−µE(kEr) (9)

where,

G(r) = Q
π

2
[YµM (kMr)

∫ r

a
JµM (kMζ)dζ − JµM (kMr)

∫ r

a
YµM (kMζ)dζ] (10)

The unknown coefficients AE, BE, AM, and BM in Equations (8) and (9) are to be found
from the boundary conditions and continuity conditions (discussed later).

2.2. Demagnetization Effect Consideration

The passing of a magnetic field through a ferromagnetic material results in a change in
magnetization, which, in turn, emanates a magnetic flux. However, the effective magnetic
field is reduced from the applied magnetic field due to the demagnetization effect, where
the latter is a function of the emanating magnetic flux from the sample that is corrected by
a geometry-specific demagnetization factor (Nd). In all, the effective magnetic field (He f f )
acting on the sample can be expressed as shown in Equation (11), which is used to substitute
for the magnitude of the radial magnetic field (Ho) as discussed in Equations (1)–(3).

He f f = Happ

(
1

1 + Nd(µr − 1)

)
(11)

The demagnetization factor has been documented before in the literature for many
geometries, for single crystal and polycrystalline materials [7]. To estimate the demagneti-
zation factor without resorting to solving the Poisson’s equation, the following assumptions
are introduced, which stem from the kinematics of the concentric composite cylinder and
the magnetic boundary condition. As discussed above, the magnetic field is applied ra-
dially outward from the center, hence Happ is assumed to be applied uniformly over the
circumference of the cylinder. That is to say, the demagnetization effect is occurring in a
plane and in the radial direction only, where it is circumferentially uniform. This assump-
tion then further simplifies the problem, where the cylindrical geometry is considered as a
prism, as shown in Figure 2a. Hence, according to Joseph et al. [48], (see Appendix A), the
demagnetization factor is defined as

Nd =
1

4π

[
2cot−1 f (rθ, r) + 2cot−1 f (−rθ, r) + 2cot−1 f (rθ,−r) + 2cot−1 f (−rθ,−r)

]
(12)

where,

f (rθ, r) =

[
(πrm − rθ)2 +

(w
2
)2

+
(

h
2 − r

)2
] 1

2
( h

2 − r)

(πrm − θr)(w
2 )

(13)

with rm is the mean radius, h is the wall thickness in the radial direction, and w is the wall
width in the longitudinal direction, all dimensions are of the piezomagnetic cylinder. Since
the magnetic field is considered to be uniformly distributed along the circumference, the
contribution in the θ-direction is neglected. The demagnetization factor is then dependent
on the geometry and on the direction of the applied magnetic field. The demagnetization
factor is plotted in Figure 2b as a function of the wall thickness ranging from 0.002 m to
0.02 m. In the case under investigation here, the demagnetization factor is independent of
the mean radius, since the applied magnetic field was assumed uniform outward from the
center. As thickness increases, the effect of the demagnetization field is minimized such
that Nd ≈ 0, indicating that the effective magnetic field becomes equivalent to the applied
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field. Generally, Figure 2b signifies the dependence of the demagnetization factor on the
geometry of the piezomagnetic cylinder.

Figure 2. (a) Schematic of (top) the inner piezomagnetic cylinder with its defining geometrical parameters and (bottom)
prism resulting from unfolding the cylinder along its circumference, and (b) the calculated demagnetization factor as
function thickness (arrow indicate increasing thickness from 0.002 to 0.02 m) based on Equation (12).

2.3. Solution of the Boundary-Value Problem (No Demagnetization Effect)

To find the unknown coefficients in Equations (8) and (9), four mechanical boundary
conditions are considered in addition to above-stated electrical and magnetic boundary
conditions. The mechanical boundary conditions (Table 1) include free and clamped
conditions on the inner- and outermost surfaces of the composite cylinder.

Table 1. List of considered mechanical boundary conditions at the inner (r = a) and outer (r = c) radii
of the composite cylinder (Figure 1).

Location
Boundary Conditions

Free–Free Clamped–Free Free–Clamped Clamped–Clamped

r = a σrr = 0 Ur = 0 σrr = 0 Ur = 0
r = c σrr = 0 σrr = 0 Ur = 0 Ur = 0

The continuity boundary condition has been modified by Youssef et al. [30] after the
inclusion of a bonding elastic layer (Equation (14)), where they discussed the effect of the
elastic adhesive layer on the overall magnetoelectric coefficient.

σrrE

(
b +

t
2

)
= σrrM

(
b− t

2

)
and

[
UrE

(
b +

t
2

)
−UrM

(
b− t

2

)]
=

1
ks
(2πbσrrM

(
b− t

2

)
) (14)

where, ks is the characteristic stiffness of the bonding elastic layer and given by Equation
(15) in terms of the elastic properties of the material (E is the modulus of elasticity and ν is
the Poisson’s ratio) and the geometry of the bonding layer (r is the mean radius and t is
the thickness).

ks =
2πrE(1− υ)

t(1 + υ)(1− 2υ)
(15)

In the case of a bonding layer-free interface where the piezoelectric and magnetic
electric cylinders are directly bonded to one another, the continuity condition of direct
bonding is shown in Equation (16).

σrrE(b) = σrrM (b) and [UrE(b)−UrM (b)] = 0 (16)
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Thereafter, the ME coupling coefficient (Equation (17)) is calculated after applying the
boundary and continuity conditions to find the unknown coefficients [32].

α =
e3D
[
UrE (r = c)−UrE

(
r = b + t

2
)]

+ e1D
∫ c
(b+ t

2 )
r−1UrE dr

Ho
(
c− b + t

2
) (17)

2.4. Solution of the Boundary-Value Problem (with Demagnetization Effect)

When the demagnetization effect is considered, the applied magnetic field (Ho) in
Equation (1) is replaced by the effective magnetic field (He f f ) defined in Equation (11)
as discussed above. This substitution implies that the forcing function is no longer a
constant, rather, it becomes a function of the radial direction, i.e., Heff is a function of r since
the demagnetization factor (Nd) is radially dependent, as shown in Equation (12). The
resulting differential equation can then be solved by the Lagrange’s method of variation
of parameters, where the general solution consists of two terms ur = uc + up such that
uc is the complementary solution given by Equation (18) and up is the particular solution
defined by Equation (19).

uc = AJµM(kMr) + BYµM(kMr) (18)

up

= JµM(kMr)
∫ r

a
He f f QYµM(kMr)

r
[
YµM(kMr)J′µM(kMr)−Y′µM(kMr)JµM(kMr)

] dr

+YµM(kMr)
∫ r

a
He f f QJµM(kMr)

r
[

JµM(kMr)Y′µM(kMr)−J′µM(kMr)YµM(kMr)
] dr

(19)

Once the total solution is determined, the magnetoelectric coefficient can be calculated
using the same procedure as above.

The material properties of the outer piezoelectric cylinder, elastic bonding layer, and
inner piezomagnetic cylinder are listed in Table 2, which were used in obtaining the solution
of the boundary-value problem with and without accounting for the demagnetization effect.

Table 2. Material properties of the piezoelectric, piezomagnetic, and the elastic bonding layer [30].

Material Property Value Unit

PZT-5A

P 7500 [kg m−3]
c11 99.201 [GPa]
c13 50.778 [GPa]
c33 86.856 [GPa]
e13 −7.209 [N C−1]
e33 15.118 [N C−1]
ε33 1.5 × 10−8 [C2 N−1 m−2]

Terfenol-D P 9200 [kg m−3]
c11 8.451 [GPa]
c13 3.91 [GPa]
c33 28.3 [GPa]
q13 −5.75 [N A−1 m−1]
q33 270.1 [N A−1 m−1]

Bonding E 0.1 [GPa]
Layer Υ 0.4

3. Results and Discussions

Figure 3 shows the direct magnetoelectric coupling coefficient as a function of fre-
quency ranging from 0.1 MHz to 1.5 MHz for all four considered mechanical boundary
conditions while elucidating the dependence of the DME on the presence of the elastic
bonding layer and the demagnetization effect. The total radial thickness of the composite
cylinder was 5 mm, whereas the inner radius was 10 mm, the interface radius was 12 mm,
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and the outer radius was 15 mm. The applied magnetic field was taken to be 60 kA/m
based on the magnetic saturation behavior of Terfenol-D. This justifies the exclusion of
nonlinear material effects for the current model. It is important to note that the previous
analytical studies pointed towards the paramount importance of geometrical dimensions in
preselecting the resonance frequency, even more important than the values of the coupling
coefficients [27]. When considered, the thickness of the elastic bonding layer was taken to
be 7.5 µm, based on the research outcomes from [30]. The composite Figure 3 also demon-
strates the effect of the mechanical boundary conditions on the DME coupling coefficient.
Specifically, the figure consists of four sub-figures, each representing clamped–clamped,
free–free, free–clamped, and clamped–free boundary conditions defined on the inner and
outer diameters of the composite cylinder, respectively. Additionally, plotted at the bottom
of each sub-figure is the difference between DME responses with and without the demag-
netization factor accounted for when the bonding layer was suppressed or sanctioned. The
difference subplots qualitatively and quantitatively show that the demagnetization effect
is more pronounced in the response region corresponding to the initial dynamics, i.e., in
the vicinity of the first and second harmonics. In all, the DME maxima and the associated
resonant frequencies depended on the boundary conditions, the demagnetization effect,
and the bonding layer.

Figure 3. The frequency-dependent DME response of a concentric composite cylinder for four mechanical boundary
conditions; at the bottom of each figure is the difference between the responses when the demagnetization effect was
considered and suppressed.
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As the frequency increased beyond the fundamental harmonic, the resulting DME
coupling coefficient was substantially lower, as expected, than the peak values at the reso-
nance. For example, the DME values at the first resonant frequency for the F-F boundary
condition were 5.04 (V/m)(A/m)−1 (at 350 kHz) and 6.51 (V/m)(A/m)−1 (at 250 kHz)
for the scenario when the demagnetization effect was considered in the presence and
absence of the bonding layer, respectively. Thereafter, the demagnetization-modified peak
DME value for the same boundary condition was merely 4.36 (V/m)(A/m)−1, associated
with a frequency of 575 kHz when the bonding layer was sanctioned. Correspondingly,
the peak DME was 6.88 (V/m)(A/m)−1 at 525 kHz in the absence of the bonding layer.
The diminished high-frequency response was attributed to the deexcitation of radially
expanding vibrational modes, but this can be effectively tuned to meet specific design
requirements by manipulating of the geometrical and material attributes.

3.1. Effect of Boundary Conditions

The mechanical boundary conditions play a major role in the overall DME response,
including the peak values, the corresponding frequencies, and the attributes of the wave-
forms of the resonant frequencies. In this section, the focus is on the interrelationship
between the resulting DME coupling coefficient and the applied boundary condition; there-
fore, the discussion is limited to the case of the absence of demagnetization and a bonding
layer (the remaining scenarios are considered in the following sections). The maximum
DME response was 29.57 (V/m)(A/m)−1 when the inner diameter of the composite was
mechanically free, while the outer diameter was clamped at a frequency of 375 kHz. The
maximum DME values for the remaining boundary conditions were 19.06, 22.65, and
10.2 (V/m)(A/m)−1, for the C-C, F-F, and C-F conditions, respectively, occurring at the
corresponding frequencies of 275, 525, and 625 kHz. It is worth noting that the electrical
and magnetic boundary conditions remained unchanged throughout the analysis, as noted
in the model section. The sensitivity of the magnetoelectric coupling coefficient to the
change in the mechanical boundary conditions stems from two specific reasons.

First, the change in the boundary conditions corresponds to a change in the apparent
structural stiffness of the composite cylinder, hence not only shifting the frequency but also
affecting the values of the coupling coefficient. In recent research, our group formalized
the interrelationship between a comprehensive set of mechanical boundary conditions,
including those used herein; the materials’ properties; and the geometrical attributes of
each of the constituents in what we termed the normalized stiffness parameter [46]. The
latter was then used to investigate the sensitivity of the DME response, signifying the
contribution of each of the abovementioned factors. The manipulation of the boundary
conditions for the same geometrical and material attributes can dynamically tune the DME
frequency response for hardware-agnostic antennas and filters.

Second, the type of the applied boundary condition dedicates the distribution of the
radial displacement field within each constituent phase of the composite. The results
in Figure 3 clearly signify that the type (free vs. clamped) and location (inner vs. outer
diameter) of a boundary condition have a defining contribution on the efficiency of strain
transfer from the inner actuator piezomagnetic cylinder to the outer piezoelectric sensor
cylinder. For example, clamping the outer surface of the piezoelectric cylinder while
prescribing a stress-free boundary condition at the inner diameter of the piezomagnetic
cylinder (i.e., F-C) resulted in the highest DME coefficient. This maximum is due to the
fact that the transferred radial displacement to the outer cylinder resulted in an increase in
electrical displacement due to the enhanced piezoelectric strain.

3.2. Effect of Bonding Layer

The addition of the elastic bonding layer had a profound effect on the magnetoelectric
coupling coefficient, as shown in Figure 3, while disregarding the demagnetization effect
(discussed next). The DME values in the presence of a bonding layer were 29.6% and 34.5%
higher than when the layer’s effect was suppressed in the cases of the outer diameter of
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the composite cylinder being clamped for the C-C and F-C conditions, respectively. On
the other hand, i.e., when the outer diameter was free, the bonding layer appeared to have
an adverse effect such that the DME values were 5.9% and 29.1% lower in comparison to
the results when the bonding layer was absent for the C-F and F-F boundary conditions,
respectively. For example, the peak values of the DME coefficient for the case of the F-C
boundary condition were found to be 39.8 (V/m)(A/m)−1 and 29.6 (V/m)(A/m)−1 when
the elastic bonding layer was sanctioned and suppressed, respectively. Similarly, the maxi-
mum DME changed from 24.7 to 19.1, from 9.6 to 10.2, and from 16.1 to 22.7 (V/m)(A/m)−1

for the C-C, C-F, and F-F conditions, respectively. The presence of the elastic layer and
the clamping of the outer diameter promoted the transfer of the radial displacement from
the inner actuator cylinder to the outer piezoelectric cylinder, resulting in improved DME
values. In other words, the efficacy of the strain mediation was enhanced by the presence
of the bonding layer that acted as a mechanical mediator, transitioning the difference in
the elastic properties of the inner and outer cylinders. On the other hand, constraining the
outer boundary gave rise to higher piezoelectric coupling since the difference in the radial
displacement across the piezoelectric cylinder was amplified. While a single thickness of
the bonding layer was considered herein, the increase in thickness was recently reported to
affect the underlying strain transduction phenomenon that is primarily responsible for the
magnetoelectric coupling paradigm under consideration [30].

In addition to affecting the amplitude of the DME coupling coefficient, accounting
for the effect of an ultrathin bonding layer resulted in shifting the resonant frequencies.
For example, the frequency of the first-harmonic was 250, 150, and 350 kHz for the F-F,
F-C, and C-F boundary conditions, respectively, in the absence of the effect of the elastic
layer. In contrast, these frequencies accordingly shifted to 350, 200, and 525 kHz due to
modifying the continuity condition to account for the presence of the elastic layer. In the
case of clamped–clamped mechanical boundary condition, and regardless of the inclusion
or exclusion of the bonding layer effect, the first harmonic frequency remained unchanged
at 275 kHz. The insensitivity of the resonant frequency in the C-C boundary condition is
attributed to the dominance of the stiffness of the piezoelectric and piezomagnetic cylinders,
deeming the contribution of the ultrathin and compliant elastic layer negligible in this case.
Otherwise, the elastic layer, being more compliant than the other active constituents (see
material properties in Table 2), affects the effective stiffness of the composite structure,
which in turn shifts the resonance frequency. It is important to note, as discussed earlier,
that the mechanical boundary conditions also affected the latter. Not only can the frequency
be veered depending on the geometrical and material attributes of the elastic bonding
layer, but the bandwidth can also be alternated by changing the thickness of this passive
mediation layer, as discussed recently by Youssef et al. [30]. In all, these findings collectively
point towards the suitability of the investigated composite structure for the development
of tunable magnetic filters, with importance in the high-frequency communication realm.

3.3. Effect of the Demagnetization Field

Figure 2b signifies the dependence of the demagnetization factor on the wall thickness
of the piezomagnetic cylinder, where a decrease in the wall thickness resulted increased the
effect of the demagnetization factor. On the contrary, an increase in the thickness showed
that the effective magnetic field is nearly equivalent to the applied field, i.e., the demagneti-
zation factor approaches zero. The direct magnetoelectric coupling coefficient values were
influenced by the demagnetization effect, which resulted in reducing the resulting DME, as
expected, since the effective magnetic field was lowered by the demagnetization factor. On
the other hand, also foreseen, the location of the resonant frequency is independent of the
inclusion of the demagnetization effect in the calculations leading to the DME response
due to the essence of the demagnetization factor being a geometrical construct with no
physical link to the mechanical, electrical, or magnetic properties of the constituents. To
better illustrate the dependence, the difference between the DME coupling coefficients
was calculated and plotted at the bottom of Figure 3 for each DME-frequency response,
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amounting to a difference ranging between 7.35 and 25.53 (V/m)(A/m)−1, with a strong
dependence on the boundary conditions, as discussed before.

The DME of the composite cylinder at the first resonant frequency o changed due to the
demagnetizing effect from 19.1 to 3.1, 22.65 to 6.9, 29.6 to 4.1, and 10.2 to 2.9 (V/m)(A/m)−1,
respectively, for the C-C, F-F, F-C, and C-F mechanical boundary conditions. This amounted
to a decrease in the DME by 83.9%, 69.6%, 86.3%, and 72.1%, respectively. As discussed
above, the effect of demagnetization energy is inevitable given its linkage to the geometry
and size of the device under investigation. That is, while the results presented thus far
compare the effect of the demagnetization on the DME response to elucidate its negative
influence, the demagnetization factor must be included in future analytical modeling
of concentric cylinders. It is also important to note that the adverse influence of the
demagnetization is amplified near the peripheries, in our case, the inner and outer diameter,
where the demagnetization factor is maximum and approaches nearly the same value as
shown in Figure 2b. This is of specific importance to the spatial distribution of the radial
strains that will degrade the localized and, in turn, the global, magnetoelectric response of
the composite structure.

3.4. Effect of the Geometry

Based on the preceding discussions, there are three overarching conclusions. First,
the mechanical boundary conditions can be used to enhance the magnetoelectric response
as a function of frequency by effectively changing not only the amplitude, but also the
resonant frequency. Second, the elastic layer, which is important for the practical assembly
of the cylinder, also plays a notable role in the value and the resonant frequency of the
DME response. Finally, the demagnetization effect is imperative to account for, given
its major contribution to the over magnetic energy based on the geometry. However,
these conclusions were curated based on specific geometrical attributes of the composite
cylinder, leaving a gap in formalizing the overall dependence on geometry. It is then the
objective of this section to demonstrate the interrelationship between the geometry and the
DME for all mechanical boundary conditions in the presence of the elastic bonding layer
and by accounting for the demagnetization factor. In essence, Figure 4 presents a search
schema within the design envelope to identify the conditions leading to the maximum
DME response.

Figure 4 plots the DME coupling coefficient as a function of two normalized geo-
metrical parameters, namely the sensor phase ratio (m =

hp
ttotal

) and the inner radius ratio
(R = a

ttotal
), at the corresponding first resonant frequency for each mechanical boundary

condition. In the calculations leading to Figure 4, the effect of the elastic layer was also
included by continuing to take the thickness to be 7.5 µm. The m ratio was taken to be
[0.1:0.9], signifying that the piezoelectric cylinder occupying 10% to 90% of the overall
thickness. The R ratio was [1:10], representing a range of inner radius that ranges from
5 mm to 50 mm. As evident from the previous results and the underlying elastodynamic
response, the resonant frequency is dependent on the boundary condition and was cal-
culated a priori for the C-C, C-F, F-C, and F-F scenarios using Equation (A9) included
in the Appendix B. The derivation of the resonant frequency equations can be found in
Appendix B.

The maximum magnetoelectric coupling coefficient shows a higher dependency on
the sensor phase ratio than the inner radius ratio, regardless of the boundary condition.
That is, for a given m value, the DME remains constant over the entire range of R values,
which is consistent with the previous results. The change in the geometry has a far-reaching
influence on the DME values, especially when considering the geometry-driven demag-
netization factor. The latter depends on the portion of the overall thickness associated
with the inner piezomagnetic cylinder such that a change in m influences the fraction of
Terfenol-D in the overall composite. In other words, as the m ratio increases, the thickness
of the piezoelectric cylinder also increases, resulting in a proportional reduction in the
thickness of the piezomagnetic cylinder since the overall thickness was kept constant.
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This, in turn, amplifies the demagnetization factor and negatively affects the DME. On
the other hand, the change in the inner radius, i.e., change in the R ratio, has no bearing
on the demagnetization factor, resulting in a constant DME over the entire range of R. In
closing, Figure 4, and the associated equations and discussion, complete the analytical
modeling framework to fully investigate the considered concentric composite cylinder for
direct magnetoelectric coupling with possible applications for tunable magnetic filters and
energy harvesting.

Figure 4. The peak DME values at the resonant frequency as function of the m and R ratio for (A) C-C, (B) F-F, (C) F-C, and
(D) C-F boundary conditions.

3.5. Model Limitations

On the limitations of the present model, it is worth noting that while the current
formulation includes several physical phenomena regarding the dynamic response of
concentric composite multiferroic cylinders, it includes two limitations. First, the model
makes no attempt to account for the behaviors of the magnetic spin, electromagnetic waves,
and acoustic waves, which require the amendment of the current framework to include
the Landau–Lifshitz–Gilbert equation and Maxwell equations. Second, the model does not
consider the time and temperature-dependent properties of the composite cylinders and
the elastic bonding layer.

4. Conclusions

The presented model pursued the study of the geometrical effects on the direct magne-
toelectric coupling response of concentric composite multiferroic cylinders. Concurrently
investigated was the influence of the mechanical boundary and the continuity conditions.
The results obtained from the proposed analysis indicate that the DME was found to
show a strong dependence on the geometrical construction of the demagnetization effect,
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where the latter has a drastic, adverse effect on the calculated DME coefficient, whether the
separating thin elastic layer was sanctioned or suppressed, and regardless of the consid-
ered boundary conditions. Moreover, the harmonic frequencies at which the peak DME
occurred were also proven to be independent of the demagnetization factor, given that it is
a geometrical construction does not affect the stiffness or inertia of the constituents. Finally,
the effect of the geometrical attributes of the composite cylinder were probed in detail to
elucidate the overall design space of these composites. While future research is warranted
on the proposed model to include the dynamics of the multiferroic systems, the results are
promising for future investigations on developing of multiferroic-based devices such as
magnetic filters and energy harvesters.

Author Contributions: Conceptualization, S.N. and G.Y.; methodology, S.N. and G.Y.; formal analy-
sis, S.N. and G.Y.; investigation, S.N. and G.Y.; data curation, S.N. and G.Y.; writing—original draft
preparation, S.N. and G.Y.; writing—review and editing, S.N. and G.Y.; visualization, S.N. and G.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a Inner radius of the inner cylinder
b Radius at the interface between cylinders
c Outer radius of the outer cylinder
t Thickness of the elastic layer
r Radial direction
θ Hoop direction
E Modulus of elasticity of the elastic layer
G Modulus of rigidity
ρ Mass density
ν Poisson’s ratio of the elastic layer material
Ks Stiffness of the elastic layer
Ho Magnetic field
Happ Applied magnetic field
Heff Effective magnetic field
Nd Demagnetization factor
µr Relative permittivity of the piezomagnetic material
eij Piezoelectric coefficients
qij Piezomagnetic coefficients
Cij Elastic coefficients
ε33 Dielectric coefficient
Uθ Hoop and radial displacement
Ur Radial displacement
Dr Electric displacement in the radial direction
Er Electric field in the radial direction
Ω Frequency
γ Shear strain
τ Shear stress
Fθ Body forces in the hoop direction
Fr Body forces in the radial direction
σθθ Hoop stresses
σrr Radial stresses
α Direct Magnetoelectric Coefficient
Subscripts
M Piezomagnetic cylinder
E Piezoelectric cylinder
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Appendix A

Considering Figure A1 and according to the derivation of Joseph et al. [48].

Figure A1. Rectangular prism subjected to uniform magnetic field Ho.

The demagnetization factor in z-direction is,

Nzz =
(

1
4π

)
[cot−1 f (x, y, z) + cot−1 f (−x, y, z) + cot−1 f (x,−y, z) + cot−1 f (x, y,−z) + cot−1 f (−x,−y, z)

+cot−1 f (x,−y,−z) + cot−1 f (−x, y,−z) + cot−1 f (−x,−y,−z)
] (A1)

where,

f (x, y, z) =

[
(a− x)2 + (b− y)2 + (c− z)2

] 1
2
(c− z)

(a− x)(b− y)
(A2)

Assuming that it is required to obtain the demagnetization factor in the (x-z) plane, at
which y = 0, hence,

Nzz =

(
1

4π

)[
2cot−1 f (x, z) + 2cot−1 f (−x, z) + 2cot−1 f (x,−z) + 2cot−1 f (−x,−z)

]
(A3)

and,

f (x, z) =

[
(a− x)2 + (b)2 + (c− z)2

] 1
2
(c− z)

(a− x)(b)
(A4)

Converting to polar coordinates and assuming that,

x = rθ z = r 2b = w 2c = h 2a = 2πrm

substituting in Equations (A3) and (A4), to obtain,

Nrr =
1

4π

[
2cot−1 f (rθ, r) + 2cot−1 f (−rθ, r) + 2cot−1 f (rθ,−r) + 2cot−1 f (−rθ,−r)

]
(A5)

where,

f (rθ, r) =

[
(πrm − rθ)2 +

(w
2
)2

+
(

h
2 − r

)2
] 1

2
( h

2 − r)

(πrm − θr)(w
2 )

(A6)

Appendix B

In order to investigate the harmonic frequencies of the system, the composite cylinder
is modeled as shown in Figure A2 using the lumped parameters approach.
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Figure A2. Dynamic model of the composite cylinder.

The equation of motion for the above model can be written in matrix form as[
me

d2

dt2 + Keo + Ke −Ke

−Ke mm
d2

dt2 + Kmi + Ke

][
x1
x2

]
=

[
0
0

]
(A7)

where, Ke is the equivalent stiffness, found to be,

Ke =
KeiKsKmo

KeiKs + KsKmo + KmoKei
(A8)

Equation (A7) was then solved to arrive to the resonant frequency equation

ω2
1, ω2

2 = 1
2

{
(Keo+Ke)mm+(Ke+Kmi)me

memm

}
± 1

2

[{
(Keo+Ke)mm+(Ke+Kmi)me

memm

}2
− 4
{

(Keo+Ke)(Ke+Kmi)−K2
e

memm

}] 1
2 (A9)

where, me is the mass of the piezoelectric cylinder (me = ρeπ
(
c2 − b2) and mm is the mass

of the piezomagnetic cylinder ( mm = ρmπ
(
b2 − a2)) while taking ρe as the mass density of

the piezoelectric material and ρm as the mass density of the piezomagnetic material. The
stiffness of each layer is evaluated by

K =
2πrmeanE(1− ν)

tthickness(1 + ν)(1− 2ν)
(A10)

where, E and ν are the modulus of elasticity and Poisson’s ratio of the material, respectively.
For the C-C boundary condition, all stiffnesses have values, while for the F-F boundary
condition (Keo = Kmi = 0), the F-C boundary condition (Kmi = 0), and for the C-F boundary
condition (Keo = 0).
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