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Abstract: This paper aims to study the wrinkle formation of a prepreg with initial defect during
steering in automated fiber placement (AFP). Wrinkle formation has a detrimental effect on the
mechanical properties of the final product, limiting the AFP applications. A theoretical model for
wrinkle formation has been developed in which a Pasternak foundation and a Koiter imperfection
model are adapted to model viscoelastic characteristics of the prepreg tack and initial defect of the
prepreg, respectively. The initial defect is defined as a slight deviation of the tow’s mid-plane from a
horizontal shape. The initial defect is generated in the tow by moving the tow through the guidance
system, pressure of the roller, and resin tackiness. Galerkin method, along with the finite difference
method (FDM), are employed to solve the wrinkle problem equation. The proposed method is able to
satisfy the different boundary conditions for the wrinkle problem completely. The numerical results
show that increasing the initial defect leads to a decrease in critical load and an increase in critical
steering radius. To validate the theoretical model, experimental results are presented and compared
with model-predicted results. It is shown that the model is well able to capture the trends and values
of wrinkle formation wavelengths obtained from the experiment.

Keywords: wrinkle formation; prepreg; automated fiber placement; initial defect

1. Introduction

An increase in demand and operating conditions has resulted in the need for com-
posite structures. To meet the increasing demand, automated fiber placement (AFP) offers
excellent benefits that reduce costs and increase the production rate. Therefore, the AFP
is becoming increasingly important for many applications in various industries. During
the AFP process, the pre-impregnated tapes are placed on the tool, utilizing the AFP head.
One of the significant advantages of AFP is that one manages to control the speed of each
tow, and this advantage contributes to tow steering and the design and manufacturing of
structures with complex geometries [1,2].

A primary concern during steering using automated fiber placement is the prepreg out-
of-plane buckling, which significantly lowers the mechanical properties of the products [3].
Indeed, the steering curvature causes the inner edge of the tape to be under compression
and the outer edge to be under tension. The values of compressive load and bending
load applied to tow are controlled by the value of steering radius. A decrease in steering
curvature is associated with increasing the compressive load. This compressive load causes
out-of-plane wrinkle formation in the inner edge [3,4].

Although a considerable amount of literature has been published on buckling of
laminate composite, the number of papers focusing on the buckling during the steering in
automated fiber placement is not significant. Given the significance of control of different
types of defects such as wrinkle formation in the AFP and manufacturing process, efforts
have been made to study and understand these subjects. Panday and Sun [5] studied
wrinkle formation of the composite laminate by two different methods. In the first approach,
they modeled the interface bonding by a set of shear and normal springs and calculated the
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buckling load for a composite laminate. The second approach employed a large deflection
theory to obtain the governing equation for predicting wrinkle behavior. Ma et al. [6]
studied the unilateral contact Local buckling of multilayered composite resting on elastic
foundation. They employed the transfer function method to solve the buckling model
and investigate the effect of elastic foundation parameters on buckling load. Beakou
et al. [3] studied out-of-plate buckling of tape during the automated fiber placement
process. They presented a simply supported buckling model of the plate under linearly
varying in-plane load for the wrinkle formation of tow. Their experimental data showed
that predicting the wrinkle formation can be improved by considering tack’s temperature
and dynamic behavior. Lightfoot et al. [7] investigated a new mechanism for the wrinkles
formed in the prepreg composites due to thermal shear force. They showed that removing
the release film decreases the possibility of wrinkle formation, which supported their
proposed mechanism. The effect of steering curvature on wrinkle formation was performed
by Matveev et al. [8]. They defined wrinkle formation as a buckling model for a plate
resting on an elastic foundation and used experimental findings to predict the parameters
of wrinkle formation. The effect of in-plane shear modulus on wrinkle formation was
investigated [4]. They measured in-plane shear modulus of prepreg using the ±45

◦
tensile

test. Their results show that the shear modulus in the wrinkle equation leads to a better
agreement with the experimental results. Bakhshi and Hojjati [9] performed a theoretical
and experimental study on wrinkle formation of steered slit tow. The authors used the
Rayleigh-Ritz and Laplace method to solve the problem of wrinkle formation. Besides, they
presented a time-dependent elastic foundation model for modeling the tack properties.
Rajan et al. [10] experimentally investigated the wrinkle formation in prepreg slit tape.
They employed a Stereo DIC technology to measure the displacement and strains during
and after experiments. They found the amplitude of wrinkles was related to the time
and temperature and doubled after the placement process because of the time-dependent
viscoelastic properties of the tape. Wehbe et al. [11] investigated the tow wrinkle on an
arbitrary surface mathematically in the AFP process. They presented a mathematical model
using the geodesic path and curvature definition that estimated the wrinkle amplitude.
The effect of different parameters such as head speed and compaction force on steered tow
on a cylindrical tool was studied by [12]. They evaluated the quality of the product based
on the different combinations of these parameters and determined the importance of the
parameters using the RReiliefF algorithm.

Imperfection in the composite laminate can be divided into two categories: imperfect
interface and initial defect. In the former case, imperfection is defined as a weak bonding
between layers [13,14]. This imperfection can be modeled as a thin interface joining two
adjacent layers by distributed springs [15]. In the latter case, the initial defect is defined as
a slight deviation of the midplane from the horizontal shape. During the AFP process, the
initial defect may be caused in tow by the contact pressure of the roller and moving the
tow through the guidance system. In recent years, researchers set out to study the effect of
the initial defect (imperfection) in buckling problems. Shariat et al. [16] studied buckling
load of simply supported functionally graded plates with an initial defect under uniform
in-plane edge load. They employed the Galerkin method to simultaneously solve the
buckling and compatibility equations to calculate the buckling load of the imperfect plate.
Thermoelastic buckling of the imperfect orthotropic and isotropic plates under different
thermal loading was investigated by [17]. Kiani et al. [18] presented an approximate close-
form solution along with the Galerkin method to solve critical thermal buckling load for a
sandwich FGM plate resting on Pasternak elastic foundation.

There is a growing need for detailed research on induced defects by automated fiber
placement processes. As discussed above, there seems to be no detailed study on the
wrinkle formation during the steering process considering the initial defect effect of the
tape on the wrinkle. In this work, a theoretical model is presented for the wrinkle formation
of the tape with an initial defect resting on the Pasternak foundation. Galerkin method
in conjunction with the finite difference method are employed to analyze buckling load



J. Compos. Sci. 2021, 5, 295 3 of 15

and critical steering radius of tape and give an interpretation of how a slight initial defect
affects these parameters. The method proposed in this study can be employed to solve
wrinkle equations for different boundary conditions just by changing the finite difference
coefficients. The model predictions for the values of buckling wavelengths are validated
with experimental results.

2. Experiments

An AFP machine provided by Automated Dynamic Inc. was employed to fabricate the
experimental samples on the surface, as shown in Figure 1a. This machine has a robot arm
with six degrees of freedom, able to lay up both thermoset and thermoplastic composites.
The number of tows used for adding lay-up by the head of the machine varies from one
to four per each course. The tows can be cut in arbitrary lengths over the 3 inches and
restarted during the lay-up process at any time. The AFP machine is equipped with a
compaction roller and a hot gas as a heat source that provides pressure contact and a
necessary temperature for bonding the tows on the tool, respectively. The compression
force applied and controlled by the roller plays a vital role in the mechanical properties of
tack and wrinkle formation. The compaction pressure distribution generated by roller on
prepreg was investigated in [19,20], respectively. Besides, the compression force between
the roller and tape and the guidance system leads to an initial defect in tape that affects the
wrinkle formation. Figure 1b,c demonstrates the roller-tape contact and guiding system.
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tow’s path on an aluminum tool. The dimensions of this path are shown in Figure 2. 

Figure 1. Automated fiber placement machine: (a) fiber placement with a six-axis robot arm, (b) the head and the roller-tape
contact, (c) the guidance system.

The tows used in this experiment were carbon/epoxy unidirectional prepreg (CYCOM
977–2/HTS-145) from Solvay with an individual tow width of 6.35 mm, thickness of 0.2 mm,
and a 60% fiber volume. The prepregs were made of 12K carbon fibers (HTS-145), which
were pre-impregnated with CYCOM 977-2 epoxy resin system and cured using an autoclave
or press molding.

To get experimental results, firstly, the thermoset prepregs were left to rest for 30 min
at room temperature. A sketch was made by AFP machine’s software for determining the
tow’s path on an aluminum tool. The dimensions of this path are shown in Figure 2.

Then, the thermoset prepregs were left to rest for 30 min at room temperature. After
that, the tows were stored on the lay-up head and directly delivered from the spools to
the roller to be steered on the rigid aluminum tool. The aluminum tool was cleaned with
acetone before each experiment to reduce the shear force created by friction between the
tool and prepreg. Finally, prepreg tows were deposited on an aluminum tool with different
steering radii of 55, 60, 65, 67, 70, and 75 cm, according to Figure 2. The process of steering
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the tape was proceeded for this experiment by adjusting the AFP software according to
Table 1.
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Figure 2. The tow’s path made by AFP machine’s software.

Table 1. Process conditions.

Head Speed Hot Gas Temperature
(Heat Source)

Flow Rate
(Heat Source) Roller Force Tool

Temperature

77 mm/s 160 ◦C 85 (L/min) 250 N 23 ◦C

The steering radius is created by rotating the head. The head rotation generates a
linearly varying load in prepreg, which in turn can lead to tow buckling.

The experimental work observed that the wrinkle is formed when the tapes are
placed on the surface with a radius of less than a specific value (critical radius). Figure 3
demonstrates the steered tow and wrinkle formation (out-of-plane buckling) in the tow.
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One of the critical parameters in the process of steering the tows is the wavelength of
the wrinkle, defined as the length of an opening separation of an individual wrinkle (see
Figures 3 and 4).
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Figure 4. Schematic of a section of tape resting on elastic foundation under combined axial compres-
sion and bending.

The length of the wrinkles (wavelength) is measured using a caliper manually in each
tow. The average of the wrinkle’s lengths in each steered tow is considered the wrinkles’
wavelength in that certain radius. Table 2 represents the number of wavelengths and the
average length of wrinkles in each steering radius.

Table 2. Measurement results (the number of wrinkles and the average length of wrinkles in each radius).

Steering Radius (cm) Number of Wrinkles Average of Wavelength (mm)

55 16 6.2
60 15 6.6
65 14 7
67 14 7.4
70 9 8
75 6 9

In the following, based on the experiments, the authors aim to present a developed
buckling formulation to model the wrinkle formation in tows. To validate the proposed
model, the wavelengths of wrinkles measured manually in experiments are compared with
the model predictions.

3. Formulation
3.1. Buckling Model

Out-of-plane wrinkle formation of steered tows during the automated fiber placement
process can be modeled as a buckling problem of a rectangular plate resting on a Pasternak
elastic foundation, which is under non-uniform load. The load is applied by a roller to two
clamped edges, and the other two edges are considered as a simply support (S.S) condition
in accordance with the geometry of the problem. Figure 4 shows the theoretical model of
wrinkle formation during steering.

3.1.1. Pasternak Elastic Foundation

In this paper, a Pasternak foundation representation is adopted to model the mechani-
cal properties of the tool and prepreg tack [21,22]. Figure 5 shows the free body diagram of
adhesive joint and elastic modeling based on the Pasternak model. This model replaces the
elastic foundation as a combination of the shear layer and normal linear spring. As a result,
the pressure of the elastic foundation surface can be mathematically written as:

p = K f w− G∇2w (1)

where p is pressure, ∇2 is Laplace operator, and K f and G are spring and shear constants
of the Pasternak model, respectively.
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3.1.2. Governing Equation

Assuming that the thickness is constant through the z-direction and using classical
lamination plate theory CLPT theory, the equilibrium equations for a general thin composite
plate can be expressed as [23]:

∂Nxx
∂x +

∂Nxy
∂y = 0

∂Nxy
∂x +

∂Nyy
∂y = 0

∂2 Mxx
∂x2 + 2 ∂2 Mxx

∂x∂y +
∂2 Myy

∂y2 + Nxx
∂2w
∂x2 + 2Nxy

∂2w
∂x∂y + Nyy

∂2w
∂y2 + p = 0

(2)

where w is the displacement component along z direction; p is the elastic foundation
pressure; and

(
Nxx, Nxy, Nyy

)
and (Mxx, Mxy, Myy) are the in-plane force and moment

resultants, respectively, that can be defined as: Nx
Ny
Nxy

 =

 A11 A12 A16
A12 A22 A26
A16 A26 A66

 ε0
x

ε0
y

ε0
xy

+

 B11 B12 B16
B21 B22 B26
B16 B26 B66

 κ0
x

κ0
y

κ0
xy


 Mxx

Myy
Mxy

 =

 B11 B12 B16
B21 B22 B26
B16 B26 B66

 ε0
x

ε0
y

ε0
xy

+

 D11 D12 D16
D21 D22 D26
D16 D26 D66

 κ0
x

κ0
y

κ0
xy

 (3)

where Aij, Bij, and Dij are the extensional stiffness coefficients, the coupling stiffness
coefficients, and the bending stiffness coefficients, respectively. These matrices are obtained
from Equation (4):

(Aij, Bij, Dij) =
∫ t

2

− t
2

[
Qij

](
1, zi, z2

i

)
dzi (4)

where Qij is transformed reduced stiffnesses, and zi and t are the coordinates in the z-
direction and the thickness of the tow, respectively. Since the prepreg is an orthotropic
material, the matrix [B] is zero, and D16, D26 = 0. By direct substitution of the moment
and results from Equation (3) into Equation (2), the governing equation of a unidirectional
prepreg tape resting on the Pasternak elastic foundation can be obtained by the following
equation [23,24].[

D11
∂4w
∂x4 + 2(D12 + 2D66)

∂4w
∂x2∂y2 + D22

∂4w
∂y4

]
− Nx

(
∂2w
∂x2

)
+ K f w−

G
(

∂2w
∂x2 + ∂2w

∂y2

)
= 0

(5)

where k, G are spring constants of Pasternak model, and according to the physics of the
problem, Nx is a linearly varying in-plane load that can be defined by:

Nx = −N
(

1− ηy
b

)
(6)
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where b is the width of the tow, and η is a constant between 0 and 2, for example, η = 0
and η = 2 correspond to uniform compressive load and pure bending load, respectively.
Figure 6 demonstrates the in-plane load distribution for various values of η.

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 7 of 16 
 

 

prepreg tape resting on the Pasternak elastic foundation can be obtained by the following 
equation [23,24]. 𝐷 𝜕 𝑤𝜕𝑥 + 2(𝐷 + 2𝐷 ) 𝜕 𝑤𝜕𝑥 𝜕𝑦 + 𝐷 𝜕 𝑤𝜕𝑦 − 𝑁 𝜕 𝑤𝜕𝑥 + 𝐾 𝑤 − 𝐺(𝜕 𝑤𝜕𝑥 + 𝜕 𝑤𝜕𝑦 ) = 0 

(5)

where 𝑘, 𝐺 are spring constants of Pasternak model, and according to the physics of the 
problem, 𝑁  is a linearly varying in-plane load that can be defined by: 𝑁 = −𝑁 1 − 𝜂𝑦𝑏  (6)

where 𝑏 is the width of the tow, and 𝜂 is a constant between 0 and 2, for example, 𝜂 = 0 
and 𝜂 = 2 correspond to uniform compressive load and pure bending load, respectively. 
Figure 6 demonstrates the in-plane load distribution for various values of 𝜂. 

 
Figure 6. The stress distribution for different values of 𝜂. 

3.2. Initial Defect 
There are two types of imperfection that might happen, which include the interfacial 

imperfection and the initial geometric defect (imperfection). In this problem, the out-of-
plane buckling is investigated for AFP. Therefore, the initial geometric defect, which 
means a slight deviation of the middle plane of prepreg from a flat shape, is modeled by 
Equation (7). The interface imperfection is modeled by the Pasternak elastic foundation 
equations (see Equation (1)). In this paper, 𝑤∗(𝑥, 𝑦) represents the initial defect. In this 
regard, the slight initial defect is defined based on the Koiter model as [25,26]. 𝑤∗(𝑥, 𝑦) = 𝜇ℎ𝑤 (7)

where 𝜇ℎ  represents the amplitude of the initial defect (imperfection), and (0 ≤ 𝜇 <1) when the 𝜇 = 0, it expresses a perfect lamina. To consider the initial defects, the vertical 
displacement 𝑤 in Equation (5) needs to be replaced by 𝑤 + 𝑤∗. It should be noticed that 
the expression in the bracket in Equation (5) remains constant for the reason that this ex-
pression resulted from the bending moments. The bending moments are only related to 
the curvature of the plate, and they remain unchanged by changing the total curvature. 
As a result, Equation (5) yields: 𝐷 𝜕 𝑤𝜕 𝑥 + 2(𝐷 + 2𝐷 ) 𝜕 𝑤𝜕 𝑥𝜕 𝑦 + 𝐷 𝜕 𝑤𝜕 𝑦 − 𝑁 𝑤, + 𝑤,∗ + 𝐾 (𝑤 + 𝑤∗) − 𝐺(𝑤, + 𝑤,∗ + 𝑤, + 𝑤,∗ ) = 0 (8)

To obtain the values of wavelength or critical force of wrinkle formation, one needs 
to solve Equation (8). 

  

Figure 6. The stress distribution for different values of η.

3.2. Initial Defect

There are two types of imperfection that might happen, which include the interfacial
imperfection and the initial geometric defect (imperfection). In this problem, the out-
of-plane buckling is investigated for AFP. Therefore, the initial geometric defect, which
means a slight deviation of the middle plane of prepreg from a flat shape, is modeled by
Equation (7). The interface imperfection is modeled by the Pasternak elastic foundation
equations (see Equation (1)). In this paper, w∗(x, y) represents the initial defect. In this
regard, the slight initial defect is defined based on the Koiter model as [25,26].

w∗(x, y) = µhw (7)

where µh represents the amplitude of the initial defect (imperfection), and (0 ≤ µ < 1)
when the µ = 0, it expresses a perfect lamina. To consider the initial defects, the vertical
displacement w in Equation (5) needs to be replaced by w + w∗. It should be noticed that
the expression in the bracket in Equation (5) remains constant for the reason that this
expression resulted from the bending moments. The bending moments are only related to
the curvature of the plate, and they remain unchanged by changing the total curvature. As
a result, Equation (5) yields:[

D11
∂4w
∂4x

+ 2(D12 + 2D66)
∂4w

∂2x∂2y
+ D22

∂4w
∂4y

]
− Nx

(
w,xx + w∗,xx

)
+ K f (w + w∗)− G

(
w,xx + w∗,xx + w,yy + w∗,yy

)
= 0 (8)

To obtain the values of wavelength or critical force of wrinkle formation, one needs to
solve Equation (8).

3.3. Solution Procedure

To solve the PDE Equation (8), since the edges loaded are clamped, the solution can
be presented in the form:

w(x, y) = wm(y)
(

1− cos
(

2
mπx

a

))
(9)

where
(
1− cos

(
2 mπx

a
))

satisfies the boundary condition in x = 0, a. By definition of initial
defects based on the Koiter model, the w∗(x, y) can be expressed as:

w∗(x, y) = µhwm(y)
(

1− cos
(

2
mπx

a

))
(10)
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Substitution of w(x, y) and w∗(x, y) into Equation (8), and after rearrangements, one
can deduce the following equation:

R1 = D22
(
1− cos

(
2 mπx

a
)) d4wm(y)

dy4

+2(D12 + 2D66)
4π2m2

a2
d2wm(y)

dy2 cos
(
2 mπx

a
)
− G(1

+µh) d2wm(y)
dy2

(
1− cos

(
2 mπx

a
))

−D11
16π4m4

a4 cos
(
2 mπx

a
)
wm(y)

−Nx

(
4π2m2

a2 (1 + µh)
)

wm(y) cos
(
2 mπx

a
)

+K f (1 + µh)wm(y)
(
1− cos

(
2 mπx

a
))

−G
(

4π2m2

a2 (1 + µh)
)

cos
(
2 mπx

a
)
wm(y)

(11)

By direct substitution of Nx = −N
(
1− ηy

b
)

into Equation (11), it leads to a non-
linear and non-homogeneous ordinary differential equation. To find the solution for
Equation (11), first we transform it from a non-homogenous to a homogenous one using
the Galerkin method. To reach a homogenous equation, Equation (11) should be multiplied
by an admissible function satisfying the boundary condition. The following function has
the conditions of the Galerkin method.

ψ =
(

1− cos
(

2
nπx

a

))
(12)

According to the Galerkin method:∫ a

0
R1 × ψ dx = 0 (13)

In the calculation of the above integrals, two integrals appear, which can be solved as
follows: ∫ a

0

(
1− cos

(
2

mπx
a

))
×
(

1− cos
(

2
nπx

a

))
dx =

{ 3
2 a m = n
a m 6= n

(14)

∫ a

0

(
cos
(

2
mπx

a

))
×
(

1− cos
(

2
nπx

a

))
=

{
− 1

2 a m = n
0 m 6= n

(15)

By employing the Galerkin method, the non-homogenous Equation (11) transform the
homogenous one, which after rearrangements, can be written as:

D22
d4wm(y)

dy4 −
[
2(D12 + 2D66)

4π2m2

3a2 + G(1 + µh)
]

d2wm(y)
dy2

+
[

D11
16π4m4

3a4 + K f (1 + µh) + G
(

4π2m2

3a2 (1 + µh)
)]

wm(y)

−N
(
1− ηy

b
)( 4π2m2

3a2 (1 + µh)
)

wm(y) = 0

(16)

Now, as mentioned in the problem definition, the boundary conditions of unloaded
edges can be considered S.S according to the physics of the problem. The boundary
condition equations for S.S are presented as:

w = 0
M,yy = D12

d2w
dx2 + D22

d2w
dy2 = 0 (17)

To write the boundary conditions in the form of w(y), we substitute w from Equation (9)
into Equation (17); the simply supported (S.S) equations result in:

w = 0
M,yy = D12

4π2m2

a2 w(y) cos
(
2 mπx

a
)
+ D22

d2w
dy2

(
1− cos

(
2 mπx

a
))
≈ 0 (18)
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Applying the Galerkin method to the Equation (18), the boundary conditions lead to:

w = 0

M,yy = D22
d2w(y)

dy2 − 4π2m2

3a2 D12w(y) = 0
(19)

To solve the nonlinear homogenous ordinary Equation (16), The finite difference
method (FDM) was employed [27]. In this method, first, the interval between y = 0 and
y = b is partitioned into n subintervals. Then, the differential operators are approximated
by the differential quotients. Based on the FD method, differential operators can be
expressed in the following forms:(

dw
dy

)
i
= 1

2s (−wi−1 + wi+1)(
d2w
dy2

)
i
= 1

s2 (wi−1 − 2wi + wi+1)(
d3w
dy3

)
i
= 1

2s3 (−wi−2 + 2wi−1 − 2wi+1 + wi+2)(
d4w
dy4

)
i
= 1

s4 (wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2)

(20)

where i is the node number, wi represents the deflection component in z-direction for the
ith node, and s = b/n is the distance between the two nodes. Figure 7 shows the sections
in the y-direction. According to Figure 7, the coordinates of the nodes in the y-direction
can be written as:

yi = s(i− 1) (21)
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By replacing Equations (20) and (21) into Equation (16), and after rearrangements, the
nonlinear equation can be written as:

X1wi − X2Zi + X3Ui − X4Fiwi = 0 (22)

where
X1 =

[
D11

16π4m4

3a4 + K f (1 + µh) + G 4π2m2

3a2 (1 + µh)
]

X2 =
[

G(1 + µh) + 2(D12 + 2D66)
4π2m2

3a2

]
1
s2

X3 = D22
1
s4

X4 = N 4π2m2

3a2 (1 + µh)
Zi = (wi−1 − 2wi + wi+1)
Ui = wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2

Fi =
(

1− η(i−1)
n

)
(23)

As it can be seen in Figure 7, there are two nodes named w0, wn+2 which are out of
the trivial difference between y = 0 and y = b. Theses nodes are defined by boundary
conditions at y = 0, b. Replacing w1 into the boundary condition equations at y = 0
leads to:

w = 0⇒ w1 = 0

D22
d2w(y)

dy2 − 4π2m2

3a2 D12w(y) = 0⇒ −D12
4π2m2

3a2 w1 + D22
1
s2 (w0 − 2w1 + w2) = 0

w1=0⇒ w0 = −w2
(24)
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Again, the substitution of wn+1 into the boundary condition equation at y = b leads to:

w = 0⇒ wn+1 = 0

D22
d2w(y)

dy2 − 4π2m2

3a2 D12w(y) = 0⇒ −D12
4π2m2

3a2 w1 + D22
1
s2 (wn − 2wn+1 + wn+2) = 0

wn+1=0⇒ wn+2 = −wn
(25)

With regard to the simply supported conditions, wn+1, and w1 are zero. Therefore,
Equation (22) for each node can be obtained. By substitution of wi for (i = 2, . . . , n)
into Equation (22), we have a linear system of n− 1 equations for the n− 1 unknowns
[w2, w3, . . . , wn]. This equation system can be written in matrix form:

X1



1
0
0
...
0
0

0
1
0
...
0
0

. . .

. . .

. . .
. . .
. . .
. . .

0
0
0
...
0
1


n−1×n−1

−X2



−2 1 0 0
... 0 0 0

1 −2 1 0
... 0 0 0

0 1 −2 1
... 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0
... 1 −2 1

0 0 0 0
... 0 1 −2


n−1×n−1

+X3



5 −4 1 0 0
... 0 0 0 0 0

−4 6 −4 1 0
... 0 0 0 0 0

1 −4 6 −4 1
... 0 −4 −4 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0
... 0 1 −4 6 −4

0 0 0 0 0
... 0 0 1 −4 5


n−1×n−1

−X4



1
0
0
...
0
0

0
1− η/n

0
...
0
0

. . .

. . .

. . .
. . .
. . .
. . .

0
0
0
...
0

1− η(n− 1)/n


n−1×n−1




w2
w3
w4
...

wn

 =

(26)

To have a non-trivial solution for the above system of equations, the determinant of
the matrix expression in the bracket is to be equal to zero. This determinant is an expression
for a (wrinkle wavelength) and N (critical buckling load).

3.4. Relation between Critical Steering Radius and Critical Load

Owing to the unbalanced length during the steering process, a linearly varying in-
plane load is generated in tow.

This load is shown in Figure 4. To find a relation between steering radius and the
applied load, the bending moment and curvature equation can be employed. Figure 8
shows the tape under a bending load. The bending moment and curvature are linked to
each other by the following equation.

R =
E1 I
Mo

(27)

where E1 is Young’s modulus in the fiber direction, I is the moment of inertia for the tow, R
is the steering radius, and Mo is the memont about point O (see Figure 8).
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Regarding Figure 8, the c is equal to b/η and from the similarity of two triangles
∆AOB and ∆FOG, the value of Nb (the tensile force at the outer edge) can be found:

∆FTO ∼ ∆ AOB⇒ N
Nb

=

b
η

b
(

1− 1
η

) ⇒ Nb = N(η − 1) (28)

As a result, the value of moment about the natural axis (point O) yields:

Mo =N
b2

3η2 + N
b2(η − 1)3

3η2 (29)

The moment of inertia of the cross-section with respect to the x-axis is obtained from
Equation (30)

I = tb3

(
1
12

+

(
1
2
− 1

η

)2
)

(30)

where t and b represent the thickness and width of the tape, respectively. Substituting
Equations (29) and (30) obtained for M and I into Equation (27), one finds that:

R =
E1 I
Mo

=

E1tb
(

1
12 +

(
1
2 −

1
η

)2
)

N
(

1
3η2 +

(η− 1)3

3η2

) (31)

Thus, if the maximum induced load (N) obtained from Equation (31) for the various
values of the steering radius is more than the buckling load obtained from Equation (26),
the wrinkle will occur in tow. In contrast, the tows will be wrinkle-free if the induced load
is less than the buckling load (Equation (26)).

4. Result and Discussion
4.1. Numerical Results Obtained from Wrinkle Model

For the calculations, the mechanical properties of prepreg used in this paper were
measured in a previous paper published by Bakhshi and Hojjati [9]. Table 3 indicates these
mechanical properties.

Table 3. Material properties of prepreg and elastic foundation [9].

E1 (Gpa) E2 (Mpa) G12 (Mpa) η v12 t (mm) b (mm)

31 0.046 3.025 2 0.2 0.2 6.35



J. Compos. Sci. 2021, 5, 295 12 of 15

Another important point to be mentioned is that since the wrinkle forms in tow as the
first buckling load, the value of m in Equations (9) and (10) should be one.

4.1.1. The Effect of Initial Defect on Critical Load and Steering Radius

As mentioned before, the initial geometric defect (imperfection) is introduced as a
slight deviation of the midplane from a flat one. The impact of increasing the initial defect
on buckling load and steering radius is presented in Figures 9 and 10. The values of spring
constants assume to be k = 3.25 × 108 (N/m) and G = 605 N/m according to [4,9] in the
mathematical wrinkle model. As can be seen, a rise in initial defect is associated with a
small reduction in critical load, which, according to Equation (31), implies an increase in
minimum steering radius. In Figures 9 and 10, the value of h is assumed to be one.
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Figures 11 and 12, respectively. The most important observations are as follows. As the
stiffness parameter increases, the critical radius declines, and the buckling load increases.
This can be explained by the fact that increasing the stiffness (K f ) means a stronger tack.
Thus, to overcome the tack of prepreg, the axial in-plane load applied to the prepreg plate
should be increased.
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In contrast, according to Equation (30), the steering radius has an inverse relation with
the buckling load. As a result, an increasing in-plane load leads to a decrease in radius
steering. Besides, a rise in the value of the initial defect of the tow based on the Koiter
model leads to a slight growth in critical steering radius and a slight reduction in buckling
load. In Figures 11 and 12, the value of the aspect ratio for the tow is assumed to be 1.5.

4.2. Drawing a Comparison between Wrinkle Wavelengths Obtained from the Theoretical Model
and Experimental Work

To validate the theoretical model with experiment results, in this section, a comparison
is made between the values of the wrinkle wavelengths calculated from the theoretical
wrinkle model and the experimental findings. For this reason, the value of maximum load
from Equation (30) as a function of critical radius is replaced into Equation (25) instead
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of N. By solving the determinant of Equation (25) for wrinkle wavelength (L), the value
of wavelength is found for each critical radius. Figure 13 shows steering radius versus
wrinkle wavelength for both experimental and theoretical results. The values of spring
constants assume to be k = 3.25 × 108 (N/m) and G = 605 N/m according to [4,9] in the
mathematical wrinkle model.
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As can be seen, the results yielded from the proposed model are in good agreement
with experiment results. Also, it is found that considering the effect of a slight defect
(imperfection) with an initial defect coefficient of µ = 0.05 leads to a better agreement
between the proposed model and experiment results.

5. Conclusions

This study is concerned with the wrinkle formation during steering with an initial
defect based on the Koiter model. A theoretical buckling model is presented to model
the wrinkle formation of the prepreg tape resting on an elastic foundation. Pasternak
model is adopted to model tack properties. The Galerkin method along with the finite
difference method are employed to solve the problem for critical buckling load and steering
radius. The solution method presented in this study can completely satisfy the different
boundary conditions of the problem. The obtained results reveal that an increasing initial
defect is associated with an overall reduction in buckling load, and consequently, the
smaller critical loads occur for higher critical radius steering values. Any improvement
in tack (elastic foundation) properties significantly affects the numerical values of the
critical load and radius. Specifically, growth in foundation stiffness results in a notable
reduction in the critical radius, which subsequently leads to increasing the load. Finally, the
results for wrinkle wavelengths yielded from the applied model are compared to those of
experimental work. It is worth noting that the diagrams showed that the model predictions
are very close to the results measured from experimental work.
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