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Abstract: The utilization of post-consumer car tires is an essential issue from an ecological and
economic point of view. One of the simplest and the least harmful methods is their material recycling
resulting in ground tire rubber (GTR), which can be further applied as fillers for polymer-based
composites. Nevertheless, insufficient interfacial interactions implicate the necessity of GTR modi-
fication before introduction into polymer matrices. In this study, we investigated the influence of
rapeseed oil-assisted thermo-mechanical treatment of GTR using a reactive extrusion process on the
processing, structure, and performance of flexible polyurethane/GTR composite foams. Applied
modifications affected the processing of polyurethane systems. They caused a noticeable reduction
in the average cell size of foams, which was attributed to the potential nucleating activity of solid
particles and changes in surface tension caused by the presence of oil. Such an effect was especially
pronounced for the waste rapeseed oil, which resulted in the highest content of closed cells. Structural
changes caused by GTR modification implicated the enhancement of foams’ strength. Mechanical
performance was significantly affected by the applied modifications due to the changes in glass
transition temperature. Moreover, the incorporation of waste GTR particles into the polyurethane
matrix noticeably improved its thermal stability.

Keywords: polyurethane foams; ground tire rubber; composites; oil modification; recycling

1. Introduction

Ground tire rubber (GTR) is a waste material generated currently in enormous
amounts during material recycling of post-consumer car tires. At present, literature works
analyzed the application of GTR in the manufacturing of acoustic insulation [1], damp-
ing layers [2], asphalts [3], highway embankments [4], or concretes [5]. Moreover, this
material can be applied in steelmaking. The GTR can be used as a partial or complete
substitute for coke, which has been proven to lead to a more stable slag [6]. Furthermore,
the introduction of ELT significantly increases the reduction and carburization of the metal
produced compared to coke alone. The researchers conclude that hydrogen is introduced
by rubber-based waste. Thus, this element’s reactions promote faster coal gasification
(faster reduction of iron oxide in coke) [7]. Ground tire rubber can also be applied as
fuel during heat generation because of the relatively high calorific value (33–35 MJ/kg).
Nevertheless, such solutions are characterized by few disadvantages. First of all, it is
necessary to design and build the proper plant, guaranteeing an efficient reduction in
harmful emissions. Combustion of GTR results in the generation of significant amounts of
dioxins, furans, styrene, and other compounds, which can show carcinogenic effects [8].
Moreover, according to Amari et al. [9], the combustion of car tires enables the recovery
of only 37% of the energy required to produce a tire (including the production of raw
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materials and the tire itself, as well as the grinding of tires to the required size for use
as fuel).

Therefore, due to the above-mentioned disadvantages and the fact that these applica-
tions still do not guarantee sufficient demand for recycled rubber waste, much research is
currently being conducted to find potential applications for GTR, among others in the plas-
tics industry [10]. The production of composite materials seems to be the most promising
research direction due to the multitude of polymer–rubber products’ potential applications.
So far, GTR has been used as a filler in composites based on polyurethanes, polyolefins,
or rubber [11,12]. However, the authors point out the main problem limiting the broader
use of waste rubber in producing polymer composites: low compatibility of the GTR with
polymer matrices [13]. As a result, the mechanical properties of the obtained composites
are insufficient for potential applications. The solution to this problem is modifying waste
rubber, consisting of surface oxidation, partial devulcanization, or grafting various chemi-
cal compounds onto its surface [14]. This kind of modification makes it possible to give
new functional properties to waste rubber. The literature describes many modification
methods of GTR, including mechanical, thermo-mechanical, mechanical–chemical, and
other methods such as microwave, ultrasound, microorganisms, or supercritical CO2 [15].
Nevertheless, the vast majority of the methods described are based on processes of a peri-
odic character. This causes the presented methods to have several disadvantages, among
which we should include the following:

• The use of organic and inorganic solvents—as a result, the product usually requires
additional purification, which complicates the process (additional unit operations),
generates significant amounts of wastewater, and increases the processing time. More-
over, for many years, it has been suggested that the technology should use as few
solvents as possible, as their use is not necessary [16].

• The need to start and stop production every day and sometimes more frequently
affects the efficiency of the process and its economic aspect.

• The use of microwave and plasma reactors is costly and often does not ensure very
high process efficiency [16].

These disadvantages effectively limit the industrial application of the above-mentioned
periodic methods. Therefore, it is reasonable to search for methods of GTR modification
of continuous character. A potentially very effective method is the in situ modification of
fillers in the reactive extrusion process. This process is fast, relatively cheap, and considered
to be an environmentally friendly alternative to traditional batch methods of GTR modifi-
cation [17]. The use of reactive extrusion allows for exact adjustment of the modification of
the conditions by changing process parameters such as temperature on particular zones
of the barrel, screw rotational speed, throughput, residence time of the material in the
extruder, or, finally, the magnitude of shear forces acting on the material regulated by
changing the screw configuration [18,19]. An advantage of this process is the lack of need
to use solvents (although this method does not preclude their use), eliminating additional
purification processes. These factors lead to the continued development and increased
interest in this method [20]. Even though reactive extrusion is a process that has been
known for many years, its application to the modification of rubber GTR is a relatively
new direction of research. As mentioned above, an appropriately modified rubber with a
structure that would ensure strong enough interactions at the matrix–filler interface could
be successfully used to produce polymer–GTR composites.

An attractive candidate for the matrix is polyurethane foams. They are an extensive
group of materials, which can be most simply divided into rigid and flexible foams [21].
The first group includes foams used mainly as thermal insulating materials. The most
important thing in their case is obtaining a cellular structure that ensures the lowest possible
thermal conductivity coefficient [22]. The introduction of GTR into rigid polyurethane
foams could positively influence the insulating properties of the final product due to the
lower thermal conductivity coefficient of rubber compared to solid polyurethane (≈160
and ≈220 mW/(m·K) [23].
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Nevertheless, to achieve this effect, appropriate adjustment of the cellular structure
is required, and so far, there are no reports of this type in the literature. Therefore, in
terms of GTR application, flexible polyurethane foams seem to be more prospective, mainly
due to their multitude of applications. These materials are commonly used in furniture,
automotive, construction, or packaging industries [24]. They are used in products where
the material cost is often an essential aspect. Using relatively cheap GTR could lower
the material’s cost and significantly increase its attractiveness to potential buyers. The
literature data indicate that the introduction of GTR into flexible polyurethane foams has a
beneficial effect on improving damping properties both in the direction of mechanical and
acoustic vibrations [25].

In our previous work [26], we noted the increase in mechanical strength and an
improvement in the material’s thermal stability with the addition of GTR. In another
paper [27], we reported that the partial oxidation of rubber surface might enhance the
potential interactions with polyurethane matrix due to the increase in the GTR hydroxyl
value measured by the titration-based method [28]. Depending on the level of modification,
the mechanical properties of the resulting foams may be noticeably improved. The authors
of other works indicated similar observations. Cachaço et al. [29] observed a significant
increase in compressive strength and modulus of elasticity due to the introduction of GTR
into the foamed flexible polyurethane matrix. Gayathri et al. [30] reported an increase in
tensile and compression with the addition of GTR. They also indicate a significant increase
in the sound absorption coefficient of the material, which is a great advantage from the
point of view of using foams as damping materials. A similar effect related to sound
absorption was observed by Zhang et al. [31]. Moreover, they studied the effect of the
addition of unmodified and partially devulcanized GTR on the structure and properties
of the material. They observed that devulcanization allowed decreasing the pore size in
the foam, which should be considered beneficial from the point of view of mechanical
properties. Moreover, the introduction of rubber dust into the foam allowed increasing the
loss modulus.

Therefore, in the presented paper, we investigated another GTR modification method
to enhance the performance of polyurethane/GTR composites. The influence of oil-assisted
thermo-mechanical treatment of ground tire rubber in a twin-screw extruder and the impact
of oil type (fresh or waste rapeseed oil) and content (20 or 40 parts per hundred rubber)
on the processing, structure, and performance of composites based on a foamed flexible
polyurethane matrix was investigated. The application of oil as a modifier of GTR may
enable its swelling and, according to the literature data, it may improve the heat transfer in
rubber during thermo-mechanical treatment [32]. Moreover, the oil may act as a processing
aid, and by the decrease, the screws’ torque reduces the amount of mechanical energy
required for GTR processing [33]. The goal of the work was to apply the waste rapeseed oil
generated by food companies and restaurants. It would result in the utilization of waste
rubber and waste oil simultaneously in one solution, based on the continuous process. For
better understanding, the raw rapeseed oil was also applied for comparison.

2. Materials and Methods
2.1. Materials

The applied ground tire rubber was provided by Recykl S.A. (Śrem, Poland). It was
produced by the ambient grinding of post-consumer tires (from passenger cars and trucks
in 50:50 mass ratio). The average particle size of applied GTR is around 0.6 mm.

Ground tire rubber was modified with two types of rapeseed oil, the fresh one (FO)
was acquired from Lidl (Gdańsk, Poland), and waste (WO) was obtained from a local
restaurant (Gdańsk, Poland). The main fatty acids present in the rapeseed oil are presented
in Figure 1. It can be seen that the fatty acids present in the rapeseed oil as glycerol esters
do not contain hydroxyl groups in their structure, contrary for example to castor oil [34].
Nevertheless, due to the presence of unsaturated bonds, they are prone to oxidation during
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themo-mechanical treatment of the GTR/oil mixture, which may result in the generation
of hydroxyls.
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Polyurethanes were synthesized from a Rokopol®F3000 and Rokopol®V700 poly-
ols obtained from the PCC Group (Brzeg Dolny, Poland), with the addition of glycerol
acquired from Sigma Aldrich (Poznań, Poland). The polymeric methylenediphenyl-4,4′-
diisocyanate (pMDI) SPECFLEX NF 434, acquired from M. B. Market Ltd. (Baniocha,
Poland) was used as an isocyanate component. The solution of potassium acetate PC CAT®

TKA30 from Performance Chemicals (Belvedere, UK), 33 wt % solution of 1,4-diazabicyclo
[2.2.2]octane in dipropylene glycol (Dabco33LV from Air Products (Allentown, PA, USA)),
and dibutyltin dilaurate (DBTDL) from Sigma Aldrich (Poznań, Poland) were applied as
catalysts. Distilled water was used as a chemical blowing agent.

For the evaluation of the chemical structure of modified GTR, the following chem-
icals were applied: acetone, dibutylamine, chlorobenzene, hydrochloric acid, toluene
diisocyanate (TDI), and 3′,3′′,5′,5′′-tetrabromophenolsulfonphthalein. All chemicals were
acquired from Sigma Aldrich (Poznań, Poland) and were used as received.

2.2. Modifications of Ground Tire Rubber

Applied modifications of ground tire rubber were described in our previous work [33].
Briefly, treatment of GTR was performed with an EHP 2 × 20 Sline co-rotating twin-screw
extruder from Zamak Mercator (Skawina, Poland) with a screw diameter of 20 mm and
an L/d ratio of 40. Before the modification, GTR was premixed with 20 or 40 phr (parts
per hundred of rubber) of selected oil. Then, it was dosed into the extruder hopper with
a constant throughput of 2 kg/h. The barrel temperature in all zones was set at 200 ◦C.
The screw speed was set at 350 rpm. For each set of parameters, extrusion was carried out
for at least 5 min after stabilizing the extruder’s motor load, indicating the stabilization
process. For comparison, GTR without oil addition was also processed. GTR refers to the
unmodified GTR, while GTRTM refers to the one thermo-mechanically treated without oil
addition in the following sections. Simultaneously, modified samples were named GTRXY,
where X indicates the modifier’s content (20 or 40 phr) and Y indicates its type (fresh oil
or waste oil). In Table 1, there are presented hydroxyl values of modified ground tire
rubber, which are determined according to the methodology presented in our previous
works [28,33,35]. The impact of GTR treatment on its performance was also described in
these works [28,33,35]. Changes in the hydroxyl numbers were attributed to the partial
oxidation of GTR/oil mixtures and generation of hydroxyl, formyl, and carbonyl groups,
as reported in previous works [36,37].
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Table 1. Measured hydroxyl values of applied ground tire rubber (GTR) samples.

GTR Type GTR GTRTM GTR20FO GTR40FO GTR20WO GTR40WO

Hydroxyl number,
mg KOH/g 61.7 ± 3.0 37.8 ± 1.3 56.9 ± 2.4 53.1 ± 1.0 75.2 ± 3.5 75.9 ± 0.9

2.3. Preparation of Polyurethane/Ground Tire Rubber Composite Foams

Composite foams were prepared on a laboratory scale by a single-step method with
the ratio of isocyanate to hydroxyl groups of 1:1. The content of modified ground tire rubber
in composite foams was fixed at 20 wt %. Before polymerization, filler was mixed with the
polyol components at 1000 rpm for 60 s to enhance its distribution in the final material. All
components were mixed for 10 s at 1800 rpm and poured into a closed aluminum mold
with dimensions of 20 × 10 × 4 cm3. After demolding, the samples were conditioned at
room temperature for 24 h. The amount of reaction mixture poured into the mold was
adjusted to obtain foams with a similar level of apparent density, which noticeably affects
cellular materials’ performance. As a result, all foams were characterized by an apparent
density of 205 ± 6 kg/m3.

Table 2 contains the details of foam formulations. In the following sections, the
neat foam without the addition of GTR was named PU, while composite foams were
named PU/X, where X indicates the type of introduced GTR. The hydroxyl numbers of
modified GTR were not included in the calculations during formulation development.
Such an approach was taken to investigate the changes in foams’ performance caused by
incorporating GTR with functional groups able to interact with the polyurethane matrix.

Table 2. Formulations of prepared polyurethane foams.

Component Neat Foam Composite Foams

Content, wt %

F3000 32.6 26.1
V700 32.6 26.1

Glycerol 0.8 0.6
DBTDL 0.6 0.5

33LV 0.4 0.3
TKA30 0.4 0.3
Water 0.3 0.3
pMDI 32.3 25.8

GTR/modified GTR - 20.0

2.4. Measurements

For all the samples, the rise time (time of volumetric expansion) was determined.
Moreover, during polymerization, the temperature inside the foam surface was measured
with a thermocouple.

After conditioning, foamed polyurethane composites were cut into samples whose
properties were later determined following the standard procedures.

The samples’ morphology was evaluated using a Bresser LDC 50×–2000× optical
microscope (Rhede, Germany). Based on the obtained images, the average cell size was
determined. At least 100 cells for each sample were taken into account during analysis.

The content of open cells in foamed PU/GTR composites was determined using an
Ultrapyc 5000 Foam gas pycnometer from Anton Paar (Graz, Austria) according to ASTM
D6226 standard. The following measurement settings were applied: gas—helium; target
pressure—3.0 psi; foam mode—on; measurement type—corrected; flow direction—sample
first; temperature control—on; target temperature—20.0 ◦C; flow mode—monolith; cell
size—medium, 45 cm3; preparation mode—flow; time of the gas flow—0.5 min. Ten runs
were performed for each sample.
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The sol fraction content was determined as the mass difference of prepared foams
before swelling in xylene (W1) and after extraction (W2), according to the following
Formula (1):

Sol fraction content = (W1 −W2)/W1·100%. (1)

Three samples were analyzed for each foam.
The compressive strength of studied samples was estimated following ISO 604. The

cylindric samples with dimensions of 20 × 20 mm2 (height and diameter) were measured
with a slide caliper with an accuracy of 0.1 mm. The compression test was performed on
a Zwick/Roell Z020 tensile tester (Ulm, Germany) at a constant speed of 15%/min until
reaching 60% deformation. Five samples were tested for each foam.

The tensile strength of microporous polyurethane elastomers was estimated follow-
ing ISO 1798. The beam-shaped samples with dimensions of 10 × 10 × 100 mm3 were
measured with a slide caliper with an accuracy of 0.1 mm. The tensile test was performed
on a Zwick/Roell tensile tester (Ulm, Germany) at a constant speed of 500 mm/min.
Five samples were tested for each foam.

Dynamical mechanical analysis (DMA) was performed using a Q800 DMA instrument
from TA Instruments (New Castle, USA) at a heating rate of 4 ◦C/min and the temper-
ature range from −100 to 150 ◦C. Samples were cylindrical-shaped, with dimensions of
10 × 12 mm2. Measurements were performed in the single cantilever bending mode with
a frequency of 1 Hz.

The thermogravimetric (TGA) analysis of GTR and composites was performed using
the TG 209 F3 apparatus from Netzsch (Selb, Germany). Samples of composites weighing
approximately 10 mg were placed in a ceramic dish. The study was conducted in an inert
gas atmosphere–nitrogen in the range from 30 to 900 ◦C with a temperature increase rate
of 10 ◦C/min.

3. Results and Discussion

Figure 2 presents the temperature changes inside the foam during its rise, depending
on the applied formulation. The temperature was measured until reaching a plateau
(variations lower than 0.5 ◦C for 10 s). It can be seen that for the unfilled polyurethane
foam, the temperature reached almost 90 ◦C. The introduction of waste rubber resulted
in the decrease of the maximum temperature, which confirms our previous results [27].
Moreover, for the unfilled foam, faster heat build-up was observed, indicating the system’s
higher reactivity. As a result, the reference sample’s rise time was the lowest among all
foams and equaled 37 s. The introduction of GTR, especially modified with oils, caused
an elongation of rise time, even up to 45 s for 40 phr content of oils. Such an effect was
associated with the increased viscosity of the polyol mixture due to the presence of solid
particles and the introduction of mostly non-reactive rapeseed oil (lack of hydroxyl groups).
Its addition may also affect the reacting mixture’s viscosity, inhibiting the nucleation of
gas bubbles [38]. Despite the elongation of rise time, the temperature plateau was reached
faster for composite foams, which was attributed to the partial replacement of polyurethane
matrix with GTR. As a result, less reactive sites were present in the system, which caused
reduced heat generation. Such an effect was especially pronounced for oil-modified GTR.



J. Compos. Sci. 2021, 5, 90 7 of 19

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 7 of 20 
 

 

structure at higher viscosities. 

 
Figure 2. The impact of formulation on the temperature inside foam during polymerization. 

 

 

Figure 2. The impact of formulation on the temperature inside foam during polymerization.

In Figure 3, presented images show the cellular structure of prepared foams with
information about the average cell diameter.
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It can be seen that the unfilled polyurethane matrix was characterized by a relatively
regular structure. The incorporation of GTR caused significant changes in the foams’
structure. Irrespective of the GTR type, a decrease in the average cell size was noted and
accompanied by the noticeable increase of structural heterogeneity. Such an effect can be
attributed to the two different effects of GTR incorporation. First of all, the addition of
solid particles into the polyol mixture caused a significant increase in its viscosity, which
affected the volumetric expansion of foam [39]. This effect is typical for incorporating GTR
into polyurethane foams’ formulations and was noted in our previous papers [26,40]. In
addition, Song et al. [41] indicated that foaming results in a more heterogeneous cellular
structure at higher viscosities.

The second effect is the possible nucleating activity of solid particles due to the
combined impact of surface development and the presence of functional groups on the
GTR surface [42]. The surface development was mainly responsible for the decrease in
average cell diameter after thermo-mechanical treatment of GTR. The shear forces acting
on the solid particles during extrusion cause the increase in surface roughness, which
was repeatedly proven in works [43–45]. As a result, the cell size was decreased, despite
the lower content of functional groups able to react with isocyanates present on the GTR
surface, which was expressed by the lower hydroxyl value—37.8 mg KOH/g, compared to
61.7 mg KOH/g for the unmodified GTR.

For oil-modified GTR, the functional groups’ presence was rather more emphasized
than the surface development, which was suggested by the higher hydroxyl values (see
Table 1). The incorporation of oil-modified GTR enhanced the decrease in average cell size
compared to the unmodified particles. Such a phenomenon may be associated with the
possibly increased surface tension, so a higher amount of energy is required to form and
grow cells [46]. Nevertheless, a noticeably stronger effect was observed for the waste-type
oil, which could be attributed to the presence of lower-molecular weight fractions, possibly
even glycerol and free fatty acids [47]. The lower molecular weight compounds present
in the waste oil can also efficiently swell the rubber particles enhancing the interactions
with the reacting mixture, which may beneficially influence the compatibility of GTR
with foamed polyurethane matrix [48,49]. Qualitatively, a similar effect may be noted for
the fresh oil. However, to a lower extent, the average cell size was bigger than for foam
containing thermo-mechanically treated GTR. Nevertheless, more low-diameter cells were
grown on the oil-treated GTR surface (see Figure 4). Similar effects associated with the
presence of oils in polyurethane formulations were also noted by other researchers [50,51].
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Figure 5 shows the influence of the GTR incorporation on the content of open cells in
prepared foams. It can be seen that the highest open cell content was noted for the unfilled
polyurethane matrix, while the GTR caused the partial closing of cells. Such an effect can
be associated with the above-mentioned increase in polyol mixture viscosity and surface
tension caused by GTR particles’ presence and the addition of oils [38]. As a result, the
presence of oils enhanced the number of smaller closed cells on the GTR surface, as shown
in Figure 4. Such an effect may also be attributed to the higher hydroxyl values, hence the
more possibilities to react with isocyanates present in the system. Figure 6a,b show the
structure of foams containing unmodified GTR particles. The places where the cellular
structure was ruptured, resulting in open cells, are marked with red circles. Simultaneously,
modification with 40 phr of fresh and waste rapeseed oil caused a closing of low-diameter
cells growing on the surface of GTR (blue circles in Figure 6c,d). The increase in the closed
cell content may positively impact the strength and insulation performance of foams.
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Figure 7 shows the content of the sol fraction of prepared foams. This parameter
can indicate the amount of non-crosslinked or unbound material, which can be extracted
by solvent [52]. The low value of 2.3% noted for the unfilled PU foam indicates that the
material was almost wholly reacted with only a small portion of extractives, which is typical
for PU foams, especially at a lower isocyanate index [53]. The introduction of GTR caused
an increase in sol fraction, which can be attributed to the presence of loose macromolecules
in waste rubber particles and the unreacted portion of the polyurethane mixture [54].
When thermo-mechanically treated GTR was applied, the sol fraction content of foam was
decreased. Generally, such treatments result in the partial devulcanization of GTR itself,
increasing its sol fraction [55]. However, in the presented case, the devulcanization may
provide additional possibilities for the interactions with the polyurethane matrix, which
was also suggested by decreasing the average cell size and drop of open cell content.

Modification of GTR with two types of rapeseed oil showed a different impact on
the foams’ sol fraction content. For the fresh one, values exceeded 13%, while for the
waste oil, values were between 8 and 9%, indicating the physical interactions at the inter-
face. Such differences may be attributed to the changes in chemical structure occurring
during the cooking of oil. Lower molecular weight compounds may enhance the interac-
tions with polyurethane and facilitate the bonding with isocyanates, resulting in a higher
crosslink degree [47].

The results of the static and dynamic mechanical tests are presented in Figures 8 and 9
and Table 3. It can be seen that the mechanical performance of the neat polyurethane foam
was significantly affected by the incorporation of GTR particles. Nevertheless, all samples
showed typical properties characteristic for flexible foams [56]. Considering compressive
performance, the plateau phase can be noted after the initial rise of stress, which is termi-
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nated when densification of the structure occurs and stress gradually increases. Generally,
the deterioration of the mechanical performance was noted, but the effect was also re-
lated to the applied matrix’s relatively good performance. The changes in the mechanical
properties, just as differences in the cellular structure, could be attributed to the surface
development and content of functional groups (expressed by the hydroxyl value—see
Table 1), resulting from applied GTR modifications. When the untreated GTR was applied
as a filler, around a 50% drop of compressive and tensile strength was noted, compared to
the neat foam. The elongation at break was also reduced, which is often noted when the
material’s heterogeneity increased [57]. The treatment of GTR in the extruder resulted in
enhancing the mechanical properties, which could be attributed to the above-mentioned
surface development and the resulting decrease in particle size, despite the lower hydroxyl
value. Moreover, values of the sol fraction content indicate the enhanced adhesion between
GTR and PU.
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The mechanical performance of foams filled with oil-treated GTR was also in line
with the sol fraction content, average cell diameter, and closed cell content. The values of
tensile and compressive strength were about 100% higher when the waste oil was applied.
As mentioned above, such an effect may be attributed to the higher crosslink degree,
which is associated with the presence of lower molecular weight compounds generated
during the cooking of oil. They could enhance the swelling of rubber and increase the
strength of interactions with the polyurethane matrix. In addition, the lower average cell
size and higher content of closed cells beneficially affected the mechanical performance.
Such an effect was associated with the increase in the actual cross-section area during
the application of force and was noted by other researchers [58]. Andersons et al. [59]
found out that open-cell models of foamed materials highly underestimate the stiffness
and strength of closed-cell foams, indicating that the opening of cells greatly impacts the
mechanical performance. During compression, the strength of foamed material results
from the buckling of cell walls and structure densification. According to the literature
data [60], the increase in cell size implicates cell walls’ thickening and decreased the struts
fraction. As a result, the strength that foams can withstand decreases with the rise of
average cell size. Considering the tensile performance of flexible foams, the motions of
walls and struts occur during tension, so the walls are aligned along the stress direction.
Thicker cell walls of foams with smaller particle sizes can withstand higher forces.
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Table 3. The results of static and dynamic mechanical analysis of prepared polyurethane foams.

Sample

Compressive Strength at 60%
Deformation Tensile

Strength,
kPa

Elongation
at Break, %

E′ at 22 ◦C,
kPa

E′′ at 22 ◦C,
kPa

tan δ at
22 ◦C

Tg, ◦C
Measured,

kPa
Normalized,
kPa·m3/kg

Matrix 77 + 7 0.37 230 + 6 195 + 4 1358 834 0.61 20.7
PU/GTR 38 + 2 0.18 128 + 5 167 + 2 627 323 0.52 10.5

PU/GTRTM 52 + 2 0.26 156 + 8 171 + 5 1049 558 0.53 16.6
PU/GTR20FO 19 + 1 0.09 77 + 1 174 + 2 379 213 0.56 10.3
PU/GTR40FO 40 + 4 0.19 128 + 4 178 + 1 854 472 0.55 15.9
PU/GTR20WO 45 + 2 0.22 154 + 13 169 + 7 935 568 0.60 14.1
PU/GTR40WO 97 + 3 0.46 197 + 12 178 + 5 1023 582 0.55 15.4

Table 3 also provided the parameters determined by the dynamic mechanical analysis
at 22 ◦C (the temperature during the static tests). They can be used to interpret the static
mechanical performance properly. It can be seen that the introduction of GTR into the PU
matrix resulted in a significant drop in stiffness, which may be attributed to the disturbance
in structure and presence of loose macromolecules (higher sol fraction content). When
thermo-mechanically treated GTR was used, and interactions with matrix were stronger,
and the stiffness was also increased. The oil treatment caused a reduction in stiffness
compared to thermo-mechanical treatment. Generally, the sensitivity of prepared materials’
mechanical performance to the type of introduced GTR may be explained by values of
glass transition temperature (Tg), which are determined as the tan δ peak’s temperature
position, often called the damping factor. The polymers’ mechanical performance is
susceptible to the glass transition, which occurs in a certain temperature range rather than
isothermally [61,62]. For better visualization, Figure 9 shows the temperature plot of the
damping factor for prepared materials. It can be seen that for the unfilled foam, the value
of Tg equaled 20.7 ◦C, which is very close to the temperature during mechanical tests.
Its shift toward lower temperatures by 4.1–10.4 ◦C may noticeably affect the mechanical
performance because of the increase in molecular motions. Hatakeyama et al. [63] found
that for the flexible polyurethane foams, variations of the Tg in the range of 0–20 ◦C may
result in even a 40% change of compressive strength.

Figure 10 presents the course of thermal degradation of modified GTR as well as pre-
pared composite foams during thermogravimetric analysis, together with the differential
thermogravimetric curves. Moreover, results are summarized in Table 4.

For the unmodified and thermo-mechanically treated GTR, the course of thermal
decomposition was relatively similar and included two noticeable decomposition steps.
The first one, around 378–390 ◦C (Tmax4), was associated with the decomposition of natural
rubber, while the second one at 431–443 ◦C (Tmax5) was attributed to the decomposition
of styrene–butadiene rubber [64]. These are the two main components of the ground tire
rubber that originated from waste tires.

The GTR modification with the fresh rapeseed oil resulted in the noticeable enhance-
ment of its thermal stability. Such an effect was related to the stability of the applied
modifier. Generally, rapeseed oil shows a one-step decomposition process related to the
degradation of triglycerides, which starts around 325 ◦C, reaches a maximum rate of around
440 ◦C, and ends at 500 ◦C [65]. As a result, the DTG curves of modified rubbers were
noticeably affected. The peaks Tmax4 and Tmax5 were shifted by 3.4–11.0 and 9.8–11.7 ◦C,
respectively, toward higher temperatures. Moreover, the rate of decomposition at Tmax4
was noticeably affected.

Treatment of GTR with the waste rapeseed oil resulted in similar changes in qualitative
terms. Nevertheless, the thermal stability was slightly lower compared to the use of fresh
oil. Such an effect may be associated with the partial decomposition of oil during its
primary use and the resulting presence of lower-molecular weight compounds, whose
onset of degradation was lower. It was also mirrored in the temperature positions of Tmax4
and Tmax5 peaks at differential thermogravimetric curves.
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As a result of the above-mentioned changes, the incorporation of ground tire rubber
enhanced the thermal stability of neat polyurethane foam. The onset of thermal decomposi-
tion, which is attributed to the temperature of 2 wt % mass loss, was shifted from 215.0 ◦C
for a neat PU matrix by 13.4–24.6 ◦C, depending on the GTR type. Such an effect was
associated with the higher thermal stability of GTR, which was also noticeably influenced
by the applied modifications. Except for the simple enhancement of thermal stability, the
incorporation of GTR caused significant changes in the course of thermal decomposition,
which were expressed by the differential thermogravimetric curves. For neat polyurethane
foam, five noticeable peaks can be observed. The first two, at 187.7 and 227.6 ◦C, are
associated with the dissociation of urethane bonds, accounting for the hard segments of
polyurethane [66]. They are relatively small because of the low value of NCO:OH ratio
(1:1) applied during foams preparation. Moreover, two separate peaks can be related to
the used foam formulation, which contained two polyols and a small glycerol portion. As
a result, the structure of hard segments was diverse. The magnitude of these peaks was
lowered for composite foams, and their positions were shifted toward higher temperatures.
In the case of unfilled PU foam, the composition containing two different polyols also
resulted in the presence of two separate peaks attributed to the decomposition of soft
segments—Tmax3 and Tmax4, at 346.7 and 393.4 ◦C, respectively. This separation was also
noted for composites containing unmodified and thermo-mechanically treated GTR. Then,
the peak Tmax4 was overlapped with the decomposition of natural rubber. Nevertheless,
when oil-modified GTR was incorporated, the separation between overlapping Tmax3 and
Tmax4 peaks was not as visible.
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Table 4. The results of the thermogravimetric analysis for prepared polyurethane foams and applied ground tire rubbers.

Sample T−2, ◦C T−5, ◦C T−10, ◦C T−50, ◦C Residue,
wt% Tmax1, ◦C Tmax2, ◦C Tmax3, ◦C Tmax4, ◦C Tmax5, ◦C

Matrix 215.0 253.5 308.2 372.5 13.2 187.7 227.6 346.7 393.4 456.8

GTR 256.6 307.2 347.9 444.7 37.5 - - - 379.0 431.2
PU/GTR 232.5 284.3 316.2 386.3 14.9 198.0 241.1 349.0 399.5 454.0

GTRTM 261.1 310.2 348.9 444.4 37.4 - - - 378.2 431.8
PU/GTRTM 228.4 283.0 316.7 389.3 16.5 192.9 240.3 349.2 398.8 455.0

GTR20FO 269.5 316.6 347.2 429.3 32.4 - - - 382.4 442.9
PU/GTR20FO 239.6 289.0 317.9 387.8 16.1 199.9 238.9 - 393.3 455.9

GTR40FO 283.7 325.0 350.3 417.4 27.7 - - - 389.2 441.6
PU/GTR40FO 233.1 285.5 320.9 392.8 15.6 193.7 237.1 - 390.9 453.9

GTR20WO 259.9 305.1 340.4 427.0 32.3 - - - 381.9 440.6
PU/GTR20WO 231.7 284.0 318.3 390.7 15.7 195.1 237.3 - 393.5 454.1

GTR40WO 267.1 308.8 340.4 415.3 27.9 - - - 386.3 440.6
PU/GTR40WO 231.4 283.4 318.5 389.5 14.9 194.2 239.9 - 393.2 453.6

Generally, from the presented results of a thermogravimetric analysis, it can be seen
that the application of ground tire rubber as a filler for the flexible polyurethane foam may
efficiently improve their thermal stability. Moreover, by the proper modification, the level
of enhancement may be adjusted.

4. Conclusions

In the presented work, we aimed to investigate the impact of the rapeseed oil-assisted
thermo-mechanical treatment of GTR using the reactive extrusion process on the processing,
structure, and performance of flexible foamed polyurethane-based composites. Two types
of rapeseed oil were applied, fresh oil and waste obtained from a local restaurant. The
introduction of unmodified and treated GTR caused a slight elongation of processing
times and significantly reduced processing temperatures. It was mostly attributed to the
increased viscosity of the polyol mixture, which was caused by the introduction of solid
particles and mostly non-reactive rapeseed oil (lack of hydroxyl groups). Moreover, the
presence of oil probably increased the surface tension in reacting polyurethane systems,
which resulted in a significant decrease in average cell size and increased the content of
closed cells. Such an effect was mostly pronounced when waste-type oil was applied as
modifiers. Contrary to the fresh oil, waste oil contains noticeably higher amounts of lower-
molecular weight compounds, which can efficiently swell the GTR particles and strengthen
the interfacial interactions. The mechanical properties of composites were directly affected
by their structural parameters. Thermo-mechanical treatment of GTR caused a significant
improvement of the compressive and tensile strength of foams. Introduction of the fresh
rapeseed oil, despite the swelling of rubber, deteriorated the mechanical performance of
foams, which could be related to the low amount of reactive sites enabling interactions with
the polyurethane system. On the contrary, waste oil, containing compounds generated
during cooking, improved the interfacial adhesion and provided superior performance
compared to the GTR modified without oils. The applied GTR treatments also affected
composites’ dynamic mechanical performance, which was associated with changes in the
glass transition temperature, whose values were close to the ambient temperature during
mechanical tests. Another beneficial effect of GTR incorporation into flexible polyurethane
foam was the improvement in thermal stability. The onset of thermal decomposition was
shifted for 13–25 ◦C toward higher temperatures, which was due to the high stability of
GTR. Generally, the reported results show that the thermo-mechanical treatment of GTR in
the reactive extrusion process should be considered a promising method for enhancement
of the interfacial interactions in foamed polyurethane-based composites. By the adjustment
of treatment conditions and type of applied modifier, composites with the desired structure
and performance could be obtained. Future works in this area should be focused on
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the incorporation of new modifiers of GTR, evaluation of the ecological harmfulness of
the process, as well as more in-depth evaluation of the changes during the processing of
polyurethane systems.
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