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Abstract: The density of states and quantum capacitance of pure and doped Nb2N and Nb4N3 single-
layer and multi-layer bulk structures are investigated using density functional theory calculations.
The calculated value of quantum capacitance is quite high for pristine Nb2N and decent for Nb4N3

structures. However for cobalt-doped unpolarized structures, significant increase in quantum ca-
pacitance at Fermi level is observed in the case of Nb4N3 as compared to minor increase in case of
Nb2N. These results show that pristine and doped Nb2N and Nb4N3 can be preferred over graphene
as the electrode material for supercapacitors. The spin and temperature dependences of quantum
capacitance for these structures are also investigated.

Keywords: niobium nitride; electrode; supercapacitors; quantum capacitance

1. Introduction

Efficient and environment friendly energy conversion and storage is a challenge to
researchers, with increasing demand for energy sources in electric (or hybrid) vehicles
and portable electronic devices [1]. Supercapacitors are considered as viable devices for
storing electrical energy because of their high energy and power densities and excellent
discharging/charging performance [2,3]. Supercapacitor’s energy density depends on the
specific capacitance of the electrolyte-electrode system and the operating voltage [4]. The
specific capacitance of an electrode in supercapacitor is a resultant of two capacitances,
namely EDLC capacitance (CEDL) and Quantum capacitance (QC), as represented by
Equation (1) [5–7].

1
C

=
1

QC
+

1
CEDL

. (1)

It is clear from the above equation that a low value of quantum capacitance can
significantly decrease the total electrode capacitance. Therefore, apart from looking for
advanced electrolytes, finding electrode materials with a high QC is a good way to increase
the capacitance.

Carbon, metal oxides and conducting polymers are the most used material for super-
capacitor electrodes [3,8–10]. However, conducting polymers and metal oxide electrodes
exhibit poor electrochemical stability and electrical conductivity, whereas carbon electrodes
suffer from poor capacitance. The graphene has been widely investigated for superca-
pacitor electrodes, because of its large specific surface area and electronic properties, but
graphene also has low capacitance performance near Fermi level [6,11,12].

In search for better options, transition metal nitrides are explored as supercapacitor
electrodes. These nitrides exhibit good chemical stability along with fair conductivity. They
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are cost effective and have excellent electrochemical property which makes them suitable
material for supercapacitor electrodes [13,14]. Transition metal nitrides, like vanadium
nitride, titanium nitride, tungsten nitride etc., have already been investigated [15–20] as
electrode materials. Among them, vanadium nitride is reported to have quite a high
value (1340 F g−1) of capacitance [15]. Different nanostructures of titanium nitride are
prepared [21–23] to see their effectiveness as high energy supercapacitor electrodes. Many
studies have been done regarding the fabrication of niobium nitrides and their super-
conducting properties. Experimental studies have already reported superconductivity in
polycrystalline hexagonal ε-NbN [24] and in the tetragonal phases of both Nb4N3 and
Nb4N5 with long-range-ordered arrangement of vacancies [25]. Nanowires and nanorib-
bons of Nb4N5 and Nb5N6 have also been fabricated and studied for their superconducting
properties [26]. Researchers have used porous NbN as anode material and activated carbon
as the cathode for a Li-ion hybrid capacitor LIHC [27]. The device has a wide potential
window and exhibits a high energy and power density. Experimental study has been done
using niobium nitride electrodes for hybrid supercapacitors as well. Niobium titanium
nitride TiNbN is studied as supercapacitor electrode material [28] and a high specific
capacitance value of up to 59.3 mF cm−2 at 1.0 mA cm−2 is achieved. The study has opened
up the possibility of fabrication of all nitride-based asymmetric supercapacitors. In another
study, niobium nitride Nb4N5 is explored to be an excellent capacitive material for the first
time with an areal capacitance of 225.8 mF cm−2 [29]. Faradaic pseudo capacitance is con-
firmed by the mechanistic studies, deriving from the proton incorporation/chemisorption
reaction owing to the copious +5 valence Nb ions in Nb4N5 [29].. Such studies prove the
importance of exploring niobium nitride for supercapacitor applications.

Despite several reports on niobium nitrides, not much work is reported for their quan-
tum capacitance. A thorough theoretical investigation on the QC of several structures of
niobium nitride is required to assess their potential as supercapacitor electrode. The present
work is further important as Nb2N and Nb4N3 also satisfy the theoretical definition of
MXenes. MXenes, a new class of two-dimensional materials, are produced from the ternary
layered compounds [30]. MXene sheets [31] are a family of transition metal nitrides or
carbides. These provide a substitute for graphene electrodes. These MXenes are synthesized
by using hydrofluoric acid for exfoliation of “A” elements from their crystals known as
MAX [32,33]. The “A” in MAX generally represents IV A or III A element (Si, Al, Ga etc.).
The representative formula of MXene is Mm+1Xm (m = 1, 2, 3 and so on), where “M” is
an early transition metal like Ti, Mo, V, Cr, Zr, Hf, Nb and Ta and “X” is nitrogen or/and
carbon [34–36]. MXenes are gaining attention due to their novel electronic and physical
properties [37] and excellent mechanical flexibility [38,39]. MXenes with many layers gener-
ally exhibit better conductivity due to availability of more channels for transport of electrons,
but the details in the impact of multilayers should be investigated individually. MXenes
have been demonstrated to be thermally, chemically and mechanically stable and resistant
to light radiation damage [40–43]. Due to these features, MXenes are being considered
as a good option for a wide range of applications [38], including catalysis [44], energy
storage [45], mano electronics [46–48], rechargeable batteries [49] and modern electronic
devices [50]. Many investigations related to MXenes are focused on their applications in
metal-ion batteries [51–54]. Few studies done to explore Mxenes for their supercapacitor
applications have mainly explored Titanium-based MXenes [55,56]. No experimental work
has been reported on niobium nitride MXene.

In this paper, for the first time, the QC of Nb2N and Nb4N3 structures are determined
using DFT calculations for supercapacitor applications. Effect of doping on quantum
capacitance of these niobium nitride structures is also investigated. In our work, cobalt is
used as dopant because of a recent experimental study [57] where the cobalt doping has
shown a rise in capacity of niobium nitride.

Quantum capacitance values obtained are compared with that of graphene. Results of
our calculation indicate that the limitation of low quantum capacitance graphene electrodes
can be overcome by using Nb2N and Nb4N3-based electrodes. More significantly, our
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calculations indicate that the pristine or doped niobium nitrides exhibit very high values for
QC at both the positive and negative electrodes. The dependence of quantum capacitance
on number of molecular layers, spin and temperature is also investigated. The method of
calculation and results are discussed in the following sections.

2. Materials and Methods

The DFT calculations for density of states were performed using the Atomistix Toolkit
(ATK) package from QuantumWise (now known as Synopsys). The generalized gradient
approximation (GGA) with the PBE functional was used to describe the exchange correla-
tion energy [58]. The norm-conserving pseudopotential generated with the Fritz-Haber
Institute FHI code was selected along with double zeta polarized basis set. The plane-wave
energy cut off was kept at 540 eV, with Monkhorst-pack k-point grid meshes sampled at
12 × 12 × 1. The crystal structures of Nb2N and Nb4N3 were built using the crystal builder,
as shown in Figure 1. The crystal parameters used for the computation are given in Table 1.
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Figure 1. Chemical structures of pristine niobium nitride: (a) Nb2N; (b) Nb4N3.

Table 1. Crystal parameters used for calculations.

Material Crystal Structure Space Group Angles

Nb2N Hexagonal 6, Pm α = β = 90◦, γ = 120◦

Nb4N3 Body-centered tetragonal 8, Cm α = β = γ = 90◦
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Both structures of niobium nitride were doped (added) with 2 atoms of cobalt to
investigate the doping effect on quantum capacitance, as shown in Figure 2. Geometry
optimization for doped structures was done using the QuasiNewton optimizer method of
the ATK package, with maximum force and stress 0.05 eV/Å and 0.05 eV/Å3, respectively.
The density of states was computed for the geometry optimized structures of doped Nb2N
and Nb4N3.
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Quantum capacitance of electrodes was calculated using the computed density
of states (DOSs). If φ is the operating voltage and Q is the surface charge on niobium
nitride, then, from density of state DOS (E), we can find quantum capacitance using
Equations (2)–(4) [59,60]:

Q = e
∫ +∞

−∞
DOS(E)[ f (E)− f (E − eφ)] dE (2)

f (E) =
1

1 + exp
(

E
kT

) , (3)

where e is the electronic charge, f (E) is the Fermi-Dirac distribution function and E is the
energy w.r.t the Fermi energy.
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By definition, one can obtain quantum capacitance by differentiating Q w.r.t φ, that is,

QC =
dQ
dφ

= e2
∫ +∞

−∞
DOS(E) ×

sech2
(

E−eφ
2kT

)
4kT

dE. (4)

Doping impacts the electronic structure of materials, thus changing the density of
states. Due to these changes, the quantum capacitance gets modified [61]. The variation in
the electronic DOS and corresponding change in the value of quantum capacitance were
studied for different operating voltages for pristine and doped structures.

The dependence of quantum capacitance on spin, number of layers and temperature
was also investigated.

3. Results and Discussion
3.1. Unpolarised Pristine Structures

Density of states are determined to calculate the quantum capacitance of pristine
Nb2N and Nb4N3 using the DFT method without spin. The calculated density of states are
shown in Figure 3a,b, respectively.
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In Figure 3a, pronounced peaks in DOS are observed for Nb2N at and near Fermi
level (in the range of interest). The peaks of the density of states close to the Fermi level
are expected to make a major contribution to the QC as per Equation (4). For Nb2N, the
calculations show very high values of quantum capacitance at different bias voltages,
the highest being 1196.28 µF cm−2 at −1 V, as shown in Figure 4. However, for Nb4N3,
the peaks are not that pronounced (Figure 3b) but are high enough to give a quantum
capacitance value of 174.86 µF cm−2, near Fermi level. These values obtained for Nb4N3
at different bias voltages around Fermi level are lower than that of Nb2N but are higher
than that of graphene, the most widely used electrode material for supercapacitor. It is
well known that the quantum capacitance of pristine graphene electrode is very low due
to its low density of state (DOS) near the Fermi level. The QC of pristine graphene has
been investigated experimentally and theoretically [6,11,12,62], and it was found that the
presence of Dirac point in DOS at Fermi level in the case of graphene results in extremely
low values of quantum capacitance (in the range of 4~6µF cm−2).
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Figure 4. Variation in quantum capacitance (QC) for pristine unpolarized niobium nitride structures
under bias voltage.

The QC values obtained for both structures at different bias voltages are compared in
Figure 4. It is found that quantum capacitance of Nb2N remains higher than Nb4N3 for
most of the bias voltage range. Although QC values for Nb4N3 are lower than Nb2N, they
are still high enough (Figure 4) for use as electrode material for supercapacitors.

3.2. Effect of Number of Layers

In order to investigate the impact of increasing molecular layers in the crystal structure,
these calculations were repeated for up to three layers. The values of quantum capacitance
are found to increase with increase in number of layers for both Nb2N and Nb4N3, as
shown in Figure 5a,b, respectively.
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A similar trend of increase in QC with increase in layers is also reported in the case of
graphene [59].
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3.3. Effect of Cobalt Doping

The impact of cobalt doping on density of states and, subsequently, on quantum
capacitance of both structures of niobium nitride was investigated. Comparison of density
of states of pristine and doped structures of Nb2N and Nb4N3 are shown in Figure 6. The
density of states for pristine Nb2N and Nb4N3 are increased at Fermi level when they are
doped with two atoms of cobalt, as shown in Figure 6a,b. This rise in DOS at Fermi level
is mainly due to the contribution in DOS from the 3d electrons of cobalt dopant. Little
contribution to the rise in DOS also comes from the electrons of the 4s subshell of cobalt.
This increase in the density of states contributes to the increase in QC.
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The calculated quantum capacitance values for unpolarized Nb4N3-2Co and Nb2N-
2Co depicts a rise in QC in comparison to their pristine counterparts at Fermi level, as
shown in Figure 7. At Fermi level, rise in QC by factors of 2.5 and 1.2 is observed in doped
Nb4N3 and Nb2N, respectively. The increase is in agreement to the increase in the total
density of states of Nb4N3 and Nb2N after doping at Fermi level, which is clearly visible
in Figure 6. For cobalt-doped Nb4N3, the QC is in the range of 65.85 to 135.2 µF cm−2

in the area of interest, as shown in Figure 7a. It is found that the low values of quantum
capacitance at Fermi level obtained in the case of pristine Nb4N3 can be increased when
doping with cobalt.
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However, doping with cobalt shows only a slight increase in the QC at Fermi level in
the case of Nb2N, reaching to value 1052.2 µF cm−2 (Figure 7b). At all other bias voltages,
pristine Nb2N shows similar or slightly higher values for QC than doped Nb2N. The
variation in QC of pristine Nb2N after doping with cobalt can be completely understood
by comparing the DOS of pristine and doped structures of Nb2N. As shown in Figure 6a,
the DOS for doped Nb2N is slightly higher than that of its pristine counterpart, resulting in
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a slight increase in QC at Fermi level. For positive energies, the DOSs are almost similar
for both pristine and doped structures, hence showing similar values of QC for positive
bias voltages. The fall in QC in doped Nb2N at −1 V is attributed to a fall in its DOS near
−1 eV as shown in Figure 6a.

3.4. Effect of Spin on Pristine and Doped Structures

The spin polarized calculations were also done on pristine and doped Nb2N and
Nb4N3 structures. The comparison of density of states near Fermi level and QC value ob-
tained at Fermi level of pure and doped structures are plotted and given in Figures 8 and 9.
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In case of Nb2N, there is an increase in DOS at and near Fermi level after cobalt doping,
as shown in Figure 8a. The increase is due to the contribution of 4d and 5s electrons of
cobalt. This increase doubles the QC value at Fermi level for doped Nb2N as compared to
its pristine counterpart, as shown in Figure 9 (Histo). Whereas, in the case of Nb4N3, not
much increase is seen in DOS (Figure 8b) at Fermi level after doping, resulting in a very
small increase in QC at Fermi Level, as shown in Figure 9.

3.5. Effect of Temperature on Quantum Capacitance

Calculations for quantum capacitance were done at three different temperatures
(i.e., 233, 300 and 353 K). No significant change was noted in the DOSs profile. For pristine
unpolarized Nb2N and Nb4N3, a change in temperature from 233 to 353 K increases
the QC at Fermi level slightly from 878.3 to 921 µF cm−2 and 51.72 to 54.34 µF cm−2,
respectively. In case of cobalt-doped structures of Nb2N and Nb4N3, the change observed
is 5% and 8%, respectively. The slight change in the QC values is mainly due to the
Fermi Dirac distribution function present in the equations used for calculating quantum
capacitance. Similar studies done for graphene at different temperature ranges have also
shown negligible impact of temperature on QC of graphene [63].

4. Conclusions

DFT calculations are performed to investigate the quantum capacitance of niobium
nitrides Nb2N and Nb4N3 for their possible use as supercapacitor electrode materials.
Out of the two pristine structures investigated, Nb2N is the most promising candidate for
fabrication of supercapacitor electrodes, with theoretical QC reaching up to 1196.28 µF cm−2

at −1 V for unpolarized Nb2N. Even for positive bias voltage range, quantum capacitance
values for Nb2N exceeds the QC values of Nb4N3, reaching a value of 844.8 µF cm−2 at 0.5 V.
Impact of increase in layers on QC is also investigated and it is found that the quantum
capacitance increases with increase in layers for both pristine niobium nitrides.

A viable method is proposed to enhance the quantum capacitance of niobium nitride
using suitable dopant. The results show that the value of QC of pristine structures at Fermi
level can be further increased by doping with cobalt. The maximum value of quantum
capacitance in doped structures is obtained for unpolarized doped Nb2N (1052.2 µF cm−2)
at Fermi level. The impact of polarization is also studied on both pure and doped structures
and a substantial increase is seen in QC at Fermi level for Nb2N after doping with cobalt.
The calculations done for pristine and cobalt-doped Nb2N and Nb4N3 structures show no
significant temperature dependence of DOS and a slight change in quantum capacitance
with temperature.
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