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Abstract: Polymeric-ceramic smart nanocomposite piezoelectric and dielectric materials are of
interest due to their superior mechanical flexibility and ability to leverage characteristics of constituent
materials. A great deal of work has centered on development of processes for manufacturing
0–3 continuity composite piezoelectric materials that vary in scale ranging from bulk, thick and thin
film to nanostructured films. Less is known about how material scaling effects the effectiveness of
polarization and electromechanical properties. This study elucidates how polarization parameters:
contact versus corona, temperature and electrical voltage field influence the piezoelectric and dielectric
properties of samples as a function of their shape factor, i.e., bulk versus thick film. Bulk and thick
film samples were prepared via sol gel/cast-mold and sol gel/spin coat deposition, for fabrication
of bulk and thick films, respectively. It was found that corona polarization was more effective for
both bulk and thick film processes and that polarization temperature produced higher normalized
changes in samples. Although higher electric field voltages could be achieved with thicker samples,
film samples responded the most to coupled increases in temperature and electrical voltage than
bulk samples.
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1. Introduction

Piezoelectric and dielectric materials are ubiquitously used as sensors, actuators and transducers
over a wide range of applications including but not limited to process control [1,2], industrial
and automotive monitoring systems [3–5], medical diagnostics [6,7], aviation and aerospace
structural health monitoring [8,9], embedded passive devices [10,11], and resonators and filters in
telecommunications [12]. The brittle nature of homogenous ceramic piezoelectric materials limits their
operational strains (~0.2% for homogenous lead zirconate titanate, PZT) [13], cycle life, and formability
into complex shapes and structures [14]. Hence, two-phase polymer matrix based composites containing
piezoelectric fillers within an continuous epoxy/polymer matrix [15–19], have attracted much attention
due to their flexibility, ease of processing and applicability to embedded passive devices. However,
two-phase piezoelectric-epoxy composites suffer from poor electrical and piezoelectric properties due
to the insulating epoxy matrix, which decreases the polarization of the piezoelectric phase. Several
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researchers have demonstrated that the inclusion of electrically conductive particles within the matrix of
the two-phase composite [20,21] addresses this problem by enhancing the polarization of the composite,
thereby enhancing their electrical properties [22–24]. Yet, less is known about the interrelationship
between the composite processing technique and properties of the electrically conductive particles and
shape factor of the material (geometry), which dictate the piezoelectric and dielectric properties of the
materials [3,25].

Previous work on the investigation of polarization effects on thick films exists however, less is
known about how corona polarization influences bulk materials and processing, which is needed
in scaled-up commercial manufacturing processes. Many have assumed that the positive effects of
corona polarization are negligible when applied to bulk samples. This assumption influences how
corona polarization approaches are imagined for indoctrination into industrial processes. The novelty
of this work is that it presents a comprehensive and wholistic analysis of the polarization process
as a function of geometrical scaling of the samples that have the same composition. This method
of analysis allows for a more accurate comparison of polarization techniques, as opposed to other
reviews of similar samples that have different matrix materials and/or filler sizes and geometries.
This manuscript examines the coupled influences of polarization parameters: temperature and voltage,
and material sample shape, i.e., disk (bulk) and thick film. The material of interest is composite
piezoelectric, where PZT and multi-walled carbon nanotube (MWCNT) fillers are embedded within a
non-electroactive (insulative) matrix. These materials are of interest for a variety of applications, such as
sensors, actuator, energy harvesting, embedded tough capacitive screens, and bioengineered scaffolds.
Many workers have reported on the piezoelectric and dielectric properties of materials, however few
studies have examined how processing parameters and shape factor differences in materials result in
different effective electrical and mechanical properties. This work examines shape factors of materials,
i.e., one bulk fabricated in disks and another in thick films using the same processing parameters,
and examines how these factors influence the piezoelectric strain coefficient, dielectric constant,
dielectric loss of the materials and polarization ratio as a function of volume fraction of MWCNTs,
polarization temperature and voltage. This work is an initial step towards the careful consideration of
how material scaling may be contextualized for application to large scale manufacturing techniques.

1.1. Piezoelectric Composites

The material properties of piezoelectric composites are governed by the arrangement of the
phases within the composite. This is referred to as connectivity, which refers to the way individual
phases are self-connected. The concept of connectivity was first developed by Skinner et al. [26] and
later enhanced by Pilgrim et al. [27]. In general, 10 connectivity patterns can be used for a diphasic
system. The ten connectivity patterns are (0-0), (0-1), (0-2), (0-3), (1-1), (1-2), (2-2), (1-3), (2-3) and (3-3).
Using this formatting schema, the first digit within the parenthesis refers to the number of dimensions
of connectivity for the piezoelectric active phase and the second digit is used for the polymer phase.
This convention can also be extended to include a third phase by adding a third number within the
parenthesis [20]. Hence, in this work, 0-3-0 piezoelectric composites are materials that are made of a
polymeric matrix and two filler materials.

Two-phase composite piezoelectric materials, so-called 0-3 composites comprising piezoelectric
particles embedded within a continuous polymer matrix, have attracted much attention due to
their flexibility, ease of processing and use in embedded passive devices [16,28], such as capacitors.
Integration of embedded passive components into printed circuit boards generally results in enhanced
electrical performance of the device, improved reliability, reduction of device size, faster switching
speed, and lower production costs [29–32]. Two-phase composites: metal-polymer [33–37] and
ceramic-polymer have been extensively studied [38–42] for application in coupling or by-pass capacitor
technology, where emphasis has been placed on achievement of high effective dielectric constants
via analysis of percolation theory and mixing rules. Piezo-polymer composites are also promising
because of their excellent tailored properties [3,30]. These materials have many advantages including
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high electromechanical coupling factors [43–47], low acoustic impedance [23,48–50], mechanical
flexibility [51–54], broad bandwidth [55–59], and low mechanical quality factors [29,31,60,61].
The mechanical, electrical and acoustic properties of these materials can also be tailored according to the
nature of application of the composite material [38,62–64]. Inclusions of electrically conductive fillers
within polymer matrixes have been demonstrated by several researchers [32,65–67]. All researchers
have reported that the polymer matrix conductivity was enhanced by the electrically conductive
fillers [68–72]. Recently carbon nanotubes (CNTs) have emerged as an attractive filler material [21,25,72]
due to their electrically conductive nature and high aspect ratios, which have been found to also
enhance mechanical strength and stiffness [66,73].

1.2. Carbon Nanotube Composites

Carbon nanotubes consist of a single graphite sheet wrapped into a cylindrical tube. An array of
these nanotubes concentrically nested together form MWCNTs [74]. MWCNTs have been extensively
studied due to their unique electrical and mechanical properties that are exemplified especially when
embedded within matrix materials. MWCNTs have high electrical conductivity due to the unidirectional
structure and the ballistic transport of electrons over long nanotube lengths, which enables MWCNTs to
transport current with negligible joule heating [75,76]. CNTs also have high young’s moduli, stiffness,
and tensile strength. For example, the young’s modulus of an individual nanotube has been reported
to be ~0.64 TPa [77], which is similar to the stiffness of silicon carbide nanowires [75,76]. MWCNTs
have been applied to commercial applications in polymer matrix based composite materials to enhance
electron transport and mechanical strength of the composite structure [77,78]. Composites with carbon
nanotubes embedded in a polymer matrix have been studied by many researchers [23,40,48,66,79–83].
The dielectric properties of these composites are enhanced due to the increase in charge carriers
from the carbon nanotubes. However, beyond a certain volume fraction of the CNTs, the composite
reaches the percolation threshold. The percolation threshold occurs when an electrically conductive
pathway is formed in the composite that results in a sharp rise in conductivity of the composite [84].
Depending on the application of the composites, properties within the percolation threshold are either
advantageous or deleterious, hence being able to anticipate it is desirable. Thus, many researchers have
studied when the mechanisms leading to reaching and surpassing the percolation threshold [85–87].
For example, Ma and Wang [40] compared the microstructure and dielectric properties of epoxy-based
damping composites that contained CNTs and PMN-PZT piezoceramics, and concluded that the
composites exhibited a percolation threshold in the range of 1–1.5 g CNTs per 100 g epoxy. They also
concluded that in the region of the percolation threshold, a continuous electro-conductive network
was formed, and that beyond the percolation threshold, these materials demonstrated dynamic
mechanical loss factors that were superior to those below the percolation threshold, and those without
semiconductor inclusions. Tian and Wang [88] examined the performance of epoxy-multiwalled carbon
nanotube-piezoelectric ceramic composites as rigid damping materials. Their results were similar to
Ma and Wang [40], where the percolation threshold was found to be in the range of 1–1.5 g CNTs per
100 g epoxy. They too concluded that loss factors were improved with the incorporation of CNTs and
PZT, when the amount of CNTs was above the critical electrical percolation loading.

Researchers have predicted that the increase in the volume fraction of the electrically conductive
inclusion phase in the composite can also lead to an increase in conductivity [65,89]. The conductivity
can also increase due to the effect of tunneling resistance in carbon nanotube nanocomposites [81].
A change in percolation threshold by variation in the aspect ratio of the conductive inclusions has
also been demonstrated [90,91]. The percolation thresholds of multiphasic composite materials with
CNT inclusions and their variation in aspect ratio of the CNTs is shown in Table 1. Upon inspection
of this table, it is seen that the processing of the composite along with the aspect ratio of MWCNTs
influences the percolation threshold. For example, fragmented MWCNT–PMMA nanocomposites
were found to exhibit a sparser network, higher transparency, lower electrical conductivity, higher
percolation threshold and higher piezoresistive sensitivity than composites fabricated with only
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CNTs [92], which was attributed to less packed conductive networks formed by shorter (fragmented)
MWCNTs. The inter-relationship between preparation method, microstructure, mechanical and
electrical properties, and electromagnetic interference shielding were investigated by Li et al. [93],
who found solution-based preparation methods dispersed MWCNTs more uniformly (leading to
fewer agglomerations) than melt-based processing methods. Methods such as the solution blending
with melt compounding lead to more uniformly distributed MWCNTs, which exhibited the lowest
percolation threshold of the four methods studied. Similarly, Hur et al. [94] investigated the effects
of aspect ratio and content of MWCNT on strain sensor properties of the composite. It was found
that using lower filler content with low aspect ratio MWCNTs resulted in lower Young’s moduli and
larger strain ranges, in comparison to higher aspect ratio composites, which the team concluded was
due to the bridging effect of the filler and its loading transfer. It was also found that lower aspect
ratio composites had lower electrical conductivity and a larger percolation threshold values than the
composites comprising higher aspect ratios due to the poor ability of the low aspect ratio samples to
create electrical paths in the composites [94]. Cardoso et al. [95] examined whether Celzard’s Theory for
prediction of the percolation threshold of nanocomposites could be applied to composites composed of
two types of fillers. Both samples incorporated a two-part epoxy (Epikote Resin 862 and Ethacure 100
Curative) with either vapor-grown carbon nanofibers (VGCNF) or MWCNTs. They found that while
this theory is suitable for predicting the percolation threshold bounds for the VGCNF composites; it is
not appropriate for predicting percolation of composites with MWCNTs, because MWCNT composites
had intrinsic characteristics beyond the aspect ratio that were determinant for MWCNT composite
electrical conductivity. Due to their enhanced dielectric and piezoelectric properties [21,25] and
multifunctional nature [65], multiphasic piezoelectric composite have a high potential for applications
as sensors transducers and energy harvesting devices.

Table 1. Variation of percolation threshold with the variation in aspect ratio of the electrically conductive
inclusion (CNTs).

Electrically Conductive Filler Composite/Fabrication Method Percolation
(%, Vol. Fraction)

MWCNT (aspect ratio = 3333–6250) [93]

MWCNT/polymethyl methacrylate solution
melt blending with compression molding 1.15%

MWCNT/polymethyl methacrylate solution
blending with melt compounding 0.25%

MWCNT/polymethyl methacrylate solution
blending with compression molding 0.55%

MWCNT (aspect ratio = ~86.7) [92] Fragmented MWCNTs/PMMA/ solution cast 0.11%

MWCNT (aspect ratio = 250–1500) [96] Electro-spun polystyrene fibers decorated
with MWCNTs, followed by hot press 0.084%

MWCNT (aspect ratio = 2400) [94] MWCNT/PDMS three-roll milling method 0.027%
MWCNT (aspect ratio = 900) [94] MWCNT/PDMS three-roll milling method 0.29%

MWCNT (aspect ratio = 2000) [97]
Functional nanocarbon-based fillers made of
MWCNTs and graphene oxide within a
silicone foam

10%

MWCNT (aspect ratio = 157.9) [95] MWCNTs/two-part epoxy (Epikote Resin 862
and Ethacure 100 Curative) 6.9%

MWCNT (aspect ratio = 400) [83] MWCNT-PVDF/sol-gel and hot molding 1.0%
MWCNT(aspect ratio ~ 100) [91] MWCNT-PMMMA/compression molding 2.4%
SWCNT (aspect ratio ~ 100) [91] SWCNT-PMMA/compression molding 3.4%
SWCNT (aspect ratio ~ 1000) [73] SWCNT-PZT-PMMA/solution casting 0.8%
CNT (aspect ratio ~ 100) [98] CNT-alumina/colloidal processing 1.2%
MWCNT (aspect ratio ~ 99) [88] MWCNT-epoxy/sol-gel sintering 1–1.5%
Double Walled CNTs (aspect ratio >1000) [82] CNT-epoxy/vacuum sintering 0.25%
MWCNT (aspect ratio >100) [99] MWCNT-epoxy/sol-gel sintering 3.2%
CNT (aspect ratio = 200–1000) [89] CNT-epoxy/sol-gel sintering 0.5–1.5%



J. Compos. Sci. 2020, 4, 141 5 of 22

In multiphasic piezoelectric composite sensors and transducers, the piezoelectric properties can
be controlled by polarization of the polycrystalline piezoelectric phase. [16] Initially, the dipoles of
the piezoelectric phase are aligned in random directions. The alignment of the dipoles determines
the effective electromechanical properties [100] of the composite. The dipoles are aligned during
processing techniques that include high temperatures and the application of high voltage static and/or
dynamic electric fields. Traditionally the contact or parallel plate poling methods have been used to
polarize piezoelectric materials and composites [16,100]. Recently, many researchers have studied the
corona discharge polarization method because higher poling voltages can be achieved in comparison
to contact polarization methods [16]. The strength of the polarization field and poling temperature
have also been identified as important parameters in determining the effectiveness of the poling
process [24,101] and also the effective electromechanical properties of the composite, but comparison
of their impact as a function of sample geometry has not been studied.

Two phase composites with randomly distributed electrically conductive fillers have drawn a
lot of attention in the past few years due to their scalability and the ease of processing techniques
and their flexibility [74,102]. Towards the direction of fabrication of embedded passive components,
two phase metal-polymer and metal-ceramic composites has been studied to obtain high dielectric
constants of >500 [103,104]. Among these materials two-phase composites with MWCNT as conductive
inclusions randomly distributed in a relaxor ferroelectric matrix, PMMA show improvements in
electrical properties with increased volume fraction of the conductive inclusion [79,80] and exhibit a
dramatic increase in electrical properties around the critical concentration around 0.1% of MWCNT
by weight, known as the percolation threshold [3,22]. One drawback in these kinds of composites
is the high variation of the electrical properties as the concentration reaches close to the percolation
threshold, which occurs due to the formation of conductive pathways in the composite by direct contact
or electron tunneling between the conductive inclusions. This causes a sharp increase in conductivity
in the composite which leads to high dielectric loss [21,105]. This can be attributed to increasing values
of the dielectric loss that render the composite non-desirable in practical applications. For example,
in the case of PZT-epoxy composites, researchers have shown a decrease in the dielectric constant from
>1000 for the single phase PZT to values <50 [15] for two phase PZT-epoxy composites. Other have
noted that even the values of the piezoelectric strain coefficients decrease from ~20 pC/N for the single
phase to values <5 pC/N for the di-phasic ferroelectric-polymer composites [28,105]. This decline in
the piezoelectric and dielectric properties is due to the decrease in the number of charge carriers in
the insulating polymer matrix [84]. As a solution for the above problems researchers have started
to investigate three phase composites that consist of ferroelectric and conductive inclusions that are
randomly distributed in an uniform polymer matrix [20,22,106–109]. While many have demonstrated
notable piezoelectric values [108,110–112], processing technique, active filler surface morphology and
size/shape inherently influence the electromechanical performance of the samples.

This work seeks to understand the relationship between material processing, conductive filler
shape and volume fraction, polarization method, polarization temperature and voltage; and how these
relationships dictate the electromechanical properties of bulk and thick film composites. The materials
of interest include nanocomposites fabricated using two filler materials (PZT—piezoelectric and
MWCNTs—electrically conductive) and a two-part epoxy resin. It is well known that piezoelectric
and dielectric properties of materials are a function of constituent materials, polarization boundary
conditions and sample geometry. However, few researchers have examined the variation of sample
geometry with polarization process within the same study on the sample comprising the same
material composition.
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2. Materials and Methods

2.1. Material Properties

Three-phase piezoelectric (0-3-0) composites that are composed of multi-walled carbon nanotubes
(MWCNTs), lead zirconate titanate (Pb

(
ZrxTi(1−x)

)
O3–Navy IV) (purchased from APC International)

and a two-part epoxy-DGEBA, EpofixTM Cold-setting embedding resin (purchased from Electron
Microscopy Sciences) were fabricated via a modified sol gel/spin coat and deposition process onto
stainless steel bottom electrodes. The cold-setting resin was a two-part epoxy that consisted of a
bisphenol A diglycidyl ether-based resin and a triethylenetetramine-based hardener. The average
aspect ratio of the MWCNTs was determined from TEM images to be ~461. The piezoelectric, dielectric
and physical properties of the PZT and epoxy are presented in Table 2.

Table 2. Overview of the piezoelectric, dielectric, and physical properties of lead zirconate titanate
(PZT) and epoxy.

Material
Dielectric
Constant

(ε’)

Piezoelectric
Strain

d33/d31 (pC/N)

Dielectric Loss
(tan δ)

Young’s
Modulus

(1010 N/m2)

Density
(kg/m3)

PZT 1850 @ 110 Hz
(measured) 400/175 ≤2.50 6.4 7500

Epoxy 2.9 @ 110 Hz
(measured) N/A ~1 0.15–0.20 1160 (wet state)

2.2. Composite Bulk (Disk) and Film Preparation

The film and bulk samples were prepared using the procedure outlined in [113,114]. The PZT filler
was pre-processed using the method described in [114] and then mixed with the bisphenol A diglycidyl
ether part of the two-part epoxy, and sonicated for four hours. The MWCNTs were sonicated for four
hours in ethanol (200 proof, Sigma-Aldrich) in the ultra-sonicator. After the MWCNTs were surface
treated, they were mixed with the mixture of PZT and epoxy, thus forming the sol (non-macroscopic
particles in solution) and a gel (bushy structures as clusters and agglomeration pockets of PZT epoxy
and MWCNTs). The organic residues that were left behind by the gradual evaporation of the ethanol
bound the different phases in the mixture during the desiccation step that occurred for four hours.
The binder component of the epoxy was then added to the mixture and the solution subsequently
sonicated for an additional half an hour. The sol gel formed was spin coated onto a stainless-steel
substrate using the Laurel WS-650-23NPP spin coater. The stainless-steel substrate was 1.5 × 2.5 cm
and 20 µm thick. The spin coat process included incremental increases by 100 rpm, until a final speed
of 1000 rpm was achieved. The substrate is coated with a three phase PZT-epoxy-MWNCT composite
material of thickness ~150 µm. The film was then allowed to cure on a hot plate at 75 ◦C (glass
transition temperature of the epoxy) for eight hours and then subsequently polarized via a parallel
plate contact or a corona discharge method.

The bulk (disk) samples were placed into a mold and cured at the same temperature as the films
for eight hours. The disks were 7 mm in radius and 6 mm thick. The volume fraction of PZT for both
bulk and thick film samples was held constant at 30%, while the volume fraction of MWCNTs were
varied from 1–6% to identify the percolation threshold. The piezoelectric strain coefficient, d33 and
dielectric constant, ε’, were determined as a function of polarization process, i.e., contact parallel plate
or corona plasma, polarization temperature, polarization voltage, and volume fraction of MWCNTs.

The parallel plate contact polarization method was achieved by placing the disk or film in between
the top and the ground base plates in a dielectric medium (silicone oil) and applying an external
electric field of ranging from 0.7 to 2.7 kV/mm depending on the sample type. The corona polarization
technique enabled a 2.7 kV/mm voltage to be achieved, while the contact polarization process could not
accomplish the voltage without (short circuiting) a dielectric breakdown of the sample. The composite
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was heated to the approximate glass transition temperature of the matrix phase and an electric field
was applied at the electrodes. The corona discharge polarization method involves the application of an
electric field via a needle that is held at a certain distance away from the composite material.

2.3. Sample Characterization

A piezometer was used to measure the dielectric constant, ε’, dielectric loss tangent, tan δ and the
piezoelectric strain coefficient, d33 at a frequency of 110 Hz. Yamada’s model [115] for the piezoelectric
charge constant was used to calculate the polarization ratio, α of the PZT particles as a function of
voltage and effective piezoelectric strain coefficient. The dispersion of PZT and MWCNTs within
the epoxy matrix was observed via micrographs of the fractured surface and cross section of thick
films using a Zeiss Sigma Field Emission scanning electron microscope (SEM) and electron dispersion
spectroscopy (EDS) microscope (FESEM ZEISS 982).

3. Results

3.1. Variation of Polarization Voltage-Contact and Corona Polarization in Bulk Disks

The variation in the piezoelectric strain coefficient, d33 in the bulk PZT-epoxy-MWCNT composites
as a function of polarization voltage for the corona and contact poling methods is shown in Figure 1A,B
respectively. The poling voltage was varied between 2.7–0.7 kV/mm for samples that were corona poled,
and 2.2–0.7 kV/mm for samples that were contact polarized. Samples that were contact polarized short
circuited beyond 2.2 kV/mm. The volume fraction of the multiwalled carbon nanotubes (MWCNT)
was varied from 1% to 6%, while the polarization temperature was kept constant at 75 ◦C.
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Figure 1. Variation in the piezoelectric strain coefficient, d33 for bulk PZT-epoxy-multi-walled carbon
nanotube (MWCNT) composites as a function of polarization voltage from 0.7–2.7 kV/mm; for (A)
corona poling and (B) contact poling methods. Both the figures show an increase in d33 with an increase
in the poling voltage.

As expected, the piezoelectric strain coefficient increases as a function of polarization voltage
and volume fraction of MWCNTs, where the maximum poling voltage reached was for a MWCNT
volume fraction of 6% at 2.7 kV/mm for the corona polarization technique. For lower MWCNT volume
fractions (<6%) the maximum poling voltage was greater than 2.7 kV/mm due to the increase in the
number of conductive pathways in the composite with the increase in the MWCNT volume fraction
that ultimately causes dielectric breakdown of the composite. To maintain a uniform maximum poling
voltage over all MWCNT volume fractions, 2.7 kV/mm was chosen as the maximum poling voltage
for corona poled samples, while 2.2 was chosen for bulk samples. The composites were all poled for
60 min.

It is observed that the piezoelectric strain coefficient increases with the polarization voltage.
For example, at a MWCNT volume fraction of 4%, the d33 values for poling voltages of 0.7, 1.2, 1.7,
2.2 and 2.7 kV/mm for the corona poling method are ~16.18, 18.23, 20.29, 23.07 and 27.684 pC/N
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respectively. In the case of the contact poling method and for the same MWCNT volume fraction the d33
values are (as expected) lower than their corona polarized counterparts: ~0.44, 0.83, 1.22 and 1.61 pC/N
for the contact poling method with poling voltages of 0.7, 1.2, 1.7 and 2.2 kV/mm, respectively. This trend
is visible for all volume fractions of the MWCNTs. The increase in poling voltage (or poling strength)
aligns more dipoles in the poling direction as the intensity of the voltage increases. This increases
the polarization of the composite and leads to higher d33 values, which follow a trend similar to that
described by Nan et al. [116].

Similarly, the dielectric constant, ε’, values for the three phase composites increase as a function
of voltage intensity as shown in Figure 2. The dielectric constant is higher at higher poling voltage
values for all volume fractions of MWCNTs. For example, in the case of corona poling for a MWCNT
volume fraction of 3% the ε’ values for poling voltages of 0.7, 1.2, 1.7, 2.2 and 2.7 kV/mm are ~121.04,
129.43, 136.54, 147.81 and 165.39, respectively. For the same volume fraction of MWCNT where contact
polarization is employed, the dielectric constant values are ~25, 27, 36 and 38 for poling voltages of
0.7, 1.2, 1.7 and 2.2 kV/mm respectively. Hence, this demonstrates that corona polarization may be
more effective than contact polarization for bulk samples. The orientation of the dipoles and the
effective polarization leads to higher values of dielectric constant in addition to the electronic and
ionic polarization in the composite [16]. With an increase in the poling field the dipole polarization
increases in the poling direction thereby increasing the number of dipoles being aligned, which leads
to increases in the dielectric constant as seen Figure 2 for both corona and contact polarization methods.
The contact resistance from the contact method contribute to the reduction on polarization experienced
by the samples.
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Figure 2. Variation in the dielectric constant as a function of polarization voltage and volume fraction
of MWCNTs for corona (A) and (B) contact polarization techniques applied to bulk samples.

The tan (δ) values also increase with increases in the poling voltage and volume fraction of
MWCNTs as seen in Figure 3. For example, the tan (δ) values for the corona poled composites with
poling fields of 0.7, 1.2, 1.7, 2.2 and 2.7 kV/mm (at MWCNT volume fraction of 4%) are ~0.0093,
0.011, 0.013, 0.014 and 0.015, respectively at a frequency of 110 Hz. The higher values of tan (δ) with
increased poling voltages can be attributed to the increased number of defects or localized regions of
dielectric breakdown in the composites caused by high voltage polarization. This trend is also seen
for most volume fractions of the contact poled composites. There is also, a sharp increase in the tan
(δ) values for composites with a MWCNT volume fraction of 6% which indicates a sharp rise in the
dielectric loss. This rise in dielectric loss is due the increase in conductivity of the composite around
the percolation threshold. These results suggest that the percolation region initiates near 6% volume
fraction of MWCNTs.
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3.2. Variation of Temperature-Contact and Corona Polarization in Bulk Disks

The variation in the piezoelectric strain coefficient, d33 in bulk PZT-epoxy-MWCNT composites
with decreasing poling temperature for both the corona and contact poling methods are shown in
Figure 4A,B respectively. The poling temperature was varied from 45–75 ◦C and the MWCNT volume
fraction is varied from 1% to 6%. The poling temperature was not increased beyond the glass transition
temperature of the epoxy matrix, which is ~75 ◦C, the poling voltage was held constant at 2.2 kV/mm
for disk samples for a polarization time of 60 min.
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Figure 4. Variation in piezoelectric strain coefficient, d33 for bulk disks as a function of temperature
(45–75 ◦C) for (A) corona and (B) contact polarization techniques.

It can be seen that the d33 increases with increase in the polarization temperature, where at a
MWCNT volume fraction of 4%, the d33 values for poling temperatures of 45, 55, 65 and 75 ◦C are
~15.65, 17.72, 19.78 and 23.31 pC/N, respectively. In the case of the contact poling method and for the
same MWCNT volume fraction the d33 values are 0.54, 0.63, 1.01 and 1.61 pC/N. This trend is seen for
all volume fractions of the MWCNTs, where the increase in the temperature increases the mobility of
the crystal lattice structures of the polycrystalline piezoelectric phase, PZT, which causes the dipoles
to align along the poling direction. [16,69] This also results in an increase in the number of dipoles
that can be aligned for a given polarization voltage, which leads to higher dielectric strain values.
Interestingly, the increase in polarization voltage leads to higher rates of increase in the piezoelectric
coefficients and dielectric constant in comparison to the increase in temperature.
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The dielectric constant, values show a similar increase with the poling temperature for the three
phase bulk composites as shown in Figure 5. In Figure 5, the change in the dielectric constant varies
with the polarization temperature as it varies from 45–75 ◦C. As expected, dielectric constant is higher
for all volume fractions of MWCNTs at higher poling temperatures.
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Figure 6. Dielectric loss as a function of polarization temperature and MWCNT volume fraction for 
thick films (A) corona and (B) contact poled. 
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0.04, 0.08, 0.17 and 0.27 pC/N for the contact poling method with poling voltages of 0.7, 1.2, 1.7 and 
2.2 kV/mm respectively. The increase in the piezoelectric strain coefficients with increasing poling 
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Figure 5. Variation in the dielectric constant as a function of temperature, volume fraction of MWCNTs,
for (A) corona and (B) contact polarization techniques for bulk/disk samples.

In the case of corona poling and for a MWCNT volume fraction of 4% the ε’ values for poling
temperatures of 45, 55, 65 and 75 ◦C are ~125.1, 133.48, 140.6 and 147.81, respectively. For the same
volume fraction of MWCNT in the case of the contact poled samples the dielectric constant values are
~31, 38, 43 and 55 for poling temperatures of 45, 55, 65 and 75 ◦C, respectively. The dielectric constant
is a combination of the effective polarization due to the dipoles and their orientation, in addition to the
contributions of electronic and ionic polarizations in the composite. With an increase in the poling
temperature the dipole polarization increases due to an increase in the number of dipoles being aligned
in the poling direction. This causes an increase in ε’ observed in Figure 5 for both corona and contact
poling methods.
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Figure 6. Dielectric loss as a function of polarization temperature and MWCNT volume fraction for 
thick films (A) corona and (B) contact poled. 
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thick films (A) corona and (B) contact poled.

The tan (δ) values of the bulk three phase composites are also measured as a function of the poling
temperature in addition to the ε’ values. For both the corona poled and contact poled composites
they increase by small amounts as a function of poling temperature and at volume fractions below
the percolation threshold as seen in Figure 6A,B. For example, the tan (δ) values for the corona poled
composites with poling temperatures of 45, 55, 65 and 75 ◦C and a MWCNT volume fraction of 4% are
~0.01, 0.012, 0.014 and 0.016, respectively. Even for the MWCNT volume fraction of 6%, the tan (δ)
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values are 0.05, 0.058, 0.064 and 0.066 for the same changes in temperature. This trend is consistent for
the contact poled composites as seen in Figure 6B. The small amount of increase in the tan (δ) values
with increase in the poling temperature can be attributed to the higher chance of the formation of
localized percolation pathways in the composites due to higher mobility of the ionic species in the
composite at higher temperatures.

3.3. Variation of Polarization Voltage in Corona and Contact Poled Thick Films

The piezoelectric strain coefficients and dielectric constants in the PZT-epoxy-MWCNT thick film
composites are plotted as a function of polarization voltage for the corona/contact poling methods in
Figures 7 and 8, respectively. The poling voltage is varied between 2.7–0.7 kV/mm (for corona poling),
2.2–0.7 kV/mm (contact poling) and the MWCNT volume fraction is varied from 1% to 6% for the thick
films, the poling temperature is kept constant at 75 ◦C. It is seen that an increase in the poling voltage
results in an increase in the piezoelectric strain coefficient like the bulk samples. For example, at a
MWCNT volume fraction of 4% the d33 values for poling voltages of 0.7, 1.2, 1.7, 2.2 and 2.7 kV/mm
for the corona poling method are ~8.49, 12.67, 11.43 and 9.645 pC/N, respectively. In the case of the
contact poling method and for the same MWCNT volume fraction the d33 values are 0.04, 0.08, 0.17 and
0.27 pC/N for the contact poling method with poling voltages of 0.7, 1.2, 1.7 and 2.2 kV/mm respectively.
The increase in the piezoelectric strain coefficients with increasing poling voltages are observed for all
volume fractions of the MWCNTs. The increase in poling voltage aligns higher number of dipoles in
the poling direction which increases the polarization of the composite and leads to higher d33 values in
the thick film composites.
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Figure 7. Piezoelectric strain coefficient, d33, for thick films as a function of polarization voltage and
volume fraction of MWCNTs for (A) corona and (B) contact polarized samples.

The dielectric constant values for thick film composites show a similar change as depicted
in Figure 8, where they are higher at poling voltage values for all volume fractions of MWCNTs.
For example, in the case of corona poling and for a MWCNT volume fraction of 3% the ε values
for poling voltages of 0.7, 1.2, 1.7, 2.2 and 2.7 kV/mm are ~107.42, 117.02, 128.53, 143,88 and 161.06,
respectively. For the same volume fraction of MWCNTs (contact poled) the dielectric values are ~31,
36, 41 and 45 for poling voltages of 0.7, 1.2, 1.7 and 2.2 kV/mm, respectively. Similar to the bulk
composites, the polarization due to the orientation of the dipoles contributes to the values of dielectric
constant. With an increase in the poling voltage, more dipoles become aligned and the polarization
due to the dipoles increases, which results increases in the dielectric constant for both corona and
contact poling methods.
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Figure 8. Dielectric constant of thick films as a function of polarization voltage and volume fraction of
MWCNTs for (A) corona and (B) contact polarization conditions.

The tan (δ) values also increase with increases in the poling voltage as seen in Figure 9. Specifically,
the tan (δ) values for the contact poled composites with poling fields of 0.7, 1.2, 1.7 and 2.2 kV/mm
(at a MWCNT volume fraction of 4% are ~0.009, 0.01, 0.02 and 0.033 respectively. The higher values of
tan (δ) that are associated with increased polarization voltages are attributed to the increased number
of defects or localized regions of dielectric breakdown in the composites caused by high voltage
polarization. The tan (δ) for the corona poled composites show very little change for all MWCNT
volume fractions, thus indicating the effectiveness of the corona poling method (causes less poling
defects) in thick films as compared to contact poling method [16].
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Figure 9. Dielectric loss, tan δ, of thick films as a function of polarization voltage and volume fraction
of MWCNTs for (A) corona and (B) contact polarization conditions.

3.4. Variation of Polarization Temperature in Corona and Contact Poled Thick Films

The variation in the piezoelectric strain coefficient, d33 in PZT-epoxy-MWCNT thick films with
decreasing poling temperature for both corona/contact poling methods are shown in Figures 9 and 10,
respectively. The poling temperature is varied from 45–75 ◦C and the MWCNT volume fraction was
varied from 1% to 6%. The poling voltage was kept constant at 2.2 kV/mm. It can be seen that the d33
increases with an increase in the poling voltage. At a MWCNT volume fraction of 4% the d33 values for
poling temperatures of 45, 55, 65 and 75 ◦C for the corona poling method are ~6.45, 7.87, 10.26 and
12.68 pC/N, respectively. In the case of the contact poling method and for the same MWCNT volume
fraction the d33 values are 0.086, 0.14, 0.20 and 0.26 pC/N for the contact poling method with poling
voltages of 0.7, 1.2, 1.7 and 2.2 kV/mm respectively. This trend is seen for all volume fractions of the
MWCNTs. At high temperature a greater number of dipoles can be aligned for the given poling voltage
due to the increase in the mobility of the dipoles. This increases the polarization of the composite and
leads to higher d33.
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Figure 10. Piezoelectric strain coefficient of thick films as a function of polarization temperature and
volume fraction of MWCNTs for (A) corona and (B) contact polarization conditions.

The ε’, values show a similar increase with the poling temperature for the three phase thick film
composites. Figure 11 shows the change in ε’ values with the poling temperature varying from 45–75 ◦C.
For all volume fractions of MWCNTs the dielectric constant is higher at higher poling temperatures.
For example, in the case of corona poling and for a MWCNT volume fraction of 4% the ε’ values for
poling temperatures of 45, 55, 65 and 75 ◦C are ~57, 71, 81 and 95, respectively. For the same volume
fraction of MWCNT in the case of the contact poled samples the ε’ is ~85.75, 106.79, 133.65 and 143.88
for the same poling temperatures. The dielectric constant of the composite increases with the increase
in the effective dipole polarization, which depends on the to the dipole orientation. With an increase in
the poling temperature the dipole polarization increases due to an increase in the number of dipoles
being aligned in the poling direction. This causes an increase in ε as seen for both the poling methods.

J. Compos. Sci. 2020, 4, x 14 of 23 

 

same volume fraction of MWCNT in the case of the contact poled samples the ε΄ is ~85.75, 106.79, 
133.65 and 143.88 for the same poling temperatures. The dielectric constant of the composite increases 
with the increase in the effective dipole polarization, which depends on the to the dipole orientation. 
With an increase in the poling temperature the dipole polarization increases due to an increase in the 
number of dipoles being aligned in the poling direction. This causes an increase in ε as seen for both 
the poling methods. 

The tan (δ) values of the bulk three phase composites are also measured as a function of the 
poling temperature in addition to the ε΄ values. Figure 12 shows how the dielectric loss for the contact 
poled composites increase with polarization temperature, while the loss remains nearly constant for 
the corona poling technique. This trend in followed for all MWCNT volume fractions of the thick film 
composites with contact poling. This increase in the tan (δ) values with increase in the poling 
temperature can be attributed to the higher chance of the formation of localized percolation pathways 
in the composites due to higher mobility of the ionic species in the composite at higher temperatures 
during contact poling of the thick films. These defects can also be coupled with the localized dielectric 
breakdown of the epoxy matrix material. In the case of the corona poling, the probability of the 
formation of these defects is much lower, which leads to almost constant tan (δ) values at different 
poling temperatures. 

0.00 0.02 0.04 0.06
0

100

200

300

 ε', 45o

 ε', 75o

 ε', 65o

 ε', 55o

D
ie

le
ct

ric
 C

on
st

an
t, 

ε 
(C

or
on

a 
Po

la
riz

at
io

n)
Fu

nc
tio

n 
of

 T
em

pe
ra

tu
re

Volume Fraction of MWCNT

Thick Film

A)

 

0.00 0.02 0.04 0.06
0

20

40

60

80  ε′, 75° C
 ε′, 65° C
 ε′, 55° C
 ε′, 45° C

D
ie

le
ct

ric
 C

on
st

an
t, 

ε′
 (C

on
ta

ct
 P

ol
ar

iz
at

io
n)

Fu
nc

tio
n 

of
 T

em
pe

ra
tu

re

Volume Fraction of MWCNT

Thick Film

B)

Figure 11. Dielectric constant of thick films as a function of polarization temperature and volume 
fraction of MWCNTs for (A) corona and (B) contact polarization conditions. 

0.00 0.02 0.04 0.06

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

 tan (δ), 75° C
 tan (δ), 65° C
 tan (δ), 55° C
 tan (δ), 45° C

ta
n 

(δ
), 

C
or

on
a 

Po
la

riz
at

io
n

Fu
nc

tio
n 

of
 T

em
pe

ra
tu

re

Volume Fraction of MWCNT

Thick Film

A)

0.00 0.02 0.04 0.06
0.00

0.02

0.04

0.06

0.08

0.10

 tan (δ), 75° C
 tan (δ), 65° C
 tan (δ), 55° C
 tan (δ), 45° C

ta
n 

(δ
) (

C
on

ta
ct

 P
ol

ar
iz

at
io

n)
Fu

nc
tio

n 
of

 T
em

pe
ra

tu
re

Volume Fraction of MWCNT

Thick Film

B)

 

Figure 12. Dielectric loss, tan δ, of thick films as a function of polarization temperature and volume 
fraction of MWCNTs for (A) corona and (B) contact polarization conditions. 

3.5. SEM Characterization of Films 

Figure 11. Dielectric constant of thick films as a function of polarization temperature and volume
fraction of MWCNTs for (A) corona and (B) contact polarization conditions.

The tan (δ) values of the bulk three phase composites are also measured as a function of the
poling temperature in addition to the ε’ values. Figure 12 shows how the dielectric loss for the contact
poled composites increase with polarization temperature, while the loss remains nearly constant for
the corona poling technique. This trend in followed for all MWCNT volume fractions of the thick
film composites with contact poling. This increase in the tan (δ) values with increase in the poling
temperature can be attributed to the higher chance of the formation of localized percolation pathways
in the composites due to higher mobility of the ionic species in the composite at higher temperatures
during contact poling of the thick films. These defects can also be coupled with the localized dielectric
breakdown of the epoxy matrix material. In the case of the corona poling, the probability of the
formation of these defects is much lower, which leads to almost constant tan (δ) values at different
poling temperatures.
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Figure 11. Dielectric constant of thick films as a function of polarization temperature and volume 
fraction of MWCNTs for (A) corona and (B) contact polarization conditions. 
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Figure 12. Dielectric loss, tan δ, of thick films as a function of polarization temperature and volume 
fraction of MWCNTs for (A) corona and (B) contact polarization conditions. 

3.5. SEM Characterization of Films 

Figure 12. Dielectric loss, tan δ, of thick films as a function of polarization temperature and volume
fraction of MWCNTs for (A) corona and (B) contact polarization conditions.

3.5. SEM Characterization of Films

The dispersion of PZT and MWCNTs within the epoxy matric was observed with the aid of
micrograph images obtained from a Zeiss Sigma Field Emission scanning electron microscope (SEM)
and an Oxford INCA PentaFET x3 8100 energy dispersive X-ray spectroscopy. The three phase
PZT-Epoxy-MWCNT thick film with MWCNT volume fractions of 4% and 6% are shown in Figure 13.
The figure shows the composite thick film spin coated over a flexible stainless substrate.
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Figure 13. Cross-sectional SEM micrograph of a PZT-epoxy-MWCNT thick film with MWCNT volume
fractions of (A) 0.04 (4%) and (B) 0.06 (6%) showing the thick film of thickness ~150 µm spin coated
over a flexible stainless substrate of thickness 20 µm. SEM images (C,D) show the fractured surface of
the three phase composite with MWCNT volume fractions of 0.04 (4%) and 0.06 (6%). Both images
illustrate the distribution of the PZT clusters and MWCNT clusters in the epoxy matrix, where larger
spherical elements of the image are PZT particles.
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SEM micrographs of the fractured surfaces of the composite thick films are shown in Figure 13.
The PZT clusters and cloud shaped clusters of MWCNTs are seen distributed in the epoxy matrix.
As observed from the image analysis from ImageJ, the MWCNT clusters range in sizes <2 µm with
an average cluster size of ~600 nm. On the other hand, the PZT clusters are >2 µm with an average
cluster of around 12 µm.

Figure 14 shows the SEM micrograph and EDS spectroscopy of the PZT-epoxy-MWCNT thick film
fractured surface and the top surface respectively. The fractured surface shows the distribution of the
PZT and MWCNT clusters in the epoxy matrix similar to that of the bulk composites. The EDS elemental
analysis and the layered image of the top surface of the thick film shows a uniform distribution of
the different phases on the surface. An image analysis in ImageJ shows that the average PZT particle
size in the fractured surface and on the top surface are ~10 and 11 µm respectively. The average
MWCNT cluster size is ~650 nm at the fractured surface and ~550 nm at the top surface of the thick film.
This might be due to the presence of a higher viscosity sol-gel (containing larger clusters of MWCNTs)
closer to the substrate surface as compared to the top surface of the thick film during the spin coating
process. As analyzed by ImageJ, the PZT cluster sizes are >2 µm and that of the MWCNTs are <2 µm.
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Figure 14. The SEM micrograph of the surface of the flexible composite thick film, shows the distribution
of PZT particles and MWCNTs in the epoxy matrix with a MWCNT volume fraction of 0.06 (6%).
The EDS layered image also shows the dispersion of the different elements present in the composite.
The peaks for the selective elemental analysis are shown in the EDS spectrum.

3.6. Influence of Sample Shape and Polarization Voltage

The results indicate the enhancement of these properties with increasing poling voltage and
temperature. Higher poling voltage increases the effective dipole moment in the direction of poling
and enhances the effective properties. On the other hand, an increase in the poling temperature
will increase the mobility of the dipoles, which will allow more dipoles to orient themselves along
the poling direction; effectively increasing the dipole moment and enhancing the piezoelectric and
dielectric properties of the composites. Apart from the poling parameters the effective piezoelectric
and dielectric characteristics of the composites also depend on the surface properties of the embedded
particles, as well as, the shape factor of the samples as shown in Figure 15.
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4. Conclusions and Future Work

The mechanisms that influence the piezoelectric and dielectric properties of the three phase
composites were investigated by varying the volume fraction of the conductive phase and polarization
parameters: temperature and applied voltage per thickness. Bulk and thick film samples were
prepared via sol gel/cast-mold and sol gel/spin coat deposition, for fabrication of bulk and thick
films, respectively. The material properties of these piezoelectric composites were quantified by
means of dielectric constant, dielectric loss, piezoelectric strain coefficient, polarization ratio and
sample geometry. It was found that corona polarization was more effective for both bulk and thick
film processes than contact polarization due to the ability of the former method to align dipoles
despite sample defects and filler agglomerations. In addition, the polarization temperature produced
higher normalized changes in samples. Though higher electric field voltages could be achieved with
thicker samples, film samples responded the most to coupled increases in temperature and electrical
voltage than bulk samples. This study elucidates how polarization parameters: contact versus corona,
temperature and electrical voltage field influence the piezoelectric and dielectric properties of samples
as a function of their shape factor, i.e., bulk versus thick film. In addition, this work indicates that
corona polarization is effective for bulk materials, where it was originally believed to have negligible
benefits on samples of this scale in comparison to contact polarization techniques.

This work is an initial step towards wholistic analysis of corona processing of thin and bulk
materials of the same composition. Though it can be seen that thinner samples achieve higher changes
in polarization due to the processing temperature and voltage, limitations associated with bulk sample
thicknesses need to be studied further. In addition, a sensitivity analysis of influences of each parameter
is needed to better understand, which phenomenon indicate higher degrees of polarization than others.
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