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Abstract: The application of carbon fiber-reinforced thermoplastics (CFRTPs) for automotive mass
production is attracting increasing attention from researchers and engineers in related fields. This ar-
ticle presents recent developments in CFRTPs focusing on the systematic development of lightweight
CFRTP applications for automotive mass production. Additionally, a related national project of Japan
conducted at the University of Tokyo is also introduced. The basic development demands, the specific
requirements of CFRTPs for lightweight applications in automotive mass production, and the current
development status and basic scientific outputs are discussed. The development of high-performance
CFRTPs (chopped carbon fiber tape-reinforced thermoplastics (CTTs)) and functional CFRTPs (carbon
fiber mat-reinforced thermoplastics (CMTs)) is also introduced. The fabrication process control of
CTTs is evaluated, which demonstrates the extreme importance of the mechanical performance. The
ultralight lattice, toughened structures, and orientation designable components of CMTs provide a
flexible multi-material solution for the proposed applications. Moreover, highly efficient carbon fiber
recycling technology is discussed, with recycled carbon fibers exhibiting outstanding compatibility
with CFRTPs. A cost sensitivity analysis of carbon fiber and CFRTPs is conducted to guarantee the
feasibility and affordability of their application. This article also discusses the trends and sustainabil-
ity of carbon fiber and CFRTPs usage. The importance of the object-oriented optimal development of
CFRTPs is emphasized to efficiently exploit their advantages.

Keywords: plymer-matrix composites (PMCs); recycling; compression molding; thermoplastic resin

1. Introduction

Carbon fiber-reinforced polymers (CFRP) have been applied to various industrial
fields over the last 50 years, most commonly in the aeronautics, sports, and automotive
industries. In the aeronautics and sports industries, CFRPs are fabricated to provide stiffer
and lighter alternatives to conventional metallic components. In the automotive industry,
the CFRP applications have evolved over time. Initially, the CFRPs were extensively used
in high-end automotive racing and supercars, as they possessed unsurpassed strength-
to-weight ratio and high performance. The first carbon fiber monocoque chassis was
introduced in Formula One (F1) by McLaren in the 1981 season, and the first carbon fiber
body shell was used in the supercar McLaren F1 in 1996 [1]. However, application of CFRPs
in the automotive industry have more recently taken another direction. With increasing
concerns of global warming, regulations regarding CO2 emissions have become more severe
worldwide. The automotive industry is one of the primary sources of global CO2 emissions;
therefore, automotive companies have focused their research on technologies that reduce
these emissions [2], which has led to the development of low-emission and high-efficiency
internal combustion engines, hybrid engines, fuel cell engines, and electric motors. The
development of different powertrain types shows the potential of CO2 emission reduction
in automotive engineering. Furthermore, weight reduction is important in all automotive
applications with different powertrain types [2,3]. As reported by the Japan’s Ministry
of Transport, decreasing the weight of a single automobile by 100 kg reduces its CO2
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emissions by an average of 20 g/km [4]. Thus, the development and application of CFRPs
for automotive weight reduction have increased significantly in recent years, aiming
towards mass production opportunities.

CFRPs developed for weight reduction in automotive mass production have different
material requirements than traditional CFRPs developed for performance enhancement.
However, in comparison, CFRPs are still much more expensive than conventional metal-
lic materials; therefore, cost reduction is considered the most important factor in the
development of CFRPs for this application. Furthermore, the weight reduction is more
effective if CFRPs can be used in different components; hence, the ability to fabricate
different types of CFRPs is also important to guarantee their feasibility (Figure 1). More-
over, these lightweight materials must be used in mass-produced automobiles with over
a million annual orders. Consequently, the development of high-cycle mass-production
fabrication techniques for CFRPs is of unprecedented importance, with less focus on top
performance [2–8].
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Figure 1. Weight reduction of automotive using carbon fiber-reinforced polymers (CFRPs).

CFRPs can be divided by the component matrix polymers as either thermoplastic-
based (CFRTP) or thermoset-based (CFRTS). Additionally, the length of the carbon fiber
is an important characteristic, and fibers can be continuous or discontinuous. The final
mechanical properties and fabrication features of the resulting CFRPs are influenced by
both the polymer matrix and fiber length (Figure 2). Moreover, traditional CFRPs with
high mechanical performance are generally expensive, require advanced molding tech-
nologies, and longer molding times. Therefore, they cannot fulfill the new application
requirements for automotive mass production, which has led to substantial development
in this field. Recently, high-performance discontinuous CFRPs (e.g., carbon fiber sheet
molding compounds (CF-SMC) with randomly oriented strands (ROS)) have exhibited sig-
nificant potential for structural component applications by combining superior mechanical
properties with complex shape formability [9–16]. Moreover, introducing thermoplastics
into high-performance discontinuous CFRPs offers a solution for high-cycle manufacturing
with compression molding and stamp molding. Moreover, continuous CFRPs with additive
injection-molded discontinuous CFRPs [17–20] (also denoted as “overmolding”) have been
developed to fulfill the new application requirements.
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performance, affordable, formable, and recyclable components [4].

A national project focusing on the systematic development of lightweight CFRTP
applications for automotive mass production was launched by the Japanese Ministry
of Economics and Trade and Industries (METI) in the 2008–2012 financial years. As a
continuation, a second national project was organized by the University of Tokyo between
2013 and 2017 (hereinafter denoted as the “Japan’s CFRTP projects”) [3,5,21,22]. In these
projects, discontinuous CFRTPs were developed using high-cycle compression molding
technologies. The demands of lightweight applications were studied, and corresponding
technologies were developed to satisfy these requirements.

Herein, the specific requirements for CFRTP applications within automotive mass
production will be presented; furthermore, the current development status and basic
scientific outputs in the Japan’s CFRTP projects will be demonstrated.

2. Specific Requirements for Automotive Applications

To make automotive mass application feasible, the cost reduction of CFRPs is one of the
most important challenges to be addressed. Figure 3 presents the corresponding research
and development items proposed in Japan’s CFRTP projects. The manufacturing costs of
CFRTPs are separated into four sections: the carbon fiber, matrix resin, prepreg fabrication,
and molding process. To reduce overall costs, the feasibility of the corresponding research
and development items must be analyzed in detail.
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In Japan’s CFRTP projects, discontinuous CFRTPs were selected because of their
high potential to fulfill the aforementioned requirements. A cost sensitivity analysis of
CFRTP with polypropylene matrix was conducted to verify the sensitivity of the cost of
CFRTP automotive parts to different factors, such as the molding cycle time, cost of carbon
fiber, effective usage ratio of carbon fiber during manufacturing, and volume fraction
(Vf ) of carbon fiber (Figure 4). The results presented an overall strategy for reducing the
cost of CFRTPs. For all four factors, the most cost-sensitive part is the molding cycle
time, meaning that decreasing the molding cycle time can efficiently decrease the cost of
the part. In addition, the cost of carbon fiber considerably affects the cost of the parts;
however, significantly lowering the cost of carbon fiber is difficult to achieve unless an
innovative carbon fiber is developed. Meanwhile, the effective usage ratio of carbon fiber
in CFRPs may be increased considerably by recycling waste carbon fiber directly in the
plant. Moreover, an optimal structure/material design that lowers the carbon fiber Vf will
further increase the efficiency of CFRTP applications. Based on the cost sensitivity study
conducted during Japan’s CFRTP projects, the cost of the CFRTP parts can be reduced to the
same level as those of aluminum alloys, which will be the foundation for mass application
in the automotive industry.

Related studies on the aforementioned factors must be conducted to achieve mass
applications and to provide solutions to the development of novel CFRTPs for automotive
applications. Similarly, traditional CFRTPs used for aeronautics (with matrix resins from
the polyaryletherketone family) face considerable limitations in addressing the changes
required by these factors. Although the mechanical performance of the CFRTPs are ex-
cellent, and their light weight can help with weight reduction, their high cost is the most
important obstacle. Additionally, the brittleness of CFRTSs originating from brittle matrix
resins also limit their application feasibility in the automotive industry, where materials
are required to possess high energy absorption capability. Further, conventional CFRTPs,
which use resins from the polyaryletherketone family (e.g., polyether ether ketone (PEEK)),
increase the component cost. In Japan’s CFRTP projects, less expensive resins, such as
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polypropylene (PP) and polyamide 6 (PA6), have been investigated. The CFRTPs obtained
from these projects managed to maintain mechanical performance through material de-
sign and fabrication process control. Furthermore, high-cycle molding technologies were
developed to ensure the cost reduction of the CFRTP parts, and carbon fiber recycling
technologies were employed to fulfill the usage ratio requirement of mass application in
automotive fabrication.
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3. Technology Developments of the CFRTP Applications

In this chapter, the technological developments for automotive mass application are
presented in detail, in addition to the two major types of developed CFRTPs. The feasibility
of reaching the low cost requirement and ensuring mass application in the automotive
industry is demonstrated based on different factors. Future trends and perspectives of
CFRTP applications in automotive engineering are also demonstrated and discussed.

3.1. Overview of Japan’s CFRTP Project at the University of Tokyo

Owing to severe environment and energy problems, the METI of Japan’s government
launched the CFRTP projects based on strong demand from Japan’s automotive industries
and carbon fiber manufacturers. Within these projects, specialized intermediate CFRTPs,
manufacturing processes, structural optimization design, high-cycle molding, jointing tech-
nologies, and closed-loop recycling technologies have been developed (Figure 5) [23,24].

A drawback of continuous CFRP is the difficulty of forming complex shaped struc-
tures. However, the mechanical properties of conventional discontinuous CFRPs (e.g.,
injection molding and long fiber thermoplastic direct-molding (LFT-D)) cannot fulfill the re-
quirements of the primary structural parts in the automotive industry. Therefore, novel spe-
cialized discontinuous CFRTP intermediate materials (semi-finished and semi-impregnated
CFRTP products for mass production) have been developed, which can maintain both
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carbon fiber linearity and a sufficient aspect ratio to offer high performance, affordability,
formability, and recyclability (Figure 6). Multiple CFRTPs are considered for applications
to increase the effective usage of carbon fiber. Discontinuous CFRTP with outstanding
mechanical performance (CTTs) [25–40], also named ROS [13], CF-SMC [9–12], etc.) can
be used for primary structural members. The mat-structure CFRTPs (carbon fiber mat-
reinforced thermoplastics (CMTs)) are divided into carbon fiber paper-reinforced thermo-
plastics (CPTs) [41–51] and carbon fiber card web-reinforced thermoplastics (CWTs) [52–59].
These exhibit increased functionality owing to the ultralight lattice components, toughened
sandwich structures, and orientation-designable intermediates that can provide flexible
application options. Moreover, novel recycling technology, as discussed below, may ensure
the fabrication of discontinuous CFRTPs with recycled carbon fibers.
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Moreover, research focusing on mass-produced applications of CFRPs has also been
conducted in other countries. Coordinated by Prof. Brian G. Falzon from Queen’s Uni-
versity Belfast, UK, an EU project named ICONIC (Improving the Crashworthiness of
Composite Transportation Structures) is in progress, which focuses on the crashworthiness
behavior and the application solutions of CFRP for the transportation industry (aerospace,
automotive, and rail industries). Meanwhile, two projects named FiBreMoD (Fibre Break
Models for Designing novel composite microstructures and applications) and HyFiSyn
(Hybrid Fibre-reinforced composites: achieving Synergetic effects through microstructural
design and advanced simulation tools) coordinated by Prof. Yentl Swolfs from KU Leuven
under funding support from the Marie Skłodowska-Curie Actions (MSCA) are also under-
way. The objective of these projects is to achieve a more sustainable society by enhancing
the application feasibility of CFRPs as lightweight materials in different industrial fields.
We believe that the research focusing on mass-produced applications of CFRPs will further
increase in the near future.
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3.2. High Performance of CFRTPs

The thickness of the prepregs used in CTTs has a significant effect on the mechanical
performance. Carefully designed random distribution processes can ensure the uniform
dispersion. In Japan’s CFRTP project, an ultra-thin prepreg is developed (<50 µm), much
thinner than conventional prepregs (150 µm, in general). In addition, the tape distribution
processes are designed to fabricate CTTs with small tapes (5 mm in width and 20 mm in
length) (Figure 7). As a result of the reduced thickness of the tape, the resin-impregnation
speed is ten times faster than that of conventional products. Owing to the small dimensions
of the tape, a low-cost papermaking technique can be applied for tape dispersion, which
significantly decreases the manufacturing cost and time for both prepregs and components,
showing an extremely high potential for applications in automotive mass production.

Additionally, the ultra-thin prepregs used in CTTs facilitate high-cycle molding pro-
cesses and exhibit superior mechanical properties with low scatter (Figure 8). Studies
show that mechanical properties depend on the tape length, and the maximum tensile and
flexural mechanical properties of CTTs with a PA6 matrix exhibit similar performance to
continuous CFRPs [26,28,32,34]. The effects of the tape morphology and fabrication process
have also been studied in detail. The “W” and “D” in Figure 9 denote “wet (papermaking)
process” and “direct (bulk molding) process”, respectively, and “1t”, “2t”, and “3t” denote
the thickness of the prepreg tapes. These results reveal that the mechanical properties
significantly depend on both the tape thickness and fabrication process. More than a 30% in-
creasing in the flexural modulus and over six times increasing in the coefficient of variation
(CV) can be achieved by modifying the tape thickness and fabrication process [36]. Thus,
the design of the fabrication process is of extreme importance for the mass production and
application of the CTT. In particular, a finely designed process is required to ensure stable
tape distribution and internal structures. Longer tapes and thinner prepregs can provide
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considerably improved mechanical properties, but both features decelerate the molding
cycle (which directly affects the component cost). Hence, the mechanical performance,
tape morphology, and fabrication process must be carefully considered based on the actual
requirements of a given application.
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Compared to the conventional CFRTSs and discontinuous CFRTPs, CTTs have a
remarkable and stable ability to absorb energy. Figure 10 illustrates bolt bearing test results,
where the bearing load is constant at a higher level (80% of maximum load). The bearing
strength is close to the tensile strength of the CTT with a 2% CV, providing the CTT with a
high specific energy absorption feature (300 kJ/kg) [30,39].
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The internal geometry evaluation using micro-computerized X-ray tomography (µ-CT)
and simulation modeling of the CTT provided more detailed material features pertaining
to its mass production in the automotive industry. Such µ-CT methods provide a strong
capability for visualization and quantification of multiscale fiber orientation distributions,
tape morphologies, 3D internal structures, and orientation misalignments [60,61]. More-
over, the internal geometry defects (e.g., tape splitting and out-of-plane tape waviness) can
be visualized using the µ-CT methodologies (Figure 11). The fiber orientation distribution
information acquired from µ-CT is used to model CTTs for the prediction of mechanical
properties, considering the internal geometry features (Figure 12). An equivalent square
ply model based on the classical laminate theory and Monte-Carlo simulations can together
predict the average and CV value of the CTT with different tape morphologies. This can
clarify the relationship between the mechanical stochastic properties and internal geome-
tries [25,36]. The modified Mori–Tanaka homogenization model was also established to
calculate the mechanical properties with a given fiber orientation distribution and tape
size [27,33,40]. The “de-homogenization” model (also known as the equivalent laminate
model) considers a CTT as an equivalent laminate with specified defect factors (out-of-
plane tape waviness, for example) [40]. The de-homogenization model can accurately
predict strength owing to the careful consideration of the internal structural defects.

The CTTs fabricated using ultra-thin tapes with small dimensions have demonstrated
outstanding mechanical performance, high-cycle moldability, and designability for auto-
motive industry applications. Although the cost of CTTs can be reduced by shortening the
molding cycle time, affordability remains the main issue for mass-production applications.
Consequently, additional solutions must be found to achieve the goal of mass application
in automotive industry.

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 11. μ-CT methodologies for the study of the internal geometry of CTTs [33,60]. 

 
Figure 12. Mechanical modeling of CTT [25,40]. 

Figure 11. µ-CT methodologies for the study of the internal geometry of CTTs [33,60].



J. Compos. Sci. 2021, 5, 86 11 of 21

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 11. μ-CT methodologies for the study of the internal geometry of CTTs [33,60]. 

 
Figure 12. Mechanical modeling of CTT [25,40]. Figure 12. Mechanical modeling of CTT [25,40].

3.3. Functionality and Recyclability of CFRTP

Although a CTT combining high performance and high-cycle molding time was
developed, the cost challenge remains an important obstacle towards the mass-production
application in the automotive industry. Consequently, functional CFRTPs and recycling
technologies were developed.

Apart from high-performance CTTs, CWTs and CPTs were developed for functionality,
which primarily differ in their fabricating processes and fiber length. CWTs are fabricated
using a carding machine, and the carbon fiber used for CWTs must be tens of millimeters
in length to ensure a proper carding process, as well as beneficial mechanical performance.
In contrast, CPTs are fabricated using the papermaking method, and the carbon fiber
length is fixed at 6 mm, which is significantly shorter than that of CWTs (Figure 13). The
mechanical properties of CWTs are significantly better than those of CPTs and comparable
to those of CTTs after the stretching process. This process is an optional fabrication post-
process (Figure 14) that aims to enhance the in-plane orientation preference generated
during the carding process. Based on the object-oriented structure optimization, the
effective utilization of this strong in-plane anisotropy can provide a more flexible option
for applications [56,59].
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The internal structure of the non-woven mat endows CWTs and CPTs with special-
ized functionality. In particular, a feature named “spring-back” has been demonstrated
(Figure 15) [41–43]. The fibers are elastically deformed in CMTs because of the fiber bridg-
ing effect. After heating, this elastic deformation is released, and the internal structure
springs back in the out-of-plane direction. The spring-back of CMTs generate an ultra-light
CFRTP lattice structure, which shows considerable mechanical performance while being
extraordinarily lightweight. CFRTP sandwich components have been developed with the
spring-back CMTs as the core material [45,46,57]. This sandwich material is lighter than
water ( ρ ∼ 0.85 g/cm3) and has higher toughness than traditional CFRPs (Figure 15).
Moreover, toughening hybridization can be easily applied during the carding and paper-
making processes [48–50]. Figure 16 illustrates a CPT hydride toughened with aramid fiber
paper, which may significantly improve the toughness. Consequently, CMTs can be applied
in components where the toughness is more important than the strength and stiffness. Fur-
thermore, a multi-material solution can reduce the lifecycle cost of the CFRTP automotive
applications. In addition, a soft skin effect, which contributes to pedestrian safety, and
higher residual mechanical properties after lightning strikes have proven to be attractive
features, both of which are due to the matrix resin ductility [62]. Additionally, heat/sound
insulation properties of the spring-back lattice structure have been investigated, such as
applications of CPTs.

Concerns have been raised regarding the degradation of recycled carbon fiber during
the resin removal process and the regeneration of functional groups for thermoplastics
adhesion to remake CFRTPs. Several recycling technologies have been developed for
recycling the carbon fiber from CFRP parts (Table 1). The superheated steam treatment
method was selected because it can sensitively control carbon fiber degradation and
add functional groups simultaneously while maintaining a low cost (Figure 17) [63–67].
Additionally, the CWT fabrication process can tolerate a wider range of carbon fiber
lengths, which can be beneficial as the lengths of the recycled carbon fibers often have a
wide distribution [53–56,59]. The CWTs fabricated with the post-carding stretching process
have strong in-plane anisotropic mechanical properties, which can serve as intermediate
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materials to fabricate high-performance CFRTPs with length-scattered recycled carbon
fiber (Figures 13 and 14) [56,59].

The combination of the high performance of CTTs with the functional and recycling
efficiency of CMTs provide a multi-material solution that can fulfill the high-cycle mass
production and low-cost requirements. This solution has also demonstrated feasibility for
mass production in automotive applications.
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Table 1. Methods for CFRP recycling.

Pyrolysis Superheated Steam
Treatment Depolymerization Subcritical/Supercritical

Fluid

Temperature/◦C 500–700 500–700 100–200 250–400

Pressure/MPa 0.1 0.1 0.1 1–25

Other Conditions Air, N2

Steam
+

Surface treatment
Gas (N2, CO2, H2)

Solvent:
Benzyl Alcohol

Catalyst:
Tripotassium Phosphate

Solvent:
Alcohol, Acetone, Water

Catalyst (subcritical):
Alkaline Metals

Feature
Air: CF degradation

N2: High cost,
resin residue

Functionalization is
possible

Low cost
Functional groups remain

Applicable resin is restricted
(ex. PP is not applicable)

High investment
Low processing

efficiency
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3.4. Future of CFRTPs in Automotive Applications

To promote the use of CFRTPs in mass-production applications in the automotive
industry, not only is a feasible material solution required but also a life cycle assessment
that can predict the development and consumption tendency of carbon fiber and compo-
nents usage.

Currently, approximately 60% of virgin carbon fiber remains in automotive CFRP
parts during fabrication and the remaining fiber is wasted. However, if the discontinuous
CFRTPs and their fabrication processes are introduced, over 90% of virgin carbon fiber can
be incorporated into the automotive CFRP parts, according to the prediction (Figure 18.
Moreover, with the popularization of CFRP recycling technologies, the recycled CFRPs
show much lower energy requirement compared to those using virgin fiber (Figure 19).
The manufacturing of carbon fiber consumes high energy, but the energy consumed in the
recycling and high-cycle molding processes can be less than that used for making steel.
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Consequently, the energy intensity of recycled CFRTPs can be lower than that of recycled
steel, which will also be advantageous to the automotive industry.
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The automotive industries have started showing considerable interest in the mass
production of specialized CFRTPs, CFRP recycling technologies, and the feasibility of low-
cost CFRTP fabrication. However, the vastly different magnitude in productivity hinders
the successful application of CFRTPs in automotive mass production, compared to the
conventional applications, such as motorsports and supercars, which are produced at a
smaller scale. A small improvement in the design can result in huge benefits; therefore, the
development flow of CFRTPs for automotive mass production (Figure 20) should be carried
out meticulously. Moreover, the structure optimization based on the loading conditions on
components rather than traditional material replacement should be emphasized to take full
advantage of the anisotropic features of CFRTPs [68–78]. Repair capability, non-destructive
evaluation, environmental tolerance, and flexible multi-material solution are also important
for the adoption of CFRTP-based materials in the automotive industry [79–89].

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 20. Development flow of CFRTPs for automotive mass production. 

4. Conclusions 
The application of CFRTPs in automotive mass production has garnered increasing 

attention from researchers and engineers in related fields. The systematic development of 
lightweight CFRTP applications suitable for mass production in the automotive industry 
has been introduced herein. The demand for its development has arisen from current en-
vironmental issues and increasing worldwide regulations regarding CO2 emissions. Fur-
ther, the high potential for weight reduction in mass production has accelerated the de-
velopment of CFRTPs. The specific requirements of CFRTPs for lightweight applications 
and the current development status and basic scientific outputs have also been presented, 
and the importance of object-oriented material development has been emphasized. The 
fabrication processes of CFRTPs designed with the trade-off between cost and perfor-
mance shows feasibility for accomplishing the application target. The optimal structure 
design for functional CMTs provides flexible options for applications. The recycling and 
usage flow of the carbon fibers and CFRTPs have been evaluated using a cost sensitivity 
analysis to ensure feasibility and affordability in automotive mass production applica-
tions. The authors hope this article can provide references and valuable discussion for 
researchers and engineers to enable the use of CFRTPs in lightweight automotive appli-
cations. 

Author Contributions: Conceptualization, Y.W. and J.T.; methodology, Y.W. and J.T.; validation, 
Y.W. and J.T.; formal analysis, Y.W. and J.T.; investigation, Y.W. and J.T.; data curation, Y.W. and 
J.T.; writing—original draft preparation, Y.W.; writing—review and editing, Y.W. and J.T.; visuali-
zation, Y.W. and J.T.; supervision, J.T.; project administration, J.T.; funding acquisition, J.T. All au-
thors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is 
not applicable to this article. 

Figure 20. Development flow of CFRTPs for automotive mass production.

4. Conclusions

The application of CFRTPs in automotive mass production has garnered increasing
attention from researchers and engineers in related fields. The systematic development of
lightweight CFRTP applications suitable for mass production in the automotive industry
has been introduced herein. The demand for its development has arisen from current
environmental issues and increasing worldwide regulations regarding CO2 emissions.
Further, the high potential for weight reduction in mass production has accelerated the
development of CFRTPs. The specific requirements of CFRTPs for lightweight applications
and the current development status and basic scientific outputs have also been presented,
and the importance of object-oriented material development has been emphasized. The
fabrication processes of CFRTPs designed with the trade-off between cost and performance
shows feasibility for accomplishing the application target. The optimal structure design
for functional CMTs provides flexible options for applications. The recycling and usage
flow of the carbon fibers and CFRTPs have been evaluated using a cost sensitivity analysis
to ensure feasibility and affordability in automotive mass production applications. The
authors hope this article can provide references and valuable discussion for researchers
and engineers to enable the use of CFRTPs in lightweight automotive applications.
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