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Abstract: In the 21st century, hybrid nanocomposites were widely used in bioelectronic, biosens-
ing, photocatalytic, and biomedical applications. In the present study, we fabricated a novel
Fe3O4/PVA/Eggshell hybrid nanocomposite and physicochemically characterized it using powder
XRD, EDS, FTIR, VSM, and HR-TEM analysis. The XRD spectrum revealed the crystalline and
FCC configuration of Fe3O4 NPs with average crystal size of 16.28 nm, and the HRTEM image
indicates the prepared hybrid nanocomposite is of spherical shape with less agglomeration. This
hybrid nanocomposite showed a significant photodegradation property in degrading organic pol-
lutants such as congo red and crystal violet dyes under the sunlight irradiation. In addition, the
hybrid nanocomposite also displayed a potent antibacterial property against different Gram +ve
and Gram −ve bacterial pathogens. This study provides a significant example in the overview of
fabrication of cost effectively, eco-friendly, and multiple-application hybrid nanocomposites through
eggshell membrane fibers.

Keywords: nanocomposite; antibacterial; photodegradation; eggshell; polyvinyl alcohol; metal
nanoparticles

1. Introduction

Environmental decontamination by photocatalysis is of great interest to the researchers
worldwide for its effective conspicuous process [1]. Recent scientific investigations suggest
the effective use of metal-based semiconductors in coalescing various light sources and their
enhanced photocatalysis properties in controlling the environmental pollution [2]. Metal
oxide-built nanomaterials have been also studied for their ability in resolving the band gap
issues in photocatalytic activity by absorbing photons more effectively [3]. Among various
metal oxide nanoparticles (NPs), the Fe3O4 NPs are found to be an ideal photocatalyst for
their high magnetization, high coercivity, superior photon-absorbing capacity, and strong
bonds between the molecules due to the better dipole–dipole interactions [4]. Although
these nanostructures show a high degree of agglomeration after synthesis, the polymer
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coating on their surface provides excellent stability. Several natural and synthetic polymers
have been reported for the development of NPs/polymer nanocomposites [5]. Among
these polymers, polyvinyl alcohol (PVA), a water-soluble polymer, subsequently prevents
the agglomeration of NPs resulting in their mono-dispersed condition and prevents the
NP’s oxidation [6]. PVA contains both carbon backbone and hydroxyl groups, which can
support the hydrophilic nature of iron oxide nanoparticles [6]. In order to improve the
photocatalytic activity against organic pollutants such as dyes, the addition of eggshell com-
ponents with NPs has been used as an effective dye adsorbent from the aqueous solution.
The porous structure of the eggshell helps in the easy adsorption and transfer of reactants
in catalysis [7]. Due to the high specific surface area and surface reactive site, nanomaterials
showed potential proficiencies towards surface dependent photocatalytic properties [8–11].
The recent review articles by Rokesh et al. (2021) clearly indicate the advantage of using
hybrid nanocomposites (bismuth hybrids, cadmium hybrids, calcium hybrids, cerium
hybrids, cobalt hybrids, copper hybrids, graphitic carbon nitride hybrids, indium hybrids,
iron hybrids, lanthanum hybrids, lead hybrids, manganese hybrids, molybdenum hybrids,
nickel hybrids, silver hybrids, strontium hybrids, tin hybrids, titanium hybrids, tungsten
hybrids and zinc hybrids) as the photocatalytic for the degradation of antibiotics [12].
Previous reports indicate an enhanced photoabsorbance efficiency of hybrid nanocom-
posites due to their unique properties such as multiple optical properties, higher surface
area, and efficient surface and interface interactions through unique mechanisms [13–15].
Nowadays, the eggshell membrane is considered an extraordinary biological source in
the field of materials science and technology. The protein fiber (collagen, sialoprotein
osteopontin, etc.) is the main composition of the eggshell membrane, which is utilized
as a template in the synthesis of noble metallic nanoparticles and nanocomposites for
varies applications [16–19]. In addition, the porous structure in eggshell contains calcium
carbonate (CaCO3) and specific efficient clusters such as C-O, C-H and C=O and helps
in easy adsorption and transfer of reactants in catalysis [20,21]. In the present study, we
have fabricated a novel Fe3O4/PVA/eggshell hybrid nanocomposite and displayed its
photodegradation and antibacterial activity in controlling water pollution by degrading
dyes and reducing the bacterial load.

2. Materials and Methods
2.1. Synthesis and Physicochemical Characterization of Fe3O4/PVA/Eggshell Hybrid
Nanocomposite

Iron oxide NPs (Fe3O4) were synthesized hydrothermally using the earlier reported
procedure [22]. The surface modification of Fe3O4 NPs was carried out using PVA [5]. The
waste eggshells were collected, and their inner membrane was removed. Next, the eggshell
was milled into a fine powder and was sieved through a 200-mesh. About 5 g of powdered
eggshell was mixed with 6% NaOH solution and sonicated for 30 min. The final mixture
was centrifuged and dried at 60 ◦C for 5 h. Next, the fabrication of hybrid nanocomposite
was initiated by adding 100 mg of PVA coated Fe3O4 NPs and 2 mg of eggshell powder
in 10 mL deionized water. The mixture was continuously stirred at room temperature for
2 h. The obtained hybrid nanocomposite was washed and concentrated by centrifugation.
Further, the hybrid nanocomposite was calcinated at 40 ◦C for 1h to eliminate the excess
eggshell and dried at 60 ◦C overnight.

The crystalline nature of hybrid nanocomposite was analyzed by powder XRD (Rigaku
Miniflex Diffractometer, Neu-Isenburg, Germany). The elemental composition of hybrid
nanocomposite was determined using energy dispersive X-ray spectroscopy (EDS, R
Model QuanTax 200, Bruker, Billerica, MI, USA). The functional group analysis in hybrid
nanocomposite was carried out by fourier-transform infrared spectroscopy (Shimadzu
IR-Prestige- 21, Tokyo, Japan). Next, the morphology and size of the hybrid nanocomposite
were analyzed by high resolution transmission electron microscopy (HRTEM, Technai G2,
Lonate Pozzolo, Italy) and the magnetization was investigated in the hybrid nanocomposite
using a vibrating sample magnetometer (VSM, MicroSense, Lowell, MA, USA).



J. Compos. Sci. 2021, 5, 267 3 of 9

2.2. Photodegradation and Antibacterial Activity

The photodegradation activity of Fe3O4/PVA/eggshell hybrid nanocomposite was
studied using two textile dyes, crystal violet (CV) and congo red (CR). The stock solution
of each dye was prepared by adding its 1 mg in 1 L of distilled water. Next, 50 mg of
hybrid nanocomposite was added in 100 mL of both dye solutions and mixed thoroughly.
During the experiment, a negative control was also kept, i.e., dye solution alone. Further,
the hybrid nanocomposite-suspended dye solutions were taken under the sunlight and
monitored for 1–5 h. At different time intervals, the aliquots of 3 mL suspension were
collected, and the degradation of dyes was analyzed by measuring their absorbance values
using a UV–vis spectrophotometer at different wavelengths. Using these absorbance values,
the percentages of dye degradation were calculated.

The antibacterial property of the hybrid nanocomposite was evaluated against B. subtilis,
E. coli, and P. aeruginosa using the disc diffusion method. In brief, P. aeruginosa, E. coli, and
B. subtilis (1.5 × 108 CFU/mL) were cultured on MHA plates. In these plates, the 5 mm
diameter wells were punched. The hybrid nanocomposite was dispersed in the distilled
water at 1 mg/mL concentration. The wells were loaded with 25, 50, and 100 µg/mL
concentrations of hybrid nanocomposite. The zone of inhibition (ZoI) around the well was
measured, and the antibacterial activity of hybrid nanocomposite was determined. The
MIC values of hybrid nanocomposite were also calculated with the protocols proposed by
Clinical and Laboratory Standards Institute [23]. The bacterial cultures were treated with
0.5, 1, 10, 25, 50, 75, and 100 µg/mL concentrations of hybrid nanocomposite and incubated
further for 24 h at 37 ◦C. The optical densities of both untreated and treated bacterial
cultures were measured before and after the incubation period at 550 nm. In addition,
the MBC values of the hybrid nanocomposite were also calculated in different bacterial
cultures. All the experiments were performed three independent times in triplicates (n = 3).

3. Results and Discussion
3.1. Synthesis and Physicochemical Characterizations of Fe3O4/PVA/Eggshell Hybrid
Nanocomposite

In this study, the Fe3O4/PVA/eggshell hybrid nanocomposite was synthesized hy-
drothermally as shown in Figure 1. The prepared nanocomposite showed a dark brown
color, which indicated the formation of novel Fe3O4/PVA/eggshell hybrid nanocomposite
solution (Figure 2A). The XRD pattern of Fe3O4/PVA/Eggshell hybrid nanocomposite is
shown in Figure 2A. We observed a series of 2θ characteristic peaks at 30◦, 35◦, 40◦, 43◦, 58◦,
60◦, 62.5◦, and 73◦, corresponding to (220), (311), (400), (400), (422), (511), (440), and (533)
crystal planes, confirming the crystalline and face-centered cubic (FCC) configuration of
Fe3O4 NPs. The average crystal size of the hybrid nanocomposite was also calculated using
Scherrer’s equation, which was 16.28 nm [24]. Next, HRTEM image presented almost the
spherical shape of hybrid nanocomposite with less agglomeration (Figure 2B). A particle
size distribution in the hybrid nanocomposite’s size was observed between 2.10 nm and
10.17 nm. EDS analysis showed the presence of Fe, O, C, Mg, and Ca, indicating the
formation of Fe3O4 NPs with the purity of hybrid nanocomposite (Figure 2C). The van
der Waals forces and the magnetic attraction among the Fe3O4 NPs may be reason for the
less aggregation of the nanoparticles. The CaO was found to be strongly bound on the
surface of the Fe3O4/PVA/eggshell nanocomposite. The weak C and Ca signals may be
from the eggshell component, which present on the outer surface of the prepared hybrid
nanocomposite. The presence of O and Mg signals are due to the protein compounds that
are unbound and adhered with the nanostructure, which were removed by centrifugation
followed by repeated washing [25–27].
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The weak signals of C and Ca may be from the eggshell component. Further, FTIR
analysis showed the 3420 (OH), 2516 and 2328 (HCO3), 1799 (CO), 1428, 712 (C-O), and
876 cm−1 (OCO) vibrational peaks of eggshell. Similarly, the FTIR spectrum of PVA
displayed the peaks at 3248, 2939, 2357, 1663, 1415, 1325, 1083, 915, and 822 cm−1 for
the hydroxyl group, alkyl group, and carbonyl group. The bending vibrations of CH2
groups congruently related to the functional groups of reduced NPs. The FTIR spectrum
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of hybrid nanocomposite exhibited sharp vibrational peaks at 3518, 2303, 1743, 1643,
and 1519 cm−1, corresponding to the hydroxyl group, carbonyl group, alkyl carbonate,
carboxylate group, and aromatic nitro compounds, respectively (Figure 2D). The vibration
peaks at 639 and 466 cm−1 indicated the iron oxide skeleton and Fe vibrations at tetrahedral
site [28]. Similarly, the FTIR analysis of PVA showed the peaks at 3248, 2939, 2357, 1663,
1415, 1325, 1083, 915, and 822 cm−1 corresponding to the hydroxy group (O-H stretching
vibrations and H-bonded OH stretch), C-H vibrations of the alkyl group, and C=O vibration
of the carbonyl group. The bending vibration related to CH2 groups was correspondingly
attributed to the functional groups of reduced NPs [29,30]. In the FTIR spectrum of
Fe3O4/PVA/eggshell, the peak at 639 cm−1 is attributed to the iron oxide skeleton, and the
peak at 597 cm−1 corresponds to the aliphatic Iodo compounds and C-I stretch, which is
the characteristic of Fe3O4 NPs. The peak at 466.77 cm−1 is attributed to aryl disulfides (S-S
stretch), characteristic of the fundamental stretching vibrations of the Fe at a tetrahedral site.
These results were also seen in the previous studies, where a similar characteristic peak was
found in the range of 500–600 cm−1 with the iron oxide skeleton [31,32]. The magnetization
curve of hybrid nanocomposite is shown in Figure 2E. The symmetrical hysteresis loop
indicated the magnetic behavior of Fe3O4 NPs. The calculated magnetization potential
was approximately 54.28 emu/g. In addition, no hysteresis was seen in the magnetization
curve, showing its suitability for biological applications. The Fe3O4 NPs are highly super-
magnetic and not ferromagnetic in nature [33].

3.2. Photodegradation and Antibacterial Activity

The photodegradation of textile dyes was analyzed by measuring their absorbance
values at different time intervals, as shown in Figure 3. The highest absorbance peak was
observed at 494 and 592 nm for both CR and CV dyes, respectively. Additionally, hybrid
nanocomposite treatment displayed 78 and 73% degradation of CR and CV dyes after 5 h
incubation, respectively. Generally, the photodegradation is directly proportional to the
exposure time of the dyes with the hybrid nanocomposite. In a previous study, chitosan-
S-ZnO nanocomposite exhibited time-dependent photodegradation [34]. In addition, the
photocatalytic capacity of the prepared sample was depended on the size and shape of the
nanoparticles [35,36].
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Next, the MIC and MBC values of the hybrid nanocomposite were calculated as
shown in Figure 4A, and their results showed the hybrid nanocomposite as an effective
antibacterial material. The antibacterial activity of the hybrid nanocomposite was also
determined using the disc diffusion method by calculating the ZoI values (Figure 4(Ba–c)).



J. Compos. Sci. 2021, 5, 267 6 of 9

The ZoI values were measured as shown in Figure 4C. High antibacterial activity was
identified against P. aeruginosa (ZoI = 23.9 ± 2.0 mm), followed by E. coli (ZoI = 23.3 ±
1.8 mm), and then B. subtilis (ZoI = 20.2 ± 2.6 mm) at 100 µg/mL concentration of hybrid
nanocomposite, whereas the 25 µg/mL concentration of the hybrid nanocomposite showed
the 2.2 ± 0.1, 2.4 ± 0.2, and 2.1 ± 0.1 mm values of ZoI, and 50 µg/mL concentration of the
hybrid nanocomposite showed 5.9 ± 0.4, 9.8 ± 1.2, and 11.7 ± 0.8 mm values of ZoI against
B. subtilis, E. coli, and P. aeruginosa, respectively (Figure 4C). The hybrid nanocomposite ex-
hibited the potential antibacterial activity against all tested bacterial pathogens. Generally,
the antibacterial activity of nanoparticles can involve several possible mechanisms, such
as cell wall synthesis inhibition, inhibition of enzyme, ribosome disassembly, inactivation
of protein synthesis, modification of essential proteins, interface with cell signaling, cell
surface membrane interaction, formation of ROS, incorporation into the DNA bases to DNA
damage, etc. [37–39]. Figure 5 showed the schematic illustration of possible mechanisms of
antibacterial activities of nanomaterials [40,41].
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4. Conclusions

The present study reports the synthesis and physicochemical characterizations of
novel Fe3O4/PVA/eggshell hybrid nanocomposite. FTIR analysis exhibited the charac-
teristic functional groups of eggshell, PVA, and Fe3O4 NPs in the hybrid nanocomposite.
XRD analysis showed the polycrystalline nature of hybrid nanocomposite. FESEM analysis
displayed the spherical granules of hybrid nanocomposite. EDS spectrum analysis showed
the presence of Fe, O, C, and Ca in hybrid nanocomposite. Further, the hybrid nanocom-
posite displayed the time-dependent photodegradation property for both CV and CR dyes
under sunlight irradiation. In addition, the hybrid nanocomposite also showed the strong
antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens.
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