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Abstract: In this work, polystyrene (PS) and boron nitrides nanotubes (BNNT) composites were
fabricated, prepared, and characterized using modified direct mixing and sonication processes.
The polymer composites were extruded into filaments (BNNTs at 10 wt. %) for 3D printing, utiliz-
ing the fused deposition modeling (FDM) technique to fabricate parts for mechanical and thermal
applications. Using a direct mixing process, we found that the thermal conductivity and the me-
chanical strength of the PS-BNNT composite were respectively four times and two times higher
compared to the sonication method. The thermal stability and glass transition temperatures were
positively affected. A 2D microstructural mechanical entanglement model captured the exact ge-
ometry of the nanotubes using the MultiMechanics software, and the performance of the additive
manufactured (AM) PS-BNNT composites part for thermomechanical application was simulated
in COMSOL. The modified direct mixing process for PS-BNNT, which affects morphology, proved
to be effective in achieving better interfacial bonding, indicating that BNNTs are promising fillers
for improving thermal and mechanical properties, and are applicable for thermal management and
electronic packaging.

Keywords: additive manufacturing; fused deposition modeling technique; polymer-matrix compos-
ite; boron nitride nanotubes; sonication; direct mixing; thermal properties; mechanical properties

1. Introduction

Additive manufacturing (AM) is a rapidly emerging technology that allows physi-
cal parts to be graphically designed from a computer and created with a layer-by-layer
model approach [1–8]. Many variations of model parts have been constructed using AM
technology, including sheet lamination [1,9], direct energy deposition [10–12], laser sin-
tering [13,14], and material extrusion [4,6,15,16]. One commonly used AM technique is
fused deposition modeling (FDM) under material extrusion; this is widely used due to the
relatively low cost and ease of use for commercial applications [4,17–19]. This technique
offers the advantages of not needing chemical postprocessing or resin curing, as well as
being a cost-effective approach for achieving quality, high-precision products in additive
manufacturing. The working technique in FDM printers required extruding a thermoplastic
polymer filament through a heated die and onto a print bed; the technique is controlled by
the bed and the height of the print nozzle to create a layer-by-layer 3D printed part [19–22].

Currently, the demand for an insulating polymer composite with high thermal con-
ductivity in electronic packaging is increasing. The use of carbon nanotubes (CNTs) with
polymers has been investigated with respect to thermal conductivity; however, it was found
that CNTs have challenges related to purity, dispersion, and lack of interfacial bonding
between polymers [23–25]. Unlike CNTs, boron nitrides nanotubes (BNNTs) are electri-
cally insulating materials with high thermal conductivity and good interfacial bonding
with matrixes. This interaction plays a significant role in determining the nanocomposites’
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performance and structural integrity [23–27]. Over the past few years, boron nitride (BN),
due to its excellent thermal and mechanical properties, has been investigated for its use in
several fields, such as aerospace, biomedical, and electronics [26,28–34].

Researchers have implemented different approaches to combine BNNTs with other
polymer materials. Donnary et al. used a nanoparticle–microparticle mixture of saline cou-
pling and ball-milling to improve the dispersion of 20 wt. % BN in epoxy [32]. Ball-milling
is an efficient method of breaking large aggregates into a nanopowder to disperse the BN
filler in the matrix effectively. This resulted in a ~10% improvement in BN/epoxy compos-
ite thermal conductivity, which is higher than 0.16 W/mK pure epoxy with an increase of
breakdown strength. However, the problem in the nanofiller studies still exists due to its
aggregated state, which affects the filler dispersion, and this is detrimental to the thermal
conductivity. Muratov et al. utilized a chemical modification process (3-aminopropyl-
3ethoxy-silane) to alter the BNs to achieve a better dispersion in polypropylene (PP),
resulting in two times an increased amount of filler [35]. This yield doubled the thermal
conductivity compared with functionalized BN/PP but reduced the mixture viscosity while
improving the thermal conductivity of the composite. Other methods have reported advan-
tages of the solubility of BNNTs and its purification using techniques such as peroxide treat-
ments, super acid extraction, and water-vapor treatment at high temperatures [32,36–39].
Purification allows for the treatment of nanoparticles, which increases the filler content in
the composite produced, yet it has exhibited downsides. Although the boron particles may
be removed, this can damage the nanotubes, which affects the aspect ratio and quality of
BNNTs [40]. Only a few researchers were able to modify BNNTs with noncovalent func-
tionalities by sonicating the nanotubes in an aqueous solution under ambient conditions,
but they did not investigate how the material performs using a 3D printing approach [41].

This research attempts to fabricate a lightweight nanocomposite using the additive
manufacturing (AM) technique to produce a part. This paper reports two manufacturing
processes proposed to disperse BNNTs in polystyrene polymer and the multiproperties
(thermal and mechanical properties) achieved using additive manufacturing techniques.
The first process involves sonicating a dimethylformamide (DMF) solution to achieve a
useful reagent to synthesize and disperse BNNTs, thus requiring less power for sonication
under ambient conditions. The second process examines the randomly mixed BNNTs in
DMF with a polystyrene polymer to provide a simple approach to tailor the nanocompos-
ite towards achieving a dispersion as reportedly implemented [42]. The two processes
resulted in significant changes in the surface morphology, mechanical properties, thermal
properties, and heat performance. The sonication process was noted to have affected the
nanoparticle due to the energy generated from the probe. The direct mixing process has
the possibility of producing a better surface morphology in the composite. These findings
can streamline a possible approach to chemically disperse BNNTs while improving the
properties and incorporating AM techniques to produce lightweight materials for future
thermal management applications or electrically insulating materials.

2. Materials and Methods
2.1. Preparation of the Composite Material for 3D Printing

The length distribution of the as-received BNNTs was ~100 µm with an average
diameter of 50 nm with varying aspect ratios. Polystyrene (PS) pellets (Mw = ~35,000) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The composition used for both the
sonication and direct mixing processes in this research was 100 parts and 10 parts by weight
(wt.) using PS as the pristine and BNNT as the filler added separately for both processes,
which will be referred to as PS and 10 parts by wt. (10 wt. % BNNT in PS matrix) PS-BNNT,
respectively. This weight percentage was selected based on previous experimentation [43].

First, 5 g of PS was dissolved in a Pyrex flask containing 100 mL dimethylformamide
(DMF) for 55 min with constant stirring using a magnetic stirrer set at 200 rpm at 120 ◦C to
form a solution for both processes. A modified direct mixing process was separately imple-
mented where BNNTs were randomly dispersed in 200 mL (DMF) for 20 min with constant
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stirring using a magnetic stirrer set at 200 rpm at 120 ◦C. The two solutions (dissolved PS
and randomly dispersed BNNTs) were combined into PS-BNNT. For the sonication process,
250 mg of BNNTs were dissolved in 200 mL of DMF and covered with aluminum foil in an
ice bath (keeping the temperature of the bath at an ambient temperature), then a probe tip
was used to sonicate the BNNTs. Misonix Sonicator 3000 (Misonix Inc., Farmingdale, NY,
USA) is used with the processing time set at 1 h with a 10 s pulse and a 2 s rest. The real-
time energy monitor generated about 500 watts, which could affect the surface morphology
of the mixture. An ice bath was used to prevent heat buildup, which is produced from
the powerful shearing of the probe tip that could cause the mixture to become intensely
agitated. The sonication process was used to disentangle the BNNTs within the dimethyl-
formamide (DMF), which acts as a dispersant medium for the nanotubes. In contrast,
direct mixing was used to randomly dispersed the BNNTs without going through rigorous
shearing. The two solutions (dissolved PS and sonicated BNNTs) were combined into the
PS-BNNT solution and were re-sonicated for 30 min. The solutions for the two processes
(direct mixing and sonication) were poured separately into 1300 mL deionized water for
them to cool to room temperature and then filtered. The nanocomposite was collected
and dried at 80 ◦C in the vacuum overnight. However, the sonicated sample was still wet,
while the direct mixing sample was dried into powdery form. Hence, the sonicated sample
was dried again under heat at 60 ◦C for 4 h, which resulted in a PS-BNNT composite with
visible globules.

2.2. Characterization Techniques

Scanning electron microscopy (SEM) was performed using a Helios G4 UC (Thermo
Fisher Scientific, Waltham, MA, USA) to evaluate the PS-BNNT microstructure. This SEM
is a multi-technique dual beam (electron and Ga ion) field-emission scanning electron
microscope (FE-SEM) with a spatial resolution for an imaging of 0.7 nanometers. Images
were acquired at 5 kV for examining the morphologies of the PS-BNNT composite at
different processing conditions. The samples examined by SEM for PS-BNNT were an-
alyzed, but since the samples were nonconductive, they were coated using gold sputter
before the imaging process was carried out. All sample images were placed on the surface
of the dried PS-BNNT composite for each process to ensure the dispersion of BNNT in
the matrix. The transition temperature and thermal stability were determined using a
differential scanning calorimeter (DSC Q100-TA Instruments, New Castle, DE, USA) set
to equilibrate at 25 ◦C, held isothermally for 10 min, and ramped at 10 ◦C/min to 280 ◦C.
The thermogravimetric analyzer (TGA Q50-TA Instruments, New Castle, DE, USA) was set
to ramp at 10 ◦C/min to 800 ◦C in the presence of nitrogen (40%) and air (60%) at a constant
pressure of 20 PSI for BNNT, PS, and PS-BNNT. A laser flash (Netzsch LFA 457 Micro
Flash, Netzsch-Gerätebau GmbH, Selb, Germany) technique was used to measure the
thermophysical properties following the ASTM E1461 standard [44]. The thermal specimen
samples were 3D-printed with dimensions of 15 × 15 × 2 mm3 and sanded down to 10 ×
10 × 1 mm3 to remove unwanted layers. The samples were then spray-coated black so they
can absorb heat during measurements. The thermal conductivity results were calculated
from the measured thermal diffusivity, density, and heat capacity using the equation

λ = αρCp (1)

where λ is the thermal conductivity, α is the thermal diffusivity, ρ is the density, and Cp is
the specific heat capacity under constant pressure. A semiempirical theory by Lewis and
Nielsen was used to model the predicted thermal conductivity to justify the experimental
results from a laser flash analysis (LFA).

Finally, a dynamic mechanical analyzer (DMA Q800, TA Instruments, New Castle,
DE, USA) test was performed in a tensile mode to evaluate the mechanical properties
of the PS and PS-BNNT composites. The samples were exposed to a series of increasing
isothermal temperatures at a ramp rate of 10 ◦C/min to 180 ◦C. At each temperature,
the sample was deformed at the constant amplitude and held isothermally at 30 ◦C for
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2 min over a frequency of 1 Hz. The mechanical performance of the extruded PS and
PS-BNNT filaments was evaluated according to ASTM D3379 standard test method [45].
All test samples (with a diameter of 1.75 mm) were strained at 2%/min at a gauge length
of 10 mm at room temperature.

2.3. Preparation of 3D-Printed Heat Sink

The nanocomposite filament of a 1.75 ± 0.05 mm diameter was extruded for printing
by a twin-screw (Filabot EXTS10, Filabot, Barre, VT, US) extruder heated to 240 ◦C for
approximately 10 min, and a 1.75 mm die at 20 rpm speed was manually spooled. A printed
PS-BNNT heat sink mesoscale structure (20 × 20 × 10 mm3) with a fin encompassing a 2 µm
spacing for heat transfer was designed using computer-aided design (CAD) and printed
by a LulzBot 3D printer using a fused deposition technique. The heating process was
captured by an infrared FLIR TG165 spot thermal camera (FLIR®Systems, Inc, Wilsonville,
OR, USA).

3. Results and Discussion
3.1. Scanning Electron Microscope (SEM)

The morphologies of the PS-BNNT composites using the different process methods
of direct mixing and sonication were acquired at 5 kV. Figure 1 shows the SEM surface
images of the as-received BNNT raw material with visible entangled nanotubes, which are
further illustrated in the nanoscale (Figure 1b). The long-intertwined nanotubes act as the
thermomechanical net for the composite after the mixing and sonication processes with
polystyrene. These morphologies were used for micromechanical modeling.

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 4 of 16 
 

 

and Nielsen was used to model the predicted thermal conductivity to justify the experi-

mental results from a laser flash analysis (LFA). 

Finally, a dynamic mechanical analyzer (DMA Q800, TA Instruments, New Castle, 

DE, USA) test was performed in a tensile mode to evaluate the mechanical properties of 

the PS and PS-BNNT composites. The samples were exposed to a series of increasing iso-

thermal temperatures at a ramp rate of 10 °C/min to 180 °C. At each temperature, the 

sample was deformed at the constant amplitude and held isothermally at 30 °C for 2 min 

over a frequency of 1 Hz. The mechanical performance of the extruded PS and PS-BNNT 

filaments was evaluated according to ASTM D3379 standard test method [45]. All test 

samples (with a diameter of 1.75 mm) were strained at 2%/min at a gauge length of 10 mm 

at room temperature. 

2.3. Preparation of 3D-Printed Heat Sink 

The nanocomposite filament of a 1.75 ± 0.05 mm diameter was extruded for printing 

by a twin-screw (Filabot EXTS10, Filabot, Barre, VT, US) extruder heated to 240 °C for 

approximately 10 min, and a 1.75 mm die at 20 rpm speed was manually spooled. A 

printed PS-BNNT heat sink mesoscale structure (20 × 20 × 10 mm3) with a fin encompass-

ing a 2 µm spacing for heat transfer was designed using computer-aided design (CAD) 

and printed by a LulzBot 3D printer using a fused deposition technique. The heating pro-

cess was captured by an infrared FLIR TG165 spot thermal camera (FLIR®  Systems, Inc, 

Wilsonville, OR, USA). 

3. Results and Discussion 

3.1. Scanning Electron Microscope (SEM) 

The morphologies of the PS-BNNT composites using the different process methods 

of direct mixing and sonication were acquired at 5 kV. Figure 1 shows the SEM surface 

images of the as-received BNNT raw material with visible entangled nanotubes, which 

are further illustrated in the nanoscale (Figure 1b). The long-intertwined nanotubes act as 

the thermomechanical net for the composite after the mixing and sonication processes 

with polystyrene. These morphologies were used for micromechanical modeling. 

 

Figure 1. SEM surface image of as-received boron nitrides nanotube (BNNT) raw material with 

scale bars at (a) 2 µm and (b) 200 nm. 

For the two processes, the surface imaging analyzed the BNNT dispersion within the 

PS-BNNT composite for the processes. The SEM image of direct mixing in Figure 2a de-

picts the surface morphology of the PS-BNNT composite, showing little agglomeration 

and good dispersion, unlike sonication (Figure 2b). This observation is due to less mois-

ture content after filtration, which resulted in a powdery form after vacuum drying the 

nanocomposite. For the sonication process, the collected PS-BNNT composite exhibited 

more moisture after filtration and vacuum drying, which required more heat to dry out 

the moisture. This resulted in visible globules at the surface of the nanocomposite as 
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bars at (a) 2 µm and (b) 200 nm.

For the two processes, the surface imaging analyzed the BNNT dispersion within
the PS-BNNT composite for the processes. The SEM image of direct mixing in Figure 2a
depicts the surface morphology of the PS-BNNT composite, showing little agglomeration
and good dispersion, unlike sonication (Figure 2b). This observation is due to less mois-
ture content after filtration, which resulted in a powdery form after vacuum drying the
nanocomposite. For the sonication process, the collected PS-BNNT composite exhibited
more moisture after filtration and vacuum drying, which required more heat to dry out the
moisture. This resulted in visible globules at the surface of the nanocomposite as shown in
Figure 2b. An artifact of the heating solution during sonication induced the reaggregation
of the polymer molecules within the composite, resulting in polymerization. In addition,
heating of the solution means that there is an optimal duration for sonication to initiate
a refined nanoparticle size [46]. The energy generated from the sonicator can affect the
interaction of nanoparticles with the PS matrix, contributing to a lack of surface interfacial
bonding within the PS-BNNT composite. This lack of surface interaction could result in
low thermal properties in the composite [46,47], as a different processing will result in
different structures, interactions, and properties.
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sonication processes with scale bars at 1 µm.

3.2. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC)

Figure 3a shows the TGA analysis for BNNTs that underwent a slow and steady
weight increase at a higher temperature due to the oxidation of boron [48]. The oxidation of
BNNTs started from 400 ◦C; they were thermally stable up to 600 ◦C and later experienced
a steady increase in the temperature up to 800 ◦C, while the PS underwent a weight loss
at around 200 ◦C with its onset at approximately 394.29 ◦C and then completely burn off.
The PS-BNNT composites for sonication and direct mixing resulted in similar weight losses
as the weight fraction of BNNTs in the composite can be controlled by the concentration of
the polymer solution. Another noted difference in the PS-BNNT composites was that the
weight percentages of BNNTs for both processes discovered with TGA analysis are slightly
different. The direct mixing was noted to be slightly higher at approximately 11.5 wt. %
and 10.2 wt. % for the sonicated PS-BNNT composite.
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The glass transition temperature (Tg) indicates the ability to change the state of
a polymer during the transition with an increase in temperature. This ability depends
on the material composition, which in turn affects the chain mobility and degrades the
thermomechanical features of the material [49,50]. Because the chain mobility is modified
based on the BNNT content, the melting temperature (Tm) of the crystalline state of the
PS-BNNT composite will result in changes in the glass transition [31,51]. The DSC analysis
of the pure PS and the variation of Tg with the concentration of the BNNTs in the 10 wt. %
PS-BNNT composites is shown in Figure 3b. The change in Tg value is attributed to the
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enhancement in the plasticity of pure PS, which enabled the movement of chain segments
of the polymer. During the heating scan, the sonicated PS-BNNT composite has an increase
in Tg (108.48 ◦C) compared with the one that underwent the direct mixing process, which
recorded a slight increase (104.60 ◦C). The increase in the Tg for the sonicated samples can
be due to the processing route of the PS-BNNT composite, and it can also be attributed to
energy generated from the probe and re-sonication of the composite. This was observed to
influence the molecular chains in the PS-BNNT composite, which is in agreement with the
literature on fillers [52] compared to pure PS (94 ◦C). This rise in energy during sonication
has been reported to lead to larger crystallites, most likely due to rapid aggregation
kinetics [46]. Finally, the melting peak (Tm) was observed at 125 ◦C for pure PS and PS-
BNNT composites (sonication and direct mixing) at 218 ◦C and 221 ◦C, respectively, as the
addition of BNNTs is expected to hinder the chain diffusion in the overall composite.

3.3. Thermal and Mechanical Characterization
3.3.1. Dynamic Mechanical Analysis

Figure 4a shows the typical stress–strain curve of the pure PS and PS-BNNT com-
posites. The presence of BNNTs in the PS matrix resists the segmental movement of the
polymer chains upon application of tensile stress, which led to an enhancement in modulus
(Figure 4b). The mechanical performance of the PS-BNNT composites for both processes
was significantly increased compared to pure PS. The elastic modulus is one of the funda-
mental characteristics of material observed; it is clearly defined elsewhere, e.g., in ASTM
standard D638. The value of the modulus is well known for commonly used materials
such as PS. The elastic modulus observed for PS is 2 GPa, which corresponds to the data in
Figure 4b where different test methods used were considered, but it differs by orders of
magnitude from Figure 4a. In addition, an increase in the elastic modulus was observed for
10 wt. % PS-BNNT composite to be at almost 3.5 GPa and 4.5 GPa for both processes before
yielding. These results are consistent with the literature [53–57], and a similar trend was ob-
served in the storage modulus (Figure 4b). For the two processes, the PS-BNNT composite
exhibited a different stress–strain profile compared to the pure PS (Figure 4a). As the strain
increased, the stress–strain curve for the sonication deviated from the initial linear elastic
behavior and then yielded. This is possibly due to the BNNTs re-aligning under loading
and their likely slippage at the PS-BNNT interface. Unlike sonication, the directly mixed
PS-BNNT composite showed a more elastic behavior and remained strong enough to retain
more stress compared to pure PS, which exhibited a plastic behavior; this behavior in the
composite shows the possibility of stretching in the macrostructure [58,59], which is similar
to the discovery by Downes et al. [60] in CNTs. From the two processes, direct mixing
exhibited the best mechanical properties for the PS-BNNT composites.

Figure 4b shows the curves of analysis carried out at various temperatures in order
for us to evaluate the thermal stability of the materials. A significant increase in storage
modulus was observed. In both glassy and rubbery regions, the storage moduli of the
PS-BNNT composite for the two processes (direct mixing and sonication) were observed
to be higher than that of the pure PS. At 40 ◦C, the storage modulus was only 1.1 GPa
(1100 MPa) for pure PS (in Figure 4b), whereas it increased to almost 2.6 (2600 MPa) and
3.6 GPa (3600 MPa) for the 10 wt. % PS-BNNT composite for both processes. At a lower
temperature, the material is known to be in a glassy state, and it gradually undergoes
a transition from the glassy to the rubbery region with an increase in the temperature.
The storage moduli fall with an increase in the temperature, and its energy dissipation
is at a maximum during this transition as the loss factor (Tan δ) peaks to the maximum.
The glass transition peak observed from the Tan δ shows a great improvement in the
thermal stability of PS-BNNT composites. The glass transition temperature occurs at 75 ◦C
for pure PS, whereas it shifts to temperatures as high as 120 ◦C and 125 ◦C for the PS-BNNT
composite. The maxima of the Tan δ occurs at a temperature where energy loss occurs due
to an additional degree of freedom taking place. This measure of the Tg is associated with
the α-relaxation of polymeric materials. Finally, the inclusion of the BNNT fillers could
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influence the molecular dynamics in the composite, thereby increasing the glass transition
and the thermal stability of the composite as compared to pure PS. It was observed that
the well-dispersed direct mixing of BNNTs restricts the segmental motion of the polymer
chain inside the PS matrix.
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3.3.2. Mechanical Deformation Model of BNNT in the Composites

The SEM image of the PS-BNNT composite was digitized into a 2D microstructural
mechanical entanglement model that directly captures the exact geometry of the nanotubes,
as shown in Figure 5a,b. The model shows the microscale geometry of the BNNT net-
works from a densely packed microstructure of PS-BNNT composite. The model results
in Figure 5d,f show the resultant stress in the matrix in the direction of the induced strain
(X-direction) during mechanical deformation. The nonlinear Newton–Raphson solver was
used in the commercial software MultiMechanics (19.0, MultiMechanics-Siemens, Omaha,
NE, USA). The micromechanics individual constituent approach allows for the separation
of influencing factors, including micro- and nanoscale interactions and component-specific
properties that impact distortion and failure modes [58,59]. The PS and the BNNT con-
stituents have known mechanical properties (Young’s modulus, Poisson’s ratio). The PS
matrix (3 GPa, 0.33) and BNNTs (895 GPa, 0.23) were used as the micromechanical inputs
as individually defined [61,62].

The stress–strain responses that occurred in the mechanical deformation of the two
processes (direct mixing and sonication) allow the model to twist and distort in the set
boundary conditions (Y-direction) on the expected distortion in the composite. This allows
sliding and alignment to occur in the mode of mechanical deformation during the applica-
tion of strain in the nanotube’s bundles caused by strain distortion (Figure 5c–f). In direct
mixing processes, a more bundled and higher stress concentration was observed. The red
areas noted on the model parts are more prominent in the direct mixing composite than
the sonicated composite, with less stress concentration. It therefore explains the higher
stress–strain curve in Figure 4a. In comparison, the sonication process shows a lower and
flattened stress–strain curve, which was observed to have split bundles. This observation is
due to the BNNTs’ ability to move and not be constrained (within) in the bundle. However,
it was noted to be shorter and thus resulted in a lower strength.
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(d) unsplit bundles in direct mixing, and (f) split bundles in sonication processes, respectively.

3.3.3. Laser Flash Analysis (LFA)

Polystyrene is an amorphous material that is temperature and crystallinity dependent.
Therefore, the temperature range was set to stop at 348 K (75 ◦C) as the average glass
transition temperature of pristine PS is 94 ◦C and the density of the PS-BNNT composites
was measured to be 0.99 cm3, which was lower compared to conventional heat sink
materials, such as metal [63,64].

The thermal conductivity was calculated from an LFA measuring thermal diffusivity
and heat capacity results that showed the nonstable thermal properties of pure PS, as shown
in Figure 6. This change possibly occurred at the melting stage during the filament extru-
sion in which the polymer chains were disordered in the crystalline structure, thus affecting
the thermal features in the material [49,65]. The directly mixed PS-BNNT composite demon-
strated the highest thermal conductivity of 0.382 W/mK, which was four times higher than
the sonicated PS-BNNT composite at 373 K (100 ◦C) and ten times higher than pure PS
0.030 W/mK at 373 K (100 ◦C), respectively. The low thermal conductivity can be due to
the sonication effect and may have caused damage to the nanoparticle in the PS-BNNT
composite [36,46]. BNNTs are known to possess entangled long nanochains with unwanted
amorphous materials, which can also affect the thermal properties of the PS-BNNT com-
posites. However, the improvement in the thermal properties may be attributed to BNNTs’
filler interfacial interaction with PS in the PS-BNNT composites [38,66]. This depends on
the relative strength of the interactions of solvent–solvent, polymer–polymer, and polymer–
solvent molecules; hence, an organic solvent may absorb into PS, thus allowing for the
lubrication and loosening of the molecular chains for BNNTs to interact [65].
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Figure 6. Laser flash analysis (LFA) calculated graph of thermal conductivity vs. temperature of
pure PS and 10 parts by wt. (10 wt. %) PS-BNNT composite with direct mixing and sonication
processes, respectively.

3.3.4. Thermal Conductivity Prediction Model for Particulate-Filled Composites

The thermal conductivity can be predicted using the experimental volume fraction
of the filler particles. Knowing the variations of the physical properties (i.e., thermal
conductivity) and the concentrations of the fillers in the composite materials is essential.
The theoretical conduction model, which can be used to calculate the thermal conductivity,
is stated below [67,68]:

kc = (1 −∅)km +∅k f (2)

The next equation is used for the series conduction model:

1
kc

=
1 −∅

km
+

∅
k f

(3)

where k is the thermal conductivity; c is the composite; m is the matrix of the mate-
rial; f is the filler; ∅ and ∅m are the volume and the maximum packing fraction of the
filler in the composite, respectively; and km and kf values are 0.14 and 600 W/mK as re-
ported by the supplier (Sigma-Aldrich), respectively. The Lewis–Nielsen model simplifies
Equations (2) and (3) to Equation (4) to easily solve for the effective thermal conductivity
of particulate-filled composites such as the PS-BNNT. The composite thermal conductivity
is predicted using the model given as [68–70]:

kc =

 1 + 2
(

λ
λ+2

)
∅

1 −∅ψ
(

λ
λ+2

)
 (4)

where λ is the aspect ratio of filler, and sphericity ψ =
(

1 +
(

1−∅m
∅2m

)
∅
)

.
Figure 7 shows that the aspect ratio of the BNNTs, the thermal conductivity of the

matrix, and the maximum packing fraction were determined to be the main factors that
contributed to the thermal conductivity using the model [67]. The conductivity calculated
with the Lewis–Nielsen model used the BNNTs’ maximum packing fraction values that
were derived from the aspect ratio (length divided by diameter) compared to the volume
fraction (0, 1, 5, and 10 wt. %) in the filler used as the experimental setup. The model shows
that as we increase the volume fraction, the composition of our processed structure is dif-
ferent. Therefore, a departure from the rule of mixture (ROM) is based on Zhi et al. [43,66]
on predicting the thermal conductivities of particulate composites. This resulted in the
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different point of volume fraction (at 0, 0.48, 2.43, and 4.76%) and weight percentages of
the composites in Figure 7. This calculation setup is based on the previously conducted
experimentation, corresponding to the thermal conductivity of nanoparticles and poly-
mers [68–70]. The experimental results follow direct mixing more than sonication since
the morphology of the particles is different with different processing methods, yet it still
exhibited the possibility of an increase in the thermal conductivity in the nanocomposite.
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3.4. Thermal Performance of 3D-Printed Heat Sink
3.4.1. Infrared (IR) Thermal Imaging

The fused deposition AM technique demonstrated better manufacturing qualities
and accurate dimensions in the fabrication of a heat sink shown in Figure 8d–f. The IR
thermal imaging analyzed the thermal distribution, and it observed the lower and higher
temperature regions in the heat sink set temperatures, as shown in Figure 8a–c. The 3D-
printed heat sinks of pure PS and the PS-BNNT composite were placed on a hotplate at
70 ◦C and stabilized for 30 min due to the lower Tg value of the PS (94 ◦C as observed in
Figure 3b).

The thermal images result captured throughout heating and cooling recorded the
PS heat sink at a lower temperature of 48.6 ◦C for a shorter period (<30 min) with poor
heat distribution (Figure 8a), while the temperature difference in both methods (direct
mixing and sonication) is ∼= 21 ◦C higher in the heat distribution comparison to PS, which is
in agreement with the LFA result and is similar to previously reported values [43,71,72].
The dispersion of the BNNT filler in the PS matrix validated the process, which presents a
logical reason behind the uniformity in heat distribution for the PS-BNNT heat sinks for
both processes. The thermal performance can be due to the alignment of microparticles
in the structure during printing, as a lightweight heat sink was achievable for both pro-
cessing methods as expected. Although the 3D-printed heat sink may not demonstrate
the same thermal performance as conventional materials, the composites may still be
applicable for lightweight, low thermal applications due to their weight advantage over
metal materials [63,64].
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Figure 8. Infrared (IR) thermal imaging to determine its thermal performance of a 3D-printed (a)
polystyrene pristine, (b) PS-BNNT (sonicated), and (c) PS-BNNT (direct mixing) heat sink for 30 min
at 70 ◦C; 3D-printed (d) polystyrene, (e) PS-BNNT (~10 wt. % BNNT) sonicated, and (f) PS-BNNT
directly-mixed heat sinks used for IR imaging, respectively; color gradient: hot-red, mild-yellow, and
cold-blue, respectively.

3.4.2. Heat Transfer Simulation of 3D-Printed Heat Sink

The fabricated heatsink device was simulated to show the temperature gradient at
348 K (70 ◦C) between the hotplate and the heat sink base. The heat sink performance
was simulated with a finite element analysis using the COMSOL Multiphysics software.
The model was meshed (physics-controlled mesh) with a partial differential built-in tool
equation as a time-dependent study governing heat transfer model used in the simulation
in the equation below [73]:

k
[

δ2T
δx2 +

δ2T
δy2 +

δ2T
δz2

]
− qA(T − Tamb) = 0 (5)

where k is the thermal conductivity (W/mK); A is the thermal diffusivity (m2/s), T − Tamb
(where u = T − Tamb) is the boundary condition; T is the initial condition (temperature
K); and q is heat flux; x, y, and z are the directional variables; and t is the time-dependent
component (s).

Figure 9a–f shows the simulation results based on the parameter from the experiments
from LFA, where k is 0.03 W/mK and 0.384 W/mK for PS and PS-BNNT composite (direct
mixing as the highest conductivity), respectively. To compare the performance of the PS
and the PS-BNNT (direct mixing) printed heat sinks, the model was computed for a longer
time of 30 min (1600 s) at a set temperature of 348 K. Since PS is unsuitable for thermal
transfer, the model heated faster at <15 min compared to the PS-BNNT composite material,
which exhibited a slight temperature difference in the heat transfer from the heat sink
base. These simulation results matched the IR camera images (in Figure 8) of the printed
heat sinks for the PS and the PS-BNNT composite; it can be seen that a better thermal
performance is indicated in the composite than in the PS heat sink.
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and (c,f) at 30 min, respectively.

4. Conclusions

The polymer composites made from BNNTs in a PS matrix were dispersed via direct
mixing and sonication to fabricate a lightweight 3D-printed heat sink via a fused deposition
AM technique. These composites were extruded into FDM 3D printing filament to test
for their thermal conductivity properties and heat performance. The thermal conductivity
and mechanical properties of all samples showed an enhancement with the addition of
the BNNT’s content in the processes of the composite. The mechanical characterization
of the samples demonstrated an increase in the storage modulus and the ultimate tensile
strength with BNNTs loading compared to pure PS. BNNT bundling can be controlled
based on the mixing technique, and it directly influences the nanotube–nanotube sliding
and tensile strength. Mechanical models confirmed stress concentrations and a higher
stress state in the highly bundled PS-BNNT when strain was applied due to interlocking.
The direct mixing samples show a greater thermal conductivity than the sonicated sam-
ples, reaching a maximum value of 0.382 W/mK, which results in better heat dissipated
performance for the 3D-printed heat sink. We found that the sonicated samples decrease
in thermal conductivity and mechanical strength. Both the PS-BNNT composite samples
demonstrated a better thermal performance than the pristine PS 3D printed heat sink.
This proves the BNNTs to be a promising thermal filler material for additive manufacturing
applications where lightweight material is required for thermal management in electronics
and other applications. For the BNNT filler to become more viable to reach its full potential,
further development in the matrix to increase filler interactions is required to provide an
additional enhancement in thermal conductivity. Using additive manufacturing designs,
manufacturing custom-made thermal devices with composite materials using the filament
technique is possible and could save production cost and time. Further work on composite
printing with the AM technique will refine the interlayer adhesion of the print to improve
the conductivity.
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