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Abstract: A model for the low-frequency magnetoelectric (ME) effect that takes into consideration
the bending deformation in a ferromagnetic and ferroelectric bilayer is presented. Past models,
in general, ignored the influence of bending deformation. Based on the solution of the equations
of the elastic theory and electrostatics, expressions for the ME voltage coefficients (MEVCs) and
ME sensitivity coefficients (MESCs) in terms of the physical parameters of the materials and the
geometric characteristic of the structure were obtained. Contributions from both bending and planar
deformations were considered. The theory was applied to composites of PZT and Ni with negative
magnetostriction, and Permendur, or Metglas, both with positive magnetostriction. Estimates of
MEVCs and MESCs indicate that the contribution from bending deformation is significant but smaller
than the contribution from planar deformations, leading to a reduction in the net ME coefficients in
all the three bilayer systems.

Keywords: multiferroic composites; magnetostriction; piezoelectricity; magnetoelectric effect

1. Introduction

The nature of the coupling between magnetic and ferroelectric subsystems in compos-
ites of the two phases has been studied extensively during the past several years [1–3]. The
interaction involves the transfer of strain produced by either a magnetic or electric field
in one of the two phases to the other, which, in turn, leads to an electrical or a magnetic
response, respectively. Composites consisting of a variety of ferromagnetic and ferroelec-
tric phases were reported to show very strong magnetoelectric (ME) interactions when
exposed to magnetic or electric fields at frequencies ranging from a few mHz to hundreds
of GHz [1–6]. Studies involved bulk composites as well as thick-film- or thin-film-layered
structures and nanocomposites in the form of nanopillars in a host matrix, core–shell
particles, and core–shell nanofibers [7–10]. Layered magnetic–piezoelectric composites, in
general, show a much stronger ME coupling, compared with bulk composites [11]. One
of the important advantages of layered structures is the ease of their fabrication process,
and it is possible to use ferromagnetic metals or alloys with high magnetostriction, such
as Permendur, Terfenol-D, Metglas, etc., whereas in bulk composites, the choice for the
ferromagnetic phase is restricted to high resistivity oxides such as nickel ferrite or cobalt
ferrite with relatively low magnetostriction [11]. Ferrites are poor insulators; therefore, their
use in bulk composites leads to large leakage currents, which lead to the weakening of ME
interactions [12,13]. In the layered structures, however, the ferromagnetic layers are well
insulated with piezoelectric layers, and as a result, the leakage currents are negligibly small.
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A widely used technique in characterizing the nature of ME interactions is the mea-
surements of low-frequency ME voltage coefficient (MEVC) that involves applying an AC
magnetic field (hac) and measuring the voltage (Vac) produced across the ferroelectric layer
of thickness tp, and MEVC = Vac/(tp hac) is a measure of the strength of ME coupling. Sev-
eral models were developed in the past for the phenomenon in bilayer structures [14–20].
These include low-frequency ME effects due to longitudinal vibrations caused by the AC
magnetic field [14–16], the influence of texture and residual stress in the layers [17,18], and
the size of the layers and the corresponding demagnetization factor on ME coupling [19].
Related modeling efforts of interest include direct and converse ME effects in laminates [21],
symmetric trilayer composites [22], and nanocomposites [23]. In addition to the longitu-
dinal deformation caused by a magnetic field, bending deformation is also present in the
composite. The ME effect at the resonance modes of bending deformations was modeled
and studied in several bilayers [24–26]. Here, we discuss the first model for low-frequency
ME effects that takes into account the bending deformation in a ferromagnetic–ferroelectric
bilayer. Past theories for the low-frequency did not consider the influence of bending
deformation on MEVC [14–20,27–30]. A refined model that considers bending deformation
is also of importance due to interests in the utility of the phenomenon for applications such
as pico-Tesla magnetic sensors and energy harvesters [2,31]

The theory discussed here is based on the equations of elasticity and electrostatics.
Expressions were obtained for the MEVC in terms of the physical parameters of materials
and the geometric characteristics of the structure. Contributions due to the longitudinal and
bending deformations and their dependence on the geometric parameters of the structure
were analyzed. The theory was applied to three representative bilayers: Nickel–PZT,
Permendur–PZT, and Metglas–PZT. Nickel has negative magnetostriction in the direction
of the longitudinal field, whereas both Permendur, a ferromagnetic alloy, and Metglas have
positive magnetostriction. The MEVC was estimated as a function of the thickness of the
ferromagnetic and ferroelectric layers. It is shown that contribution to ME voltage due to
bending can be as high as 50% of the longitudinal deformation and has a 180 deg phase
difference and always results in a decrease in the net MEVC. We also show the predicted
variation in the ME sensitivity coefficient (MESC), defined as the ratio of hac to Vac, as a
function of layer thickness for the three bilayers.

2. Model and Method of the Calculations

For the model, we considered a bilayer structure, as shown in Figure 1. The origin
of the coordinate system is compatible with the center of the sample, and the X-axis (1)
is compatible with the interface between the piezoelectric layer and the magnetic layer.
We assumed that the sample’s thickness is much smaller than its length and width. The
elastostatic and electrostatic equations for the piezoelectric and magnetostrictive phases in
this approximation have the following form:

Sp
1 =

1
Yp Tp

1 + dp
31E3, (1)

Sm
1 =

1
Ym Tm

1 + qm
11H1 (2)

Dp
3 = ε

p
33E3 + dp

31Tp
1 , (3)

where Sp
1 and Sm

1 are strain tensor components of piezoelectric and magnetostrictive layers;
Yp and Ym are their Young’s moduli; E3 and Dp

3 are components of the vector of the electric
field and electric induction; Tp

1 and Tm
1 are the stress tensor components of the piezoelectric

and magnetostrictive phases; dp
31 and qm

11 are piezoelectric and piezomagnetic coefficients;
and ε

p
33 is the component of the permittivity.
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Figure 1. Schematic drawing of a magnetostrictive–piezoelectric bilayer showing the piezoelectric 
layer (1), magnetostrictive layer (2), neutral plane (3), and electrodes (4). 
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of positive magnetostriction (Permendur, D-Terfenol, or Metglas), or compression if the 
magnetic layer has negative magnetostriction (nickel, nickel ferrite). By means of mechan-
ical coupling through the interface, these deformations are transferred to the piezoelectric 
phase, because of which the sample can experience longitudinal deformations such as ten-
sion or compression. Since these deformations are not axial, they also lead to a bending 
moment and bending deformations. Since the layers are assumed to be thin, we can as-
sume that longitudinal strains are uniform throughout the layer volume, i.e., the following 
equality holds: 𝑆ଵ௠  =  𝑆ଵ௣  =  𝑆ଵ, (4)
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Figure 1. Schematic drawing of a magnetostrictive–piezoelectric bilayer showing the piezoelectric
layer (1), magnetostrictive layer (2), neutral plane (3), and electrodes (4).

When the sample is placed in a magnetic field, tensile deformations occur in the
case of positive magnetostriction (Permendur, D-Terfenol, or Metglas), or compression
if the magnetic layer has negative magnetostriction (nickel, nickel ferrite). By means
of mechanical coupling through the interface, these deformations are transferred to the
piezoelectric phase, because of which the sample can experience longitudinal deformations
such as tension or compression. Since these deformations are not axial, they also lead to
a bending moment and bending deformations. Since the layers are assumed to be thin,
we can assume that longitudinal strains are uniform throughout the layer volume, i.e., the
following equality holds:

Sm
1 = Sp

1 = S1, (4)

The equilibrium condition of the sample–namely, the equality to zero the X projection
of the force, yields the following equation:

Tm
1 tm + Tp

1 tp = 0. (5)

Expressing the components of the stress tensor from Equations (1) and (2) and substi-
tuting the obtained expressions into Equation (5), we obtain the following expression:

(Ymtm + Yptp)S1 −Ymtmqm
11H1 −Yptpdp

31E3 = 0. (6)

Hence, for longitudinal deformations, we obtain an expression in the following form:

S1 =
Ymtmqm

11H1 + Yptpdp
31E3

Yt
. (7)

where Y = Ymtm+Yptp

t is the average value of Young’s modulus of the structure, and
t = tm + tp is the total thickness of the bilayer.

Substituting the obtained expression into Equation (3) and using the open-circuit
condition, which in this case has the form Dp

3 = 0, we obtain for the electric field induced
in the piezoelectric due to longitudinal deformations the following expression:

E3,long = −
Ypdp

31qm
11

ε
p
33

(
1− k2

p

(
1− Yptp

Yt

)) Ymtm

Yt
H1, (8)
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Using the definition of the MEVC in the form αE =
E3,plan

H1
, we obtain the following

expression for the contribution to it from longitudinal deformations:

αE,long = −
Ypdp

31qm
11

ε
p
33

(
1− k2

p

(
1− Yptp

Yt

)) Ymtm

Yt
, (9)

In Equation (9), for the MEVC, the parameter k2
p � 1; therefore, this expression can be

simplified by writing it in the following form:

αE,long = −
Ypdp

31qm
11

ε
p
33

Ymtm

Yt
, (10)

Along with the MEVC, which is the main ME parameter characterizing the linear ME
effect, we can use one more parameter to characterize the magnetic-field-to-electric-field
conversion efficiency. This parameter—namely, the ME sensitivity coefficient, is equal to
the ratio of the magnitude of the induced electric voltage Uplan = E3,plantp to the magnitude

of the alternating magnetic field, i.e., βU,long =
Ulong

H1
. Using Equation (8), we obtain the

following expression for the ME sensitivity coefficient (MESC):

βU,long = −
Ypdp

31qm
11

ε
p
33

(
1− k2

p

(
1− Yptp

Yt

)) Ymtmtp

Yt
, (11)

or in a simplified form

βU,long = −
Ypdp

31qm
11

ε
p
33

Ymtmtp

Yt
. (12)

Equations (9)–(12) make it possible to analyze the dependence of the MEVC and MESC
due to longitudinal deformation on the physical parameters of the magnetostrictive and
piezoelectric phases and their layer thicknesses.

When considering the bending deformations, we used the Bernoulli hypothesis [32].
We assumed that the bonding between the layers is ideal and, consequently, for the defor-
mations of the piezoelectric and magnetic layers, the following relation holds:

S1 =
(z− z0)

ρ
, (13)

where z0 is a coordinate of the neutral line, and ρ is the radius of curvature of the neutral
line, which is related to the bending moment by the following relation:

1
ρ
=

My

Ym Jm
z0 + Yp Jp

z0
, (14)

The following notations were introduced here: My =
∫W

0 dy · (
∫ 0
−tp(z− z0)T

p
1 dz+∫ tm

0 (z− z0)Tm
1 dz) is a bending moment; Jm

z0 and Jp
z0 are inertia moments of sections about

the neutral axis z0. These inertia moments, according to Steiner’s theorem, are determined
by the following expressions:

Jm
z0 =

1
12

W(tm)3 + Wtm(tm/2− z0)
2, (15)

Jp
z0 =

1
12

W(tp)3 + Wtp(tp/2 + z0)
2. (16)
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The position of the neutral line is determined from the condition that the X-projection
of the force is equal to zero. For our case, this condition has the following form:

∫ 0

−tp
Tp

1 dz +
∫ tm

0
Tm

1 dz = 0 (17)

Substituting into Equation (15), the expression for the components of the stress tensor,
which can be obtained from Equations (1) and (2), and assuming the external influences to
be weak, for the neutral line coordinate z0, we obtain the following expression:

z0 =
1
2

Ym(tm)2 −Yp(tp)2

Yt
, (18)

The neutral line in the bilayer structure can lie in the piezoelectric layer or in the
magnetostrictive layer. If the neutral line is in a piezoelectric layer, then, in this case, one
part of the piezoelectric that lies above the neutral line undergoes tension (compression),
while the other part undergoes compression (tension). As a result, the resulting electric
fields in different parts of the piezoelectric have opposite directions, because of which
the total electric field decreases. If the neutral layer is in a magnetostrictive layer, then
the bending moments arising under the action of the magnetic field in the parts located
on opposite sides of the neutral line have opposite directions, because of which the total
bending moment decreases. The maximum ME response is in the case when the neutral
line is located at the interface between the magnetostrictive layer and piezoelectric layer,
i.e., when the neutral line coordinate is equaled z0 = 0. According to Equation (18), this
occurs when the following relation between the thicknesses of the magnetostrictive and
the piezoelectric layers applies:

Ym(tm)2 = Yp(tp)2. (19)

The induced electric field in the piezoelectric layer because of bending deforma-
tions can be found, similar to the case of the longitudinal deformation, from the open-
circuit condition, which, in our case, has the form Dp

3 = 0. Using this condition and
Equations (1) and (3) we obtain

E3,bend(z) = −
1

ε
p
33

dp
31

(
YpSp

1 −Ypdp
31E3(z)

)
. (20)

or after simple transformations, using Equations (13) and (14), we obtain

E3,bend(z) = −
dp

31Yp(z− z0)

ε
p
33D

(
1− k2

p

) (tm/2− z0)Ymtmqm
11H1. (21)

where D =
Ym Jm

z0+Yp Jp
z0

W is cylindrical bending stiffness.
For electric voltage between electrodes of the sample due to bending deformations,

we obtain the following equation:

Ubend =
∫ 0

−tp
E3,bend(z)dz (22)

Substituting Equation (21) into Equation (22) and integrating, we obtain

Ubend =
dp

31Yptp

ε
p
33D

(
1− k2

p

) (0.5tp + z0)(0.5tm − z0)Ymtmqm
11H1 (23)
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One may obtain expressions for the MEVC and the MESC using its definition

αE,bend =
〈E3,bend〉

H1
and βU,bend = Ubend

H1
, where

〈
E3,bend

〉
= Ubend

tp is the average value electric
field induced by bending deformations. Using these definitions and Equation (23), we
obtain the following expressions for MEVC and MESC:

αE,bend =
dp

31qm
11YpYmtm

ε
p
33D

(
1− k2

p

) (0.5tp + z0)(0.5tm − z0) (24)

βU,bend =
dp

31qm
11YpYmtm

ε
p
33D

(
1− k2

p

) tp(0.5tp + z0)(0.5tm − z0) (25)

These equations can be rewritten in simplified forms, using the fact that the square of
the electromechanical coupling parameter k2

p � 1. It yields the following expressions:

αE,bend =
dp

31qm
11YpYmtm

ε
p
33D

(0.5tp + z0)(0.5tm − z0), (26)

βU,bend =
dp

31qm
11YpYmtm

ε
p
33D

(
1− k2

p

) tp(0.5tp + z0)(0.5tm − z0), (27)

Equations (24)–(27) can be used to estimate the dependence of the MEVC and the
MESC on the physical and geometrical parameters of the bilayer structure.

3. Results and Discussions

The expressions in the previous section for contributions to MEVC and MESC from
longitudinal and bending deformation in a ferromagnetic and ferroelectric bilayer facilitate
the estimation of the net ME coefficients. The net MEVC αE,net and MESC βU,net are given by

αE,net = αE,long + αE,bend, (28)

βU,net = βU,long + βU,bend, (29)

It should be noted that the contributions from longitudinal and bending deformations
enter the sums with opposite signs. In the case of longitudinal oscillations, deformations
arising in the magnetostrictive layer under the action of a magnetic field cause deformations
of the same sign in the piezoelectric layer. For example, in a magnetic layer with positive
magnetostriction, the tensile strain that occurs in the layer when transmitted through
the interface causes tensile deformations in the piezoelectric. In the case of bending,
however, a tensile deformation in the magnetic layer causes compression deformation
in the piezoelectric layer, resulting in an electric field directed opposite to the electric
field caused by longitudinal deformations. Both contributions are proportional to the
product of the piezoelectric coefficient dp

31, the piezomagnetic coefficient qm
11 and Young’s

modulus of the piezoelectric Yp, and are inversely proportional to the permittivity ε
p
33. The

contributions do not depend on the width and length of the sample but depend on the
thickness of the piezoelectric and magnetic layers.

Next, we applied the theory to three representative bilayer composites with Ni, Per-
mendur (an alloy of Fe, Co, and V), or Metglas for the ferromagnetic layer and PZT for
the ferroelectric layer. Nickel has negative longitudinal magnetostriction, whereas this is
positive for Permendur and Metglas. The piezomagnetic coefficients for the ferromagnets
and the piezoelectric coefficient for PZT are listed in Table 1 [33].



J. Compos. Sci. 2021, 5, 287 7 of 12

Table 1. Parameters of materials of composite structures [33].

Material
Young’s

Modulus Y,
GPa

Piezomodules
d31, pC/N; and q11,

ppm/Oe
Permittivity ε

PZT 66.7 d31 = −175 1750
Ni 215 q11 = −0.06 -
Pe 207 0.1 -

Metglas 110 0.3

Figures 2 and 3 show the MEVC and MESC dependencies, respectively, for the nickel–
PZT bilayer. The ME voltage coefficient is shown as a function of Ni thickness in Figure 2
for a fixed PZT thickness of 0.5 mm. As can be seen from Equation (10) and Figure 2, the
MEVC caused by the longitudinal deformations increase with the increase in the thickness
of the Ni layer and attains the limiting value for tm � tp.

(αE,long)tm→∞ = −
Ypdp

31qm
11

ε
p
33

. (30)
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The MEVC associated with bending deformations is zero at tm = 0, then increases until
it reaches a maximum when the neutral line coincides with the ferromagnetic–piezoelectric
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interface and then decreases. As already noted, these contributions have different signs, and
the contribution from longitudinal deformations exceeds the contribution from bending
deformations over the entire range of Ni thickness. The total MEVC increases with an
increase in the thickness of the Ni layer. Thus, the overall effect of the bending deformation
is a reduction in total MEVC. This reduction is approximately 75% of the contribution
from the longitudinal deformations for Ni thickness of 0.5 mm, and it decreases to 20% for
tm = 3 mm.

Figure 3 shows the predicted variation in MESC with the thickness of the PZT layer.
The Ni thickness is assumed to be 0.5 mm. The MESC equals zero at tp = 0. The MESC
caused by longitudinal deformations increases with the increase in PZT layer thickness
and is predicted to attain saturation at tp � tm. This saturation value of MESC equals

(βU,long)tp→∞ = −
Ymdp

31qm
11

ε
p
33

tm. (31)

The MESC due to bending deformations increases with the increase in tp, then it
reaches a maximum value and then slowly decreases with a further increase in the thickness
of the piezoelectric layer. The net MESC increases at first with increases in the thickness
of the piezoelectric layer, and then there is a small plateau in its value. The presence of a
plateau is due to the fact that the rate of increase in the bending MESC with the thickness
of the ferroelectric layer and of the rate at which the longitudinal MESC increases have the
opposite signs, and as a result, the net MESC remains unchanged. With a further increase in
PZT thickness, the bending MESC begins to decrease, and the longitudinal MESC continues
to increase; as a result, the Net MESC increases again and tends to saturation at tp � tm.
This saturation value of the total MESC is given by Equation (31).

Similar estimates of MEVC and MESC for a bilayer of Permendur and PZT are shown
in Figures 4 and 5, respectively. The overall features in the results are similar to the case
of Ni–PZT. There is a sign reversal in the contributions from longitudinal and bending
deformations to MEVC in Figure 4, which is due to the positive magnetostriction and
piezomagnetic coefficient for Permendur. A peak in the ME voltage due to bending is seen
for tm = 0.5 mm, which is 63% of the contribution from longitudinal deformations. The
contribution from the longitudinal deformation dominates for higher tm values and the
saturation value for MEVC is much higher than for Ni–PZT due to the higher q11 value
for Permendur. Figure 5 shows MESC vs. tp for the bilayer for tm = 0.5 mm. The sign
reversal in the contributions from longitudinal and bending deformations seen for MEVC
also occurs in the results for MESC. For tp = 3 mm, the MESC value is a factor of two higher
than for the case of Ni–PZT and is due to the high q11 value for Permendur.
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Theoretical estimates on MEVC and MESC for a bilayer of Metglas and PZT are shown
in Figures 6 and 7, respectively. Since Metglas has very high permeability, essential for
the confinement of magnetic fields, and high piezomagnetic coefficient, the composite
with PZT is of interest for applications for high-sensitivity magnetic sensors and in energy
harvesting. In Metglas–PZT contributions from bending and longitudinal deformations to
MEVC and MESC are similar to the case of Permendur–PZT. The theory predicts a value
of 1.6 V/cm Oe for MEVC for tm = 3 mm, compared with 0.4 V/cm Oe and 0.7 V/cm Oe
for Ni–PZT and Pe–PZT, respectively. This is due to the fact that the MEVC is directly
proportional to the piezomagnetic coefficient, listed in Table 1. The q11 value for Ni is
the lowest amongst the three bilayer systems considered here, and it is the highest for
Metglas. Thus, the MEVC for Metglas–PZT is expected to be the highest, followed by
Permendur–PZT and Ni–PZT. A similar enhancement in MESC is seen for Metglas–PZT in
the results of MESC vs. tp in Figure 7.
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The theory developed in Section 3 and its application to specific bilayers in Section 4
clearly indicate the need to consider the contribution of bending deformation to the low-
frequency ME response of the composites to a magnetic field. Bending deformation is
shown to weaken the strength of ME coupling and the reduction in the net MEVC and
MESC depends on the piezoelectric and piezomagnetic coefficients and the thickness of the
ferromagnetic and ferroelectric layers. The bending-related reduction in MEVC tends to be
smaller than the contribution from the longitudinal deformation only when the thickness
of the piezoelectric layer tp is much higher than tm. Although bending deformation-related
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reduction in MEVC is always present in a bilayer composite, it can be completely eliminated
in a symmetric trilayer composite. The theory developed is of importance for applications
such as highly sensitive magnetic sensors and for energy harvesting [1–4,34].
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4. Conclusions

In bilayer magnetostrictive–piezoelectric structures, the magnetoelectric effect is asso-
ciated with two types of deformations. These are longitudinal deformations and bending
deformations and occur when the bilayer is subjected to a magnetic field. The contribu-
tions to the total MEVC from longitudinal deformations and bending deformations have
opposite signs. The total MEVC is zero when the thickness of the magnetostrictive layer
equals zero, and it increases with an increase in the thickness of the magnetic layer. The
dependence of the total MEVC will have a small plateau in the range, where the value of
MEVC from bending deformations has a maximum and then increases again with increas-
ing tm. The ME sensitivity coefficient, a parameter of importance for device applications,
equals zero at the zero value of piezoelectric layer thickness. With increasing tp, the total
MESC increases at first, and then there is a plateau where the value of MESC from bending
deformations has a maximum. Then, it increases again and tends to saturation at tp >> tm.

The primary objective of this work was to address the shortcomings in past theories for
low-frequency magnetoelectric (ME) effects in a bilayer of a ferromagnet and a ferroelectric.
Another objective of the work was to provide a roadmap for experimentalists to utilize
the results of our model to estimate the expected ME coefficients for known parameters
for the ferroic phases including the piezoelectric and piezomagnetic coefficients and their
thicknesses. This aspect was demonstrated by applying the theory to three representative
bilayer systems. The ultimate goal is for experimentalists to choose appropriate ferroic
systems to achieve the desired low-frequency ME response and compare the measured ME
coefficients with the results of our model.
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