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Abstract: The present study investigates the effect of power ultrasonic on the expansion of fiber
strands. A potential application of such expansion is in the production process known as closed
injection pultrusion. The fiber strand in the pultrusion injection chamber is in compacted form, and so,
any expansion of the fiber strand resulting from power ultrasonic should lead to improved fiber
wetting. To investigate this, a wetted fiber strand was clamped on two sides and sonicated in the
middle from below. The potential expansion of the fiber strand was visually determined through an
observation window. The study concluded that power ultrasonic has a minimal to virtually negligible
effect on the expansion of both glass and carbon fiber. The degree of expansion remains within a
range of 3% maximum, with a standard deviation in the respective midpoint tests of up to 60% for
glass fiber and over 100% for carbon fiber. This shows that the fibers are limited in their freedom
of movement, and so no expansion can be achieved using power ultrasonic. A further increase in
amplitude does not lead to any further expansion but to the destruction of the fibers.

Keywords: power ultrasonic; expansion; carbon fiber; glass fiber; pultrusion; closed-injection pultrusion

1. Introduction

The use of pultrusion in component production has attracted great attention in recent years,
due to such excellent properties as high strength-to-weight ratio and stiffness, and also due to the high
potential for automation. In most cases, the fibers are impregnated in an open impregnation bath. Here,
the choice is limited to matrix systems with a long processing time or pot life at room temperature [1].

However, in order to further increase productivity, it is necessary to use highly reactive matrix
systems, such as polyurethanes [2,3]. Fiber impregnation then involves the use of a closed injection and
impregnation chamber (ii-chamber) rather than an open impregnation bath. A number of different types
of ii-chambers are already in use in industry [4–7]. However, the complete and uniform impregnation of
a fiber strand with a resin system, particularly in the case of carbon fibers, is still a major challenge with
this system [8]. While in an open impregnation bath, the fiber strands can be spread out, thus giving
the resin system a short flow path, in an ii-chamber, the fibers have to be impregnated as a compressed
strand. The effect of this is to reduce and significantly scatter the mechanical properties of the finished
component [9].

One possible way of solving this issue is to integrate power ultrasonic (US) into the ii-chamber.
US has many applications, such as mixing, homogenizing and dispersing, and it is already in use in
numerous sectors (including the biological and chemical industries) [10–12]. The intended effect of US
is to expand the fiber strands through their transient cavitation. Transient cavitation occurs at sound
pressures with a power density of 10 W/cm2. The tensile strength of the liquid is thereby exceeded [13],
so that cavities/bubbles that are either empty (true cavitation) or filled with gas or water vapor are
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formed in the liquid [10,12]. Newton first coined the term ‘cavitation’ in 1704. It had previously been
identified as material spalling in the early years of ship propellers [14–16]. The gas bubbles expand over
several oscillation periods until their radius more than doubles within half a period before collapsing
within a few milliseconds [17]. The conditions prevailing inside the gas bubbles include speeds of
50 to 150 m/s, temperatures of up to 5000 K, and pressures in the range of 109 to 1010 Pa [10,13,18,19].
Figure 1 contains a schematic representation of the process.
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Figure 1. Formation of a cavitation bubble during sonication.

The effect of US on composites manufacturing has been previously investigated. These have
demonstrated such benefits as enhanced mechanical properties due to better impregnation,
improved fiber-matrix adhesion, and increased glass transition temperature [20–23]. Improved component
properties were also demonstrated by the use of US in pultrusion [24]. However, few publications have
considered the influence of US on fiber distribution. For excitations in the low frequency range, a fiber
strand can be compacted further than would be possible using static compaction. Kruckenberg et al.
investigated the compacting curve for glass fiber and carbon fiber fabrics at an excitation frequency of
1 to 10 Hz [25]. They found that an increase in fiber volume content of up to 16% is possible for glass
fiber fabrics, with up to 6% for carbon fiber fabrics. Gutiérrez et al. conducted similar investigations with
comparable results [26]. Glass fiber fabrics were stimulated during compaction and the compaction curve
recorded for a frequency range of 10 to 300 Hz and amplitude of 50 to 100 µm. A higher compaction was
achieved than with static compaction, especially at low frequencies, accompanied by an increase in fiber
volume content of about 10%. The greater compaction was assumed to be due to the more homogeneous
distribution of the fibers [27]. The vibration stimulation led to better spreading of the fibers and in turn,
to a more uniform fiber distribution [28].

Yamahira et al. showed that US can be employed to attain specific fiber alignments [29]. A beaker
was filled with an aqueous sugar solution containing polystyrene fibers, which were then irradiated at
frequencies of 25 and 46 kHz. This formed a standing wave in the aqueous sugar solution, and the
fibers aligned themselves with this wave.

The aforementioned publications presented the positive effect of the vibration excitation or
sonication on the fiber distribution. Investigation of the effect was limited to the compaction and
orientation of the fibers. However, they did not consider fiber movement during acoustic irradiation to
quantify the possible expansion, which would result in the local increase in permeability referred to at
the beginning.

This study therefore focuses on the direct, visual expansion of the fiber strand during sonication,
correlated to total area. This enables us to understand the effect of US on fiber strand expansion and,
in turn, permeability.
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2. Materials and Methods

2.1. Materials

Preliminary investigations have shown that the Biresin® CR141 epoxy resin system made by Sika,
Bad Urach, Germany, which is used as standard in the pultrusion process, becomes cloudy after only a
short period of sonication [30]. Any expansion of the fiber strand that might have occurred is then no
longer visible.

In order to avoid clouding, a silicone oil (KORASILON® M100 made by Obermeier in Bad
Berleburg, Germany) is used instead. It has a viscosity of 100 mPa·s and is thus, comparable to
the epoxy resin system. The substitute medium has already been used successfully, as reported in
publications in similar fields [1,31].

The type of glass fiber to be used here is SE 3030 with 4800 tex, made by 3B in Herve, Belgium,
while the carbon fiber is CT50-4.0/240-E100 with 50k, made by SGL Carbon, Wiesbaden, Germany.

2.2. Methods

A test chamber was developed to visually determine the effect of US on fiber distribution and
quantify the extent to which US is able to expand a fiber strand. Figure 2 shows the schematic (left)
and the real-life assembly (right) of the test chamber. In addition, the schematic representation shows
the manipulated variables mass m, amplitude u and number of rovings n. The expansion B is shown
as the test variable. It indicates the extent to which the area of the fiber strand is expanded by US,
expressed as a percentage.
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Below the test chamber, US is coupled into the examination chamber with a frequency of 20 kHz.
The diameter of the sonotrode is 20 mm. The fiber strand is clamped on the left and right and has a fiber
volume content of 65% in this area. The fiber volume content is determined by the pultrusion process.

The manipulated variables for the test chamber result from the following parameters:

• Mass per roving mn: The rovings are pulled continuously during pultrusion and are therefore
under tension. In the test chamber, the preload on the rovings is simulated by employing an
additional weight per roving. This corresponds to the actual stress occurring in the chamber
geometries (conical and drop-shaped) [4,6]. The stress is based on the values from the preliminary
investigation and varies within the range 250 to 500 g per roving [30].

• Number of rovings n: The layer thickness is adjusted by varying the number of rovings. A number
of rovings of between 2 and 6 corresponds to a layer thickness of between 2 and 6 mm. The number
of rovings determines the average profile thickness in pultrusion.

• Amplitude u: The amplitude range can be varied within the range from 12 to 48 µm. Any further
increase in amplitude will cause direct damage to the fiber [33].

Silicone oil is injected into the test chamber at a pressure of 1 bar by means of a pneumatic
pressure pot. The fiber strand in the test chamber can be viewed through the observation window
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(Figure 3). A camera (EOS 500D, Canon, Tokyo, Japan, 15.1 megapixels) records the condition before
and during sonication. Afterwards, the percentage changes in the areas with and without sonication
are determined and evaluated. One millimeter corresponds to 76 pixels on the digital image.
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The manipulated variables—weight per roving, amplitude, and number of rovings—determine
the experiment setup. For the manipulated variables and the glass fiber and carbon fiber materials,
the experiment test plan is as shown in Table 1.

Table 1. Test plan for the test rig with corresponding manipulated variables.

Manipulated Variables Variable Unit Level 1 Level 2 Midpoint

Weight per roving m g 250 500 375
Amplitude u µm 12 48 30

Number of rovings n - 2 6 3

All tests are performed once, except for the midpoint test, which is repeated three times.
This enables a statement to be made about scatter in the experiment setup. All tests are carried out in
the sequence given in Table 2.

Table 2. Sequence of test steps.

Section Activity

Setup

Link rovings to weights
Insert rovings into test chamber

Close test rig
Calibrate US

Start
Open ball valve of pressure pot

Flush test chamber with silicone oil for 30 s at a pressure of 1 bar
Start self-timer (5 images after 10 s)

u = 12 µm
5 s no US

5 s with US
5 images at an amplitude of 12 µm; deactivate sonication

u = 48 µm
5 s no US

5 s with US
5 images at an amplitude of 48 µm; deactivate sonication

End Close ball valve of pressure pot

Dismantling Open test chamber and clean
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3. Results

The aim of the test chamber is to characterize the effect of US on the expansion of a fiber strand.
When it expands, the permeability of the fiber strand increases, thus, facilitating impregnation. The test
rig enables explicit investigation of the effect of expansion, by allowing fiber movements to be viewed
through an observation window (Figure 3).

3.1. Expansion of Glass and Carbon Fiber Strand

Figure 4 shows the test results for glass fiber (left) and carbon fiber (right). The measuring points
are as follows: fiber type[G =̂ Glass, C =̂ Carbon]_mass[g]_number of rovings[-]_amplitude[µm].
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expansion (right).

The expansion range for glass fiber extends from −1.5% to 2.5% and for carbon fiber from −0.5%
to 8.5%. With the exception of an outlier in the carbon fiber test series, the amount of expansion is in
the low single-digit range. The midpoint test shows that the measurements can be expected to display
a high degree of scatter. A standard deviation of up to 60% for glass fiber and over 100% for carbon
fiber were determined in the respective midpoint tests.

3.2. Analysing the Effect of Manipulated Variables

In order to determine the effect of the individual manipulated variables, all results were analyzed
in effect diagrams. Figure 5 is an example of how effect diagrams (2 and 3) of individual manipulated
variables can be formed from a test setup (1) with two manipulated variables (a and b) and the test
variable y. The multi-dimensional test setup is reduced to the dimension of the manipulated variable
and the mean value per stage determined from the individual measuring points. The effect of a
particular manipulated variable is determined by linear interpolation. The effect is deemed positive if
the test variable increases as the manipulated variable increases, as shown in the effect diagram (2).
Otherwise, the effect is negative (see (3) in Figure 5).

Figure 6 shows the effect of US on the glass fiber for the test variable (expansion B). The effect
remains within a range of 3%. Transferred to the reference area without sonication, the area undergoes
only minimal change as a result of US. The manipulated variable weight per roving has the greatest
positive effect on expansion, followed by amplitude. The effect decreases with increasing layer
thickness. The midpoint test shows an average build-up of 0.8%, with a minimum value of 0.5% and
a maximum value of 1.4%. In comparison, the effect on expansion for all manipulated variables is
largely hidden in the scatter of the test setup.
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mass, amplitude and number of rovings.

A similar situation can be observed in the effect diagram for carbon fiber in Figure 7. The manipulated
variable weight per roving has, like the amplitude, the greatest positive effect on expansion. As in the
glass fiber tests, the effect on expansion decreases with increasing layer thickness.
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4. Discussion

This study investigated the effect of US on the expansion of a fiber strand. The focus of the study
was on quantifying the effect during sonication.

The investigation demonstrates that both ultrasonic amplitude and fiber tension have a similarly
positive effect on the expansion of a fiber strand. The fact that the expansion increases with increasing
fiber tension cannot be explained directly. This is because as the fiber tension increases, any potential
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expansion would require correspondingly higher external forces. However, since a relative increase in
the fiber strand was indeed determined, the fiber strand is correspondingly more compact at a higher
fiber tension. However, US has a small to virtually negligible effect on the expansion of both glass and
carbon fiber. The expansion lies within a range of maximum 3%, with a standard deviation of up to
60% for glass fiber and over 100% for carbon fiber, as determined in the midpoint tests. This means
that the fibers are limited in their freedom of movement, with the result that no expansion can be
achieved by US. Any further increase in amplitude will not lead to further expansion but to destruction
of the fibers. The fiber volume content is in direct correlation to the expansion. A minimal reduction in
the fiber volume content in the compaction area investigated is equivalent to a minimal increase in
permeability. Applied to pultrusion, the mechanical expansion of the fiber strand by US causes only a
slight improvement in impregnation. Any improvement to the mechanical properties of the pultruded
components as a result of US, as shown in Paper [24], can thus not be attributed to expansion of the
fiber strand but to an impact on the resin system.
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