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Abstract: Compression testing of continuous fiber reinforced materials is challenging, because a great
number of competing failure modes and instabilities on different length scales have to be considered.
In comparison to tensile testing, the results are more affected by the chosen test set-up. Effects
introduced by the test set-up as well as the type of damage in continuous fiber reinforced materials
are mainly investigated for quasi-static loading. This is not the case for cyclic compression loading.
Neither standardized methods nor a great deal of literature for reference exists. The aim of this work
is to increase the understanding by analyzing the potential effects the set-up in fatigue loading might
have on the damage for two common testing strategies by fatigue tests, load increase creep tests and
supplementary analytical models. The results show that damage modes can be altered by the testing
strategy for the investigated woven glass fiber reinforced polyamide 6. The tools both experimentally
and analytically provide the basis to choose the correct set-up in future investigations.

Keywords: fatigue; compression-compression; thermoplastic; glass fiber fabric; anti-buckling
support; buckling; composite

1. Introduction

The benefits of fiber-reinforced materials are well known and proven for a lot of appli-
cations like car bodies, airframes and maritime applications. High specific stiffness and
corrosion resistance are only some of the features, which make these materials a potential
choice for product developers. However, in many cases fatigue loading can be challenging
in the design process. Beside the fact that fatigue testing is especially time consuming
and requires specific testing capabilities, it is also a topic seldom addressed by standards
or guidelines. However, a great number of investigations showed that tensile loading in
fiber direction is an unproblematic loading condition for continuous reinforced composites
under fatigue both for thermoset as well as thermoplastic composites. Some examples can
be found in [1–3], where moderate stiffness degradation is an indicator for limited fatigue
damage. The literature on cyclic compression tests is small in comparison [4–10]. Both
factors along with a better material performance lead to the paradigm to use designs where
the material is loaded in tension, only. Numerous studies on quasi-static compression prop-
erties help to overcome this paradigm for quasi-static loading. Furthermore, standardized
methods and great efforts to improve those methods make the characterization comparable
over many different studies. This is not the case for compressive fatigue testing. A transfer
of procedures and methods from quasi-static testing assumes similar damage mechanisms
for both loading cases, which is unlikely considering the results in [10,11].

This leads inevitably to the tasks of qualifying testing procedures for compressive
fatigue testing of composites and strongly related to an improved understanding of the
dominating damage mechanisms. Compressive in this sense subsumes especially those
loading ratios R (ratio of min. to max. stress in one load cycle), which includes no tensile
stress within a load cycle (R > 1). It is the aim of this research to understand the effects of
the testing method on the compression-compression fatigue behavior.
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1.1. Problems Associated with Compressive Fatigue Testing

The critical load, which marks the point of instability, is one of the major challenges
faced in compression testing of composites. This challenge arises because the majority of
composites used are plate like and have a small thickness compared to all other dimensions.
As a result, most specimens are slender. Two main strategies to cope with this challenge
can be found. First, small gage lengths are used, which lead to a higher buckling load
relative to the material’s failure load [7]. Second, to use longer specimens and to increase
the buckling load by the use of a supporting structure, so-called anti-buckling device [4].
However, both methods have their drawbacks. For example, could the anti-buckling device
act as a second load path beside the specimen or damage propagation could be slowed. On
the other hand, stress inhomogeneity at the load introduction is less important compared to
specimens with a short free length between the fixtures. Furthermore, this inhomogeneity
sets a lower limit for the gage length [12]. Load introduction at the specimen ends is one
measure to reduce this effect [13]. In addition to load introduction, fixture alignment is
of great importance. For many quasi-static compression set-ups, perfect alignment of the
specimen ends is crucial and suspected to effect the property scattering [14]. To verify the
alignment of the testing machine or the specimen a transducer with strain gages can be
used ASTM E 1012 [15]. Despite this guidance on machine alignment, the problem remains
for most cases, as tabs are necessary. Especially for a short gage length as only slight
tapering of the specimen is possible the specimen’s ends must be protected and the stress
reduced by tabs. It is hard to accomplish perfectly symmetric tab bonding. Consequently,
a bending surveillance is established for quasi-static compression testing by two strain
gages on opposite surfaces of the specimen [16]. The bending surveillance is difficult to
accomplish for fatigue testing [17] as strain gages and their attachment also have a limited
fatigue life. As a result, changes in sensitivity and zero drift can occur [18]. Even though
non-contact strain measuring gets increasingly better, a documentation of bending over the
experimental fatigue cycles is rarely done. Compared to a greater gage length the influence
of a slight misalignment on the testing results is more severe [19].

It can be concluded that global buckling is avoided by both methods but potentially
different results might be obtained. How much the testing method effects the results could
be influenced by the occurring damage mode, load introduction and generally size effects.

1.2. Damage Modes under Compression-Compression Fatigue Loading

Typical damage modes observed for composites under quasi-static compressive load-
ing are fiber-kinking, fiber crushing, splitting, delamination and shear band formation [20].
However, only delaminations have been reported to be a precursor for final fatigue fail-
ure [11] under compressive fatigue loading. As shown by Matondang et al. [10] the use of
an anti-buckling guide can also influence the damage induced in the specimen. In their
investigation, they found that delaminations starting from the specimen’s edges could be
delayed, due to constrained edges in thickness direction. These findings are supported
by investigations of Kardomateas and Malik [21], who found that mode mixity in the
post-buckled state is responsible for the delamination growth. Under the assumption that
out of plane movement is constrained for supported specimens, the ratio of opening (Mode
I) and shearing stresses (Mode II) at the tip of the delamination is restricted to Mode II and
therefore slower delamination growth can be expected [22]. On the other hand, failure size
with respect to the gage length can also effect the results. Delaminations starting from the
specimen edges are described as localized, in contrast to typically larger delaminations as a
result of e.g., impact damage. Nevertheless, it seems unlikely that the delamination size is
negligible for small gage lengths, despite the lack of reported work on this topic. Investiga-
tions on the initiation of delaminations are also sparse, but as Bak et al. [23] pointed out it
is generally thought that delamination initiation is a result of small material defects. For a
given number of samples used to determine the S-N curve and a fixed distribution of flaws,
the overall test volume for short and long gage length specimens and thus the number
of flaws differ. This in turn can affect the likelihood to pick a flawed specimen. This size



J. Compos. Sci. 2021, 5, 114 3 of 23

effect has already been investigated for quasi-static loading by several authors [24–26], but
no common conclusion has been reached. Anyway, the role of size effects could be more
important for fatigue loading as damage progression may be influenced. Kardomateas [22]
found, for example, that delamination propagation is relevant for cyclic but not for static
loading. Another failure mode, which might be influenced by the choice of gage length is
fiber kinking. Even though a size effect is reported by Bažant et al. [24] for this damage
mode, it is primarily concerned with the specimen’s width and not the gage length. Kink
bands propagate typically along the width of the specimen inclined to the specimen’s axis.
This incline can lead to a lower bound for the gage length. As Vogler and Kyriakides [27]
pointed out the initiation phase can be influenced by the length of the specimen. On the
other hand, their research showed also that by laterally constraining the specimen the
formation of kink bands could be influenced. For a laterally constrained specimen surface,
the kink band propagates in width direction whereas for unconstrained specimens the free
edges are especially prone for out-of-plane kinking described as barreling. Ueda et al. [28]
found also a combination of in-plane and out of plane kinking by in situ CT observation.
However, fiber kinking was initiated by fiber failure near the specimen’s edge. These
findings suggest that the use of an anti-buckling guide might not necessarily affect the
initiation of a kink band but it is likely that the propagation is influenced.

From the studied literature, it becomes clear that the two most common testing meth-
ods might lead to different failure modes or an altered damage propagation. Delamination
and fiber kinking seem to be especially prone to be influenced by an anti-buckling guide or
the measuring length. Test set-ups using an intermediate layer of crushable material [17] or
just a layer of PTFE [29] between the anti-buckling plates gave rise to a number of questions.
First, it is unclear how much a laterally supported specimen comes into contact with the
anti-buckling guides, secondly, how much the supports alter the damage progression and
finally what is the overall response in terms of fatigue life under compression-compression
loading. To the authors’ knowledge, this research is the first to address those questions and
to compare different supporting materials and compression-compression testing strategies
directly by characterizing the same composite material in different set-ups. An increased
understanding of those effects can benefit future investigations of the compression dom-
inated loading regime of composites. Furthermore, it should help to choose the testing
set-up with the best representation of the conditions the material encounters in the final
component.

2. Materials and Methods
2.1. Materials

To investigate the effect the testing strategy has on the compressive fatigue damage
behavior an organo-sheet material Tepex® dynalite 102-RG600(x)/47% supplied by Lanxess
Bond Laminates [30] is used. The material is a twill weave glass fiber fabric with a PA6
matrix and an overall fiber volume content of 47% consisting of four layers fabric resulting
in a thickness of 2 mm. Composites with woven reinforcement seem especially prone to
the initiation of kink bands or localized delaminations, due to the microscopic structure.
It is expected that the undulations are natural initiations points. For the calculation of
kink band propagation stress the material supplier provided the pure resin properties
listed in Table 1. The matrix hardening exponent in the Ramberg–Osggood material model
and the minimum tangent modulus are chosen according to Skovsgaard and Jensen [31].
The minimum tangent modulus for the matrix material is a lower bound for the matrix
materials stiffness, which restricts the Ramberg–Osgood relation for high strains [31].
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Table 1. Material properties Tepex dynalite and the constituents.

Property Constituent Source

elastic modulus 1000 MPa matrix [32]
minimum elastic modulus 10 MPa matrix [31]

yield stress 40 MPa matrix [32]
hardening exponent 4 matrix [31]

Poisson’s ratio 0.39 [3]
fiber volume content 0.6 roving [3]

elastic modulus 19.6 GPa laminate [3]

The long gage length set-up with its anti-buckling device and the additional intermedi-
ate materials is shown in Figure 1. The tapered specimen (dimensions in Figure 1) is placed
between two layers of aramid, cardboard or PTFE material, subsequently referred to as
intermediate material (see also Supplementary Material S1). The tapering allows for testing
without tabs. The intermediate layers were two aramid honeycomb materials (thickness 15
and 20 mm), cardboard honeycombs (thickness 30 mm) and PTFE film. Characterization
of the materials used for the intermediate layer was part of this research in order to use a
homogeneous database.
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Figure 1. Specimen geometry and intermediate material in the test set-up.

2.2. Experiments

Figure 2 shows an overview of all testing set-ups used in this investigation. Cyclic
compression-compression tests are performed with two different gage lengths. Loading
cycles for these tests are characterized by a loading ratio of R = 10 and a frequency of 1 Hz.
Pure shear loading as load introduction method is used for both gage lengths. Special
care was taken to assure perfectly aligned clamps, verified by a metal specimen fitted with
strain gages. Table 2 shows the compression-compression fatigue tests with the according
load levels applied. In brackets is the number of samples planned for the test. Instead of
using three specimens on four load levels, the fatigue tests focused on the load level of
−180 MPa, because of the large scattering in resulting lifetime. Similarly, the testing results
with 10 mm free length increased the number of tested samples.
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Table 2. Compression-compression fatigue tests.

Gage Length 10 mm 215 mm

Load Levels No of Samples Load Levels No of
Samples

−180 MPa 10 (5) *

−145 MPa 1 (3) *

−160 MPa 2 (3) *

−180 MPa 7 (3) *

−205 MPa 2 (3) *

Intermediate layers - honeycomb 20 mm

Testing frequency 1 Hz

Loading ratio R 10
* Tested number of samples (planned number of samples).

Load increase creep (LIC) test on the same servo-hydraulic testing rig complement
the long gage length fatigue tests. Recent experiments have shown, that these tests lead to
similar damage modes compared to the fatigue tests but with less scattering in terms of
time and therefore significantly less testing time. Furthermore, this method allows for the
comparison of different intermediate layer materials in the supporting set-up with respect
to the composites damage modes and the ability to prevent global buckling for different
load levels. Additional LIC tests are performed with a pressure sensitive film (Fuji Film
Prescale Low LW 2.5–10 MPa) for a better understanding of the damage initiation and
shape and size of contact zones to the anti-buckling device. The pressure build up against
the supporting structure in these tests is documented by in-situ observation of the coloring
of the pressure film through a PMMA plate. The coloring and therefore the pressure is only
qualitatively studied, as the calibration curves of the pressure sensitive films are only valid
under a defined loading sequence, humidity and illumination wavelength.

In all LIC tests the first load level is −90 MPa, which was then increased every 10 h
by −10 MPa. The first load level is derived from the mean stress of the corresponding
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S-N curve, which results in similar loading times. A mean stress of −90 MPa leads to
approximately 36k cycles. This corresponds to a loading time of about 10 h with 1 Hz.
This approach is based on the observed strong fatigue-creep interaction of the laminate
under compressive fatigue loading. Under the assumption that the creep failure is also the
main cause of failure under compressive fatigue loading, the chosen time increment is the
minimum time to cause failure for load levels below −90 MPa. All tests concerning the
anti-buckling device (Figure 2b,c) make use of the tapered tensile specimen (TTS) [33].

For a better interpretation of the different results in the LIC test, the intermediate
layers/materials are also characterized. First, in quasi-static compression tests, and second,
in indentation tests with different roller diameters. The quasi-static compression test is
performed with a crosshead speed of v = 10%/min on eight samples 50 × 50 × t for
the aramid honeycomb materials and 80 × 80 × t for the cardboard material. A larger
cross-section of the cardboard material should overcome the coarser material structure (e.g.,
cell size). The set-up and procedure is based on DIN EN ISO 844. The effect of cell size and
material structure is separately evaluated by indentation tests with a cylindrical indenter.
To estimate the sensitivity to localized contact different indenter diameters (10, 15, 20 mm)
are used. The indentation experiments help to evaluate the effect of the supporting structure
(cell size, homogeneity) and its contact with the specimen. All indentation experiments
used a maximum indentation depth of 5 mm and a testing speed of 2 mm/min. In order to
get an estimate for the elastic properties of the PTFE tape material additional compression
tests were performed with small piston diameter 10 mm and a reduced speed of only
0.5 mm/min. A piston instead of compression plates as well as the reduced speed were
chosen in order protect the measuring equipment and to minimize alignment errors.

2.3. Analytical Models

Specimen and anti-buckling guide might interact in three different ways. For one, the
intended global interaction will take place, which makes the unbuckled state energetically
stable. For geometrically perfect set-ups and ideally stiff supporting plates, only axial
compression of the specimen is possible. However, in practical set-ups these conditions
are not possible. Small clearances necessary to avoid friction and elastic supports make
the problem of global interaction effectively one of constrained or elastically supported
buckling. The second and third interaction are usually unintended and are localized,
namely propagation of kink bands and delamination growth. All three interactions are
triggered by an instability, on either a macro (global buckling), meso (delamination) or
micro (fiber kinking) scale. Recognizing this, it becomes clear why it is hard to prohibit one
but not all of the aforementioned instabilities. In particular, initiation and growth of kink
bands and delamination are considered as inherent material behavior and should evolve
equally in lab scale tests and components. In addition to the following analytical methods,
it is also possible to use numerical algorithms to model the effects local instabilities might
have on the component as well as the lab-scale specimen. One such method could be the arc-
length method, which is especially suitable to model the effects after bifurcation [31,34,35].

2.3.1. Microscopic Instability

Besides fiber kinking the single fiber buckling can also be seen as a microscopic
instability. However, as it is unlikely that the anti-buckling guide affects single fiber
buckling this instability is neglected at this stage. The numerical investigation of Diaz
Montiel and Venkataraman [35] for cyclic compression-compression loading show that
after an initial bifurcation of the fiber bundle at a high stress the second and following
loading cycles show a much lower stress to reach the same strain state. Matrix plasticization
and damage of the fiber–matrix interface are seen as main reasons that the initially small
misalignment grows and decreases the kink stress. This propagation stress can be seen as
the necessary stress to allow for steady kink band growth under cyclic loading. Kink band
propagation after bifurcation can be calculated by an analytical model first formulated
by Christoffersen and Henrik [36] and later used by Skovsgaard and Jensen [31]. They
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assumed a uniaxial stress state meaning that only stresses in fiber direction are present. The
use of an anti-buckling guide can lead to through thickness stresses either by pre-loading of
the plates or because the thickness of the specimen increases, due to kink-band formation.
A free body diagram taken far from the clamps is as shown in Figure 3. Taking the
same notation as [31] but extending the model by through thickness stresses the resulting
equilibrium formulas are as below. Regarding the symbols, please refer to Figure 3.

− σo
11cos 2β− σo

22(φ) sin2 β− σi
11 cos2 χ + σi

22 sin2 χ− 2σi
12 sin χ cos χ = 0 (1)

σo
11 cos β sin β− σo

22(φ) sin β cos β + σi
11 cos χ sin χ + σi

22 sin χ cos χ− σi
12

(
cos2 χ− sin2 χ

)
= 0 (2)

χ = β− φ (3)
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Solving for σo
11 allows to express the external work by internal stresses under the

assumption of inextensible fibers. This along with the assumption that for the lock-up state
internal and external work are in equilibrium leads to the lock-up angle and steady state
kink band propagation angle. For more details on the solution and the assumed material
model, readers are referred to Skovsgaard and Jensen’s paper [31]. A normalized length of
one is taken into account for the calculation of the external work.

The through thickness stress σo
22 can either be taken to be constant or as a function of

Φ. By doing so, the modified external work becomes (4). It is interesting to note that, due
to the sign convention the work done by the compressive stress σo

11 leads to an increase
of the kink bands energy whereupon at the same time the kink band transfers energy in
thickness direction by expanding against the resisting supports.

WE = −σo
11(1− cos φ) + σo

22 sin φ (4)

To calculate the necessary propagation stress σo
11 for different initial misalignment

angles β and supporting stresses σo
22 the crossing point for internal and external work as a

function of Φ must be calculated [31]. Kink band propagation in the supported cases is
evaluated by either specifying a constant value for σo

22 or by defining a stiffness for the
supporting material Es. This leads to Equation (5), where L is the kink band length.

σo
22 = Es∗L sin φ (5)

2.3.2. Macroscopic Stability Failure

Delaminations develop in two stages, first initiation and second growth in the buckled
state of the delaminated layer. Most models on delamination growth assume a small,
delaminated area, which is already stressed beyond the critical load and are therefore
concerned with the growth phase [22]. It is most likely that by supporting the specimen
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initiation and growth of delaminations can be altered. Perfectly supported specimens
are in contact with the supporting material from the beginning and thereby the critical
load for the delaminated area can be calculated for the elastically supported column or
plate [19]. As shown in the section ‘global buckling’, an elastic support can increase the
bifurcation load and buckling order. However, as not much is known on the length scales
and mechanisms in the initiation phase, growth in a non-perfect supported case is seen
as more relevant and the corresponding models are reported below. For this case, the
literature on constrained buckling provides some insights. Available solutions incorporate
analytical solutions for small deformation by buckling between rigid walls and frictionless
contact [37]. For higher order buckling and large deformations, the elliptical integrals of
the elastica must be used [37,38]. Especially the latter case leads to complex formulations.
Even though some specific solutions for special cases with springy walls exist [39], only
the rigid frictionless case is considered here.

The walls with which the delaminated section interacts, are the intermediate material
of the anti-buckling device and the base material of the specimen. Because the initial stiff-
ness (see Figure 10 in the results Section 3.2.1) of all supporting materials is relatively low,
and furthermore, the surface of the organo sheet is not perfectly plane an initial, a clearing
like configuration is assumed for the delaminated section. Friction is also disregarded, as
the models should only provide some insight on how the anti-buckling guides can influ-
ence the delamination growth. Under these assumptions, Chai [37] provides a sequential
solution for the two dimensional case. Four phases for the delaminated section can be
distinguished (i) pre-buckling, (ii) post-buckling with no contact, (iii) post-buckling with
point contact and finally, (iv) post-buckling with line contact. For higher loads, additional
bifurcations arise. For the first buckling phase (ii) a cosine approximation can be used to
describe the shape of the delaminated section. However, as the load remains constant only
displacement can be used as controlling parameter. In this buckling phase, no reactional
force R exists. Delamination growth is nevertheless possible due to the reactional moment
and the in-plane force submitted to the buckled section. In Phase (ii), the reactional moment
M is directly correlated to the buckled shape. In Phase (iii), when point contact and a
reactional force exist the reactional moment can be calculated by (6). The factor Ph

2 gives
the maximum reactional moment for the current axial force P and slit width h. The current
bending moment is normalized by this factor in order to compare the maximum bending
moment for the constrained case to the unconstrained elastica. Figure 4 compares the
constrained case in different buckling phases to the unconstrained case. The free body
diagram is taken at the inflection point for each of the Phases (ii) to (iv). This leads to the
expression below.

M =
Ph
2
− RL

8
(6)

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 9 of 24 
 

 

strained case in different buckling phases to the unconstrained case. The free body dia-
gram is taken at the inflection point for each of the Phases (ii) to (iv). This leads to the 
expression below. 𝑀 = 𝑃ℎ2 − 𝑅𝐿8  (6) 

 
Figure 4. Delamination in the constrained and unconstrained case and corresponding free body 
diagram. 

For details on the formulation of the linear approximation, the reader is referred to 
Chai’s paper [37]. In addition to this linear small deformation model, the elastica for the 
clamped-clamped configuration of Timoshenko and Gere [19] is used. This large defor-
mation theory is necessary for the unconstrained case and can be used to test the linear 
approximation for the observed localized buckles and their dimensions. By normalization, 
it is possible to free the comparison of geometry and material parameters (namely elastic 
modulus E and moment of inertia I). This results in Equation (8). In all calculations and 
figures only the first buckling mode is used and therefore the number of half waves is n = 
1. K is the complete elliptical integral of the first kind. Equation (9) gives the amplitude of 
the elastica in the unconstrained case. 𝑃 = 𝐸𝐼(0.25𝐿)ଶ 𝐾(sin ቀ𝛼2ቁ) (7) 

𝑃𝑃௖௥௜௧(𝑛 = 1) = 4𝜋ଶ 𝐾(sin ቀ𝛼2ቁ) (8) 

𝑎 = 4(sin ቀ𝛼2ቁ) ඨ𝐸𝐼𝑃  (9) 

2.3.3. Global Buckling 
The anti-buckling support should increase the global buckling load to loads beyond 

the applied cyclic loads. Timoshenko and Gere [19] provide a solution to calculate the 
critical load for the elastically supported column. Es is the elastic modulus of the support-
ing material, which can be converted by the specimens width b divided by the intermedi-
ate materials thickness t into the definition of Timoshenko and Gere’s modulus of the 
foundation. The critical buckling load is the minimum found by for different buckling 
orders n. 

𝑃௖௥௜௧. = 𝑀𝑖𝑛(𝑃) = 𝜋2𝐸𝐼𝐿2 ቌ𝑛ଶ + 𝑏𝑡 𝐸௦𝐿ସ𝑛2𝜋ସ𝐸𝐼ቍ 

for 𝑛 ∈ ℕ 

(10) 

Figure 4. Delamination in the constrained and unconstrained case and corresponding free body diagram.

For details on the formulation of the linear approximation, the reader is referred
to Chai’s paper [37]. In addition to this linear small deformation model, the elastica
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for the clamped-clamped configuration of Timoshenko and Gere [19] is used. This large
deformation theory is necessary for the unconstrained case and can be used to test the linear
approximation for the observed localized buckles and their dimensions. By normalization,
it is possible to free the comparison of geometry and material parameters (namely elastic
modulus E and moment of inertia I). This results in Equation (8). In all calculations and
figures only the first buckling mode is used and therefore the number of half waves is n = 1.
K is the complete elliptical integral of the first kind. Equation (9) gives the amplitude of the
elastica in the unconstrained case.

P =
EI

(0.25L)2 K(sin
(α

2

)
) (7)

P
Pcrit(n = 1)

=
4

π2 K(sin
(α

2

)
) (8)

a = 4(sin
(α

2

)
)

√
EI
P

(9)

2.3.3. Global Buckling

The anti-buckling support should increase the global buckling load to loads beyond
the applied cyclic loads. Timoshenko and Gere [19] provide a solution to calculate the criti-
cal load for the elastically supported column. Es is the elastic modulus of the supporting
material, which can be converted by the specimens width b divided by the intermediate ma-
terials thickness t into the definition of Timoshenko and Gere’s modulus of the foundation.
The critical buckling load is the minimum found by for different buckling orders n.

Pcrit. = Min(P) =
π2EI

L2

(
n2 +

b
t EsL4

n2π4EI

)
for n ∈ N (10)

3. Results
3.1. Modelling Results
3.1.1. Microscopic Stability Failure

In a first approximation, the kink band model of Section 2.3.1 is used under the
assumption of constant supporting (through thickness) stress. The subscripts for the stress
notation is accordingly. Two effects are considered, first, different initial misalignment
angels of the fiber bundles and, second, different supporting stresses. Figure 5 shows the
effect of both variables on the steady state kink band propagation stress. As already shown
for the unsupported case by other authors [31,35], an increased initial misalignment angel
reduces the stress necessary to initiate and propagate a kink band. A reduced propagation
stress can also be found for the supported case. With increasing supporting stress, the
propagation stress also increases. In terms of a supporting the anti-buckling guide, it
might be that a very stiff supporting material or highly pre-tightened plates can increase
the propagation stress. Except for the PTFE tape, it is likely that the anti-buckling guides
investigated here do not affect kink band propagation. This is because usually a full surface
contact does not exist between the intermediate material and the specimen, either due
to the nature of the intermediate material (cells of the honeycomb material) or because
of uneven surfaces of the specimen and the support. Furthermore, the stiffness of the
supporting material is low with respect to the expected deformations, as the out of plane
deformation of the kink-band is only in the length scale of a few micrometers [40].
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ing stresses.

However, for large misalignment angels of β = 20◦ and equally high lock-up angles
of 43◦ a kink band of the length L = 200 µm [40] could theoretically be effected. In order
to reach a supporting stress of 5 MPa a stiffness of 37 MPa/mm is necessary. Figure 6
shows the lock-up angle as a function of initial misalignment in the unsupported case and
the supported case. The elastically supported case yields lock-up angles between those
two lines. It is interesting to note that with decreasing initial misalignment angle β the
effect is bigger. In terms of fiber orientation, this means that highly aligned unidirectional
materials could potentially be more affected.
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3.1.2. Macroscopic Stability Failure

In order to estimate the effect the supporting structure has on the delamination growth
of a composite under compressive loading the models for frictionless walls are used. To get
a hint if the linear approximation reported by Chai is applicable the observed delamination
height of 0.075 mm is taken as an estimate of the clearance between the constraining
surfaces. The unbuckled length of the delaminated section is taken as approximation
with 1 mm. In the linear cosine approximation, the normalized axial load is taken to be
unity until contact with the walls occurs. The normalized load to cause an amplitude of
0.075 mm is 1.015 calculated by Equation (9) for the amplitude of the elastica. Therefore, the
linear approximation underestimates the load slightly by 1.5% and equally the reactional
moment. Figure 7 shows the reactional moment at the ends of the delaminated strip. In
Phase (i), no reactional moment exists. In the first post-buckling Phase (ii) the bending
moment increases until contact with constraining intermediate material (support) occurs.
It is interesting to observe that the normalized bending moment steadily increases in the
unconstrained case, whereas it starts to decrease in Phase (iii) of the post-buckling phase
of the constrained case. In terms of stress intensity factors and mode mixity, it is obvious
that these parameters are drastically different in the constrained and unconstrained case.
However, it must be noted that the increase in reactional moment is most likely limited by
the materials strength. Maximum values of five in Figure 7 for the normalized reactional
moment correspond to extreme rotations of 90◦ at the inflection point. In comparison,
the constrained case submits much higher axial forces without excessive bending of the
delaminated strip. Figure 8 shows the transition to higher order buckling. With the
assumed clearance of the constraining surfaces (0.075 mm), the next bifurcation point is
reached only for loads 16 times the initial buckling load of the delaminated strip. Higher
order buckling of the delaminated area is therefore only relevant for a greater clearance
or delaminations of greater length. From Figure 8, it can also be seen that the reactional
force depends on the applied axial force P as well as the current buckling order. For cyclic
loading, this would suggest repeated wall contact and furthermore repeated loading of the
intermediate material.

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 7. Normalized axial load and bending moment in the constrained and unconstrained case. 

 
Figure 8. Linearized model in the constrained case, reactional force and bifurcation. 

3.1.3. Global Stability Failure 
An elastically supported specimen with perfect contact to the intermediate material 

shows two dependencies with respect to the supporting stiffness. First, with increasing 
stiffness of the intermediate material, the lowest buckling load is shifted to higher buck-
ling modes (n is increased). Second, the critical buckling load also increases relative to the 
unsupported case. Figure 9 shows the global buckling load for different buckling orders 
(n). The buckling loads are calculated with the measured stiffness of the intermediate ma-
terials and a length of 200 mm in-between the anti-buckling guide. A hinged case is as-
sumed, because of an unconstrained region (approx. 7.5 mm) above and below the anti-

Figure 7. Normalized axial load and bending moment in the constrained and unconstrained case.



J. Compos. Sci. 2021, 5, 114 12 of 23

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 7. Normalized axial load and bending moment in the constrained and unconstrained case. 

 
Figure 8. Linearized model in the constrained case, reactional force and bifurcation. 

3.1.3. Global Stability Failure 
An elastically supported specimen with perfect contact to the intermediate material 

shows two dependencies with respect to the supporting stiffness. First, with increasing 
stiffness of the intermediate material, the lowest buckling load is shifted to higher buck-
ling modes (n is increased). Second, the critical buckling load also increases relative to the 
unsupported case. Figure 9 shows the global buckling load for different buckling orders 
(n). The buckling loads are calculated with the measured stiffness of the intermediate ma-
terials and a length of 200 mm in-between the anti-buckling guide. A hinged case is as-
sumed, because of an unconstrained region (approx. 7.5 mm) above and below the anti-

Figure 8. Linearized model in the constrained case, reactional force and bifurcation.

3.1.3. Global Stability Failure

An elastically supported specimen with perfect contact to the intermediate material
shows two dependencies with respect to the supporting stiffness. First, with increasing
stiffness of the intermediate material, the lowest buckling load is shifted to higher buckling
modes (n is increased). Second, the critical buckling load also increases relative to the
unsupported case. Figure 9 shows the global buckling load for different buckling orders (n).
The buckling loads are calculated with the measured stiffness of the intermediate materials
and a length of 200 mm in-between the anti-buckling guide. A hinged case is assumed,
because of an unconstrained region (approx. 7.5 mm) above and below the anti-buckling
guide. The value of Table 1 for the elastic modulus of the composite material is used.
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3.2. Experimental Results
3.2.1. Intermediate Material Characterization

The first step of the experimental program is the intermediate material characteriza-
tion by quasi-static compression tests. The corresponding stress-displacement curves are
reported in Figure 10. Initially the stress-displacement curve shows a progressive behavior,
which is the result of the compression plates coming increasingly into contact with sam-
ples. It is interesting to note that the stress-displacement behavior is steady until a critical
crushing stress is reached. The buckling of the cell walls mainly causes this instability. This
feature is most pronounced for the aramid honeycombs and not relevant for the PTFE film
due to its monolithic structure.
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Figure 10. Stress-displacement response of the intermediate materials; vertical lines mark the section
for the linear stiffness evaluation.

Besides the conventional elastic modulus, a stiffness is evaluated, to account for
different thicknesses of the intermediate materials. This measure is defined as elastic
modulus divided by thickness, which results in the unit N/mm3. In Figure 10, the vertical
lines represent start and end for the linear stiffness and elastic modulus evaluation. The
initial stiffness was evaluated for all materials from zero to 0.2% strain. Table 3 summarizes
all materials used as intermediate layers and their respective properties. The stiffness of
the PTFE material is by far greater compared to the rest of materials under consideration.
The elastic modulus in thickness direction should be taken as an estimate because despite
machine stiffness compensation of the measured displacement the results can be more
affected by other factors compared to the stiffness.

Table 3. Properties of the intermediate materials.

Designation Elastic Modulus MPa Stiffness
N/mm3 Crushing

Stress MPa
Cell Diameter

mm
Cell Wall

Thickness mm
Density
kg/m3 t mm

Initial Linear Linear

honeycomb 15 mm 12.8 109 7.40 2.19 3.6 0.03 50.8 14.7
honeycomb 20 mm 34.7 168 8.48 3.80 3.2 0.05 62.3 19.8

cardboard 17.6 60.8 2.06 0.53 10.0 0.13 51.7 29.5
PTFE tape - ~8.42 76.5 - - - - 0.11
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The indentation tests show a similar displacement-force behavior compared to the
compression tests (Figure 11). The initial linear segment is followed by a sudden decrease
in stiffness with the onset of crushing. As before, the crushing is most pronounced for the
stiffer aramid honeycombs. In order to evaluate the effect of different indenter diameters
on the crushing force the momentary stiffness and its first drop of 50% is used as a measure
for the onset of crushing Figure 12. In order to generate a gradient signal a Butterworth low
pass filter with cut-off frequency 1 Hz is used as signal conditioning tool. It is interesting to
note that the crushing force of the honeycomb 15 mm material is in the same order of the
cardboard material. However, the stiffness is much greater for both honeycomb materials
Figure 13. Furthermore, it is interesting to note that the stiffness increase as a function of
indenter diameter is different for all three materials. In terms of damage size, this would
suggest different supporting stiffness for different failure sizes. However, crushing force
and stiffness show similar tendencies.
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3.2.2. Cyclic Loading

Figure 14 shows the compression-compression fatigue curve of the organosheet mate-
rial evaluated with the aramid honeycomb 20 mm intermediate supporting material. This
material was chosen for the fatigue test because promising results have been obtained for
alternating loading in the same test set-up (R = −74 [17]). All specimens failed inside the
gage length. The indentation of the honeycomb materials clearly show that global buckling
did not occur in any of the fatigue tests. The failure type could be described as through
thickness shear according to DIN EN ISO 14126. With a Wöhler exponent of 36.7 the S-N
curve is comparatively flat (8.33 for R = 0.1 [3]). However, scattering is large. The dashed
lines show the 95% prognosis interval, which assumes a logarithmic normal distribution.
The basis for the calculation of the prognosis interval is the standard error of the prediction
for the whole set of data points, which is then used to estimate the prognosis error of the
regression. Besides, in this research, we used software-implemented procedures for calcu-
lation, details on the calculation can also be found in [41]. Scattering becomes especially
obvious by comparing different stress prognoses for, e.g., 106 cycles. If failure should be
avoided the calculated regression stress must be reduced by 34 MPa to expect only 5% of
the specimens to fail. This is a reduction of the allowable stress by 22%. Severe scattering
is especially visible for the load level of 180 MPa, which some of the specimens endured
for up to 5 × 106 cycles without failure, whereas failure could also occur after several
hundred cycles. One possible explanation for the observed scattering could be the type of
pre-failure damage. As summarized in Section 3.2.5, small material buckles form on the
specimen’s surface, especially for the lower loaded specimens. However, this phenomenon
is not evenly distributed but can be found only once or twice on one sample. In some of
the specimens, the localized buckles had different amplitudes. This gave the impression
that several possible failure locations were active but in different stages to final failure. The
even load introduction would allow only differences in materials properties or mesoscopic
geometry to be the cause for this potential pre-failure stage. In a first working hypothesis, it
is assumed that matrix creep leads to this localized buckling, which is initiated by sparsely
scattered geometrical inhomogeneity. This observation and hypothesis lead to further
investigation of the material in LIC tests and observation of the surface deformation.

Unfortunately, the single load level comparison between short gage length specimens
and large gage length specimens was not possible due to debonding of the tabs. Despite
additional effort with different tabbing materials, primers and bonding agents debonding
remained a problem. However, for some specimens localized buckling was also visible
despite the problems associated with this testing strategy. The localized buckle endured
for a great number of cycles. However, additional tests are necessary to be conclusive.
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3.2.3. Load Increase Creep (LIC) Tests

The LIC tests showed considerable effect of the supporting material. Intermediate
layers, which resulted in global buckling of the specimen, were visible by damage marks
or imprints on the supporting material. This was obvious for the cardboard supported
specimens. As predicted by the models for elastically supported specimens the global
buckling order increased. However, not from one to seven half waves but from first order
to third order for the cardboard material. Furthermore, the critical buckling load/stress
was over predicted with 174 MPa instead of the achieved 128 MPa. Therefore, the fail-
ure mode with cardboard as intermediate material is unacceptable and excluded in the
subsequent discussion.

The hypothesis that matrix creep is not negligible is further underlined by the time
to failure after increasing the load (Figure 15). If only linear elastic stability failure on
different scales would be activated, this would result in failure instantly after or while
reaching the next load level. However, the mean time to failure after reaching the next load
level is 3.4 h. The distribution of times to failure show a clear tendency to shorter times,
but also that the majority of the specimens took more than 2 h to fail after increasing the
load. Regarding the different supporting materials, no distinct differences can be seen with
respect to this parameter. The specimens show similar pre-failure damage compared to the
compression-compression fatigue samples.

Differences between the supporting materials become evident with respect to the
failure load. The highest stresses were sustained by specimens supported by aluminum
plates with PTFE sheets (198 MPa), followed by the 15 mm and 20 mm honeycombs (168
and 160 MPa). Cardboard supported specimens lead to premature failure, due to the global
instability (128 MPa). Considering the fact that the initial stiffness (see Table 3) of the
cardboard material is higher compared to 15 and 20 mm honeycombs, it seems that this
parameter has no obvious effect on the ability of the supporting plate to prevent global
buckling. Cell size or other parameters seem to be more relevant. The effect a second load
path might have was also checked. This additional verification was done by cutting a
specimen in the middle and pulling the two halves apart, in the supported configuration.
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3.2.4. Load Increase Test with Pressure Sensitive Film

In preliminary tests, the necessary pressure range for the film was found to be optimal
between 2.5–10 MPa. Furthermore, the pressure sensitive film gave the opportunity to
verify the amount and distribution of contact pressure in the chosen assembly process. The
preliminary tests with more sensitive pressure films (LLW 0.5–2.5 MPa [42]) sometimes
showed contact pressure by the tightening of the assembly screws in the lower part of
this pressure range. The loading sequence is identical to the LIC tests with different
intermediate layers. Figure 16 shows the last minutes before final failure of one exemplary
specimen. All six specimens failed finally from the edge. However, often this final failure
is initiated by a localized high-pressure zone, which develops suddenly within the capture
period of 3 min between frames. It is interesting to note that this localized deformation
initiates additional deformation in neighboring areas. These areas are typically at the edge
of the specimen and lead to final failure.
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3.2.5. Compressive Damage Investigations

Similar damage modes could be observed in the form of localized buckling over all
tests. Figure 17 shows two exemplary specimens. A white light interferometer scan of the
same area of the LIC specimen is shown in Figure 18. The calculations in Section 2.3.2 make
use of the measured peak height of 0.075 mm. No buckles were visible on the specimen
surface before the respective loading.
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4. Discussion
4.1. Effect of the Supporting Material

In contrast to the initial stiffness, a possible correlation between the stiffness of the
supporting material and the failure type is observed. Instead of comparing the elastic
modulus of the supporting materials, it is better to use stiffness (e.g., elastic modulus
divided by thickness) as a measure for comparison, because the shape and reactional forces
in a slightly buckled column depend on the resulting deformation of the intermediate
material and not its strain. A stiffness of 2 N/mm3 or below is not enough to prevent global
buckling in the testing configuration despite the predictions for an elastically supported
column. One possible explanation for the over predicted buckling load could be that the
results in Figure 9 do not incorporate the shear compliance of the laminate. Other likely
reasons could be not ideally straight specimens in combination with a low crushing stress
of the cardboard honeycombs. The failure load of the LIC test can be correlated with the
stiffness of the intermediate material especially for the high differences—Figure 19. The
influence of the crushing stress on the failure load level in the LIC can only be evaluated by
comparing Figures 19 and 20. The highest load achieved in the LIC test is for both aramid
honeycomb materials similar. In terms of crushing stress, a difference would be expected
whereas in terms of stiffness not. Furthermore, no crushing is possible for the PTFE film.
These observations make the stiffness of the intermediate material in the linear-elastic
region of the stress-strain curve the main factor influencing the failure load.
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4.2. Testing Strategy

From the premature failure of the cardboard supported specimens, it can be concluded
that the analytical model for elastically supported columns can be used to define a mini-
mum required supporting stiffness. However, a slight over prediction must be expected.
The analytical models predict for the aramid honeycomb materials a global buckling load
slightly above the fatigue testing loads and in none of the tests with those intermediate
materials global buckling was observed. However, from the experiments with stiffer inter-
mediate materials and calculated results for fiber kinking and delamination growth it must
be noted that the supporting structure likely enhances the failure load of those damage
modes. Therefore, the investigated aramid honeycomb materials should have the least
effect on the testing results, as the critical load for global buckling is only 50% above the
highest load level used for fatigue testing. Besides the intermediate material’s stiffness, the
crushing stress is also an important factor. From the LIC test with a pressure sensitive film,
it was obvious that the pressure necessary to keep the specimen in a straight configuration
is in the same order as the crushing stress of some of the materials. This adds another
statistical feature, which increases the complexity of correct choice for the compressive
fatigue testing set-up.
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On the other hand, considering the experiences with a short unsupported specimen, it
becomes evident that tabbing introduces another factor, which can prolong testing times by
unacceptable failure. Even worse, it can lead to global buckling, which should be avoided
by design and may stay unnoticed. In addition to these problems, macroscopic damage
development namely localized delamination might also be effected by the constraining
effect of the grips. This becomes evident through the comparison of damage development
in the LIC test with pressure sensitive films and the observations in the fatigue tests with a
gage length of 10 mm. The LIC test showed that localized delamination would introduce
damage and failure in neighboring areas, which lay inside the gripped zone of the short
gage length specimen. This sequence of events is less likely as the neighboring area is
inside the grips of a short gage length specimen.

4.3. Compressive Fatigue Damage

The techniques used to compare different testing strategies also led to further insights
into the compressive behavior of the material under investigation. The compressive fatigue
testing results suggested a large effect of local material inhomogeneity on the durability
of the specimens under these loading conditions. The localized buckling or delamination
near the specimen’s surface, which could be observed in fatigue testing with and without
support and also in the LIC test suggest a more pronounced role of matrix creep in addition
to a material inhomogeneity. These observations were further underlined by the LIC
test with additional pressure sensitive film, which showed a steady delamination growth,
which started several minutes before final failure. Furthermore, it was evident that these
localized buckling redistributed the stresses. By this redistribution, other areas typically at
the specimen edge were overloaded and the specimen collapsed. To this point, it remains to
clarify if the material inhomogeneity is the type of a geometric inhomogeneity or just small
defects in the form of pores or debonding. However, large areas of the material were already
investigated by micro sectioning and µCT and no pores or debonding was evident [3]. This
would suggest the geometric inhomogeneity near the specimen’s surface to be the main
initiator of failure. Incorporating this assumption large scattering of the fatigue testing
results might in part be explained by the distribution of geometric inhomogeneity near the
specimen surface. However, a correlation between scattering in the compressive fatigue
testing results would need a complementary geometry analysis of a statistically significant
part of the organo sheet material. Independent of what defect initiates the localized buckles,
a sequence of events can be reckoned under the assumption that the LIC and the fatigue
tests show a common failure propagation. First a local material separation occurs, which
allows a fraction of the fibers of a roving (oriented along the loading direction) to buckle.
This small buckle grows in length and amplitude both because of mean stress (creep) and
loading amplitude (fatigue). This local defect redistributes some of the load to neighboring
areas, and furthermore, introduces asymmetry in the stress distribution in the adjacent
cross sections. Finally, this inhomogeneity in stress leads to the final specimen failure. The
final fracture surface is inclined approximately 30–60◦ to the specimens axis.

The comparison of the damage observed in this study to earlier studies with different
loading ratios (R = 0.1 [3] and R = −0.74 [17]) but the same specimen geometry and
material show a very distinct effect the loading ratio has on the type of damage. For
moderate compressive loads as in the alternative loading R = −0.74 no localized buckles
were reported [17]. Therefore, the sequence of events discerned from the LIC test and the
compression-compression fatigue test show, that there could be a critical compressive mean
stress to activate these damage mechanisms. As a result of different damage mechanisms
from tension dominated loading to compression dominated loading, the asymmetry of
the constant lifetime diagrams is not only the result of different failure stresses but also of
different slopes of the S-N curve.
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5. Conclusions

From the results conclusions on the testing strategy and the material’s behavior can
be drawn.

Material behavior:

• The loading ratio shows a great effect on the damage mechanisms of the Tepex®

dynalite material in comparison to the current, and to earlier published results both in
the resulting S-N curve and the acting damage mechanisms

• Localized buckling can be identified as a pre-failure mechanism for compression-
compression loading and is precursor for final failure. This could also be used as
warning sign for the inspection of parts in-service.

• Fatigue and creep are equally important for compression-compression loading regimes.
A critical mean stress and loading time might activate the damage mechanism and
explain some of the scattering observed.

Testing strategy:

• Testing results obtained with supported specimens are different for a high stiffness of
the supporting material, which could be shown both experimentally and by analytical
models.

• High contact pressures applied by the anti-buckling device are likely affecting the
propagation stress of kink bands and must equally be considered besides the stiffness
of the supporting material.

• The elastically supported column model used in this work has proven to be a viable
tool to estimate the minimum stiffness for the intermediate layers of the anti-buckling
device.

• Small gage length testing with tabbed specimens might also affect the testing results be-
cause only a small material volume is tested and local asymmetric stress distributions
do not lead to final failure in contrast to the materials behavior in later components.

From this, it can be concluded that the testing strategy must be fitted to the expected
damage mode. A better understanding of differences and similarities between component
failure and lab scale failure under compression fatigue is needed to overcome the prejudice
that compressive fatigue must be avoided even though extremely shallow S-N curves can
be expected.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcs5040114/s1, Figure S1: intermediate materials after indentation test.
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