Bttt

".LL".LL"L"; Journal of 4
s . .

L-.,L-.,L-.,L-:: Composites Science MD\Py
[ N N

Article

Arbitrary-Reconsidered-Double-Inclusion (ARDI)
Model to Describe the Anisotropic, Viscoelastic
Stiffness and Damping of Short

Fiber-Reinforced Thermoplastics

Alexander Kriwet 1'*(2 and Markus Stommel 2

1 Structural Dynamics Powertrain, NVH CAE, NVH Powertrain, Mercedes-Benz AG, Mercedesstr, 122,
70372 Stuttgart, Germany

Institute Polymer Materials, Leibniz-Institute for Polymer Research Dresden, Hohe Strafie 6,

01069 Dresden, Germany; stommel@ipfdd.de

Correspondence: alexander.kriwet@daimler.com

check for
Received: 25 February 2020; Accepted: 7 April 2020; Published: 9 April 2020 updates

Abstract: Current state of the art, simulation methods to determine the frequency-, temperature- and
humidity-depending stiffness and damping do not show an accurate prediction of the structural
dynamics of short-fiber-reinforced thermoplastics. Thus, in the current work the new developed
Arbitrary-Reconsidered-Double-Inclusion (ARDI) model has been used to describe the stiffness and
damping. Thereby, a homogenization equation has been used to derive the transversal-isotropic
stiffness and damping tensors. By rotating and weighting these tensors using orientation distribution
functions (ODF), it is possible to create a material database. A validation of the developed ARDI model
was performed on bending vibration specimens under variation of the fiber direction, temperature
and humidity, to investigate the structural dynamics. In general, the comparison of the results of the
simulation and experiments shows a good correlation of the eigenfrequencies and the amplitudes. The
main differences in the simulation can be traced back to the used modelling of the damping behavior.

Keywords: structural dynamics; composite plastics; stiffness; damping; fiber orientation;
ODF, viscoelasticity

1. Introduction

Engineering plastics have become an important component of modern industry as a construction
material, due to their good mechanical properties at low weight. Under Noise-Vibration-Harshness
(NVH) aspects, plastics show a reduced structure-borne sound transmission and sound radiation
behavior compared to metallic components due to their viscoelastic damping properties [1]. The
challenge is to describe the microstructural mechanics of the short glass fiber-reinforced plastics in a
suitable material model for a reliable prediction of the structural dynamics behavior.

For the description of the microstructural mechanics of short fiber-reinforced plastics, different
approaches were pursued, which are mainly based on the investigations of Eshelby [2]. Assuming that
the fibers have an ellipsoidal shape, the local stress and strain fields of the individual phases in the
composite were calculated with a localization equation. This describes the mean-field theory according
to the Mori-Tanaka model [3] and builds the basis for extended models like Hill’s self-consistent
model [4], Benveniste’s reformulation of the Mori-Tanaka model [5] or the second-moment mean-field
homogenization model of Dogri et al. [6].

A look at the microstructure of fiber-reinforced plastics shows that a high crystalline interphase
is formed between the fibers and the matrix [7]. In this context, three-phase models such as the
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Reconsidered-Double-Inclusion (RDI) model [7] were developed to characterize the material properties
more precisely. An overview of currently available material models is given in [8,9].

For the prediction of the structural dynamics of plastic components, established simulation
methods generate anisotropic, linear-elastic material models [1]. In this context, the integrative
simulation method as a coupling between process and structure simulation has become an essential
tool for the efficient design of short fiber-reinforced plastic components [10]. Here, the fiber orientation
tensors were coupled to the mesh of the components to demonstrate the anisotropic material properties.
This condition allows an adequate description of the anisotropic stiffness of short fiber-reinforced
plastics in the elastic range.

For the description of the damping of plastics, reduced damping models such as Rayleigh or
modal damping are still used today [1,11]. The main disadvantage is that the damping constants
are usually iteratively optimized using a reverse engineering approach based on experimental data.
Furthermore, the stiffness and damping of short fiber-reinforced plastics varies depending on the
excitation frequency, temperature and humidity [12]. This effect is also neglected when defining a
static material model for the stiffness and damping.

Under the usage of Prony-series it is possible to model the frequency-dependent viscoelastic
material behavior of the plastics more accurate. Thereby, a linear interpolation of the material
properties between a defined number of interpolation points is performed and weighted by a sum
function. Park and Schapery [13] as well as Breuer et al. [14] have demonstrated a successfully
application of Prony-series formation for the description of the frequency-dependent stiffness of
fiber-reinforced plastics.

In this work, a novel anisotropic viscoelastic material model based on the RDI model and
Prony-series formation is proposed, to describe the frequency-, temperature- and humidity-dependent
stiffness and damping of short glass fiber-reinforced thermoplastics.

2. Methodology and Approach

In order to achieve the aim of this work, the first step is to define the material model. Therefore,
the existing RDI model has been extended to the Arbitrary-Reconsidered-Double-Inclusion (ARDI)
model, by using the complex modulus to consider the damping behavior. Afterwards, the orientation
distribution function (ODF) has been reconstructed according to the maximum entropy method
(MEM) [15] for a number of orientation tensors. This method allows the creation of a discrete ARDI
material database.

In the next step, the execution and evaluation process of the experiments have been defined.
For the execution of the bending vibration tests, a system for the uniaxial vibration excitation of test
specimens [16] has been used. The positioning of this system in a climatic chamber allows the execution
of the bending vibration tests under defined temperature and humidity conditions.

The evaluation of the bending vibration tests was carried out with the resonance-curve method [17]
and the 3 dB method [18]. In this context, the evaluation of the bending vibration tests of pure
thermoplastic material specimens provides the storage and loss modulus for the calibration of the
ARDI model. The evaluation of the bending vibration tests of the glass fiber-reinforced thermoplastics
provides the structural dynamics behavior in the form of an accelerance frequency response function
(FRF) for a comparison to the simulation.

The present work focuses on the thermoplastics PA66 (polyamide 6.6) and PPA (polyphthalamide)
as pure matrix materials and in the reinforced state with 30 (GF30) and 50 (GF50) weight percent
glass fibers.

The bending vibration tests of the plastics were performed under conditioning of 23 °C with
0% relative humidity (rh), 130 °C with 0% rh and 23 °C with 50% rh. The selected temperatures and
humidities were derived from the temperatures and humidities where the plastics of this work are
typically used (23 °C, 0% rh) but also where the selected plastics can still be used in a technically useful
way (maximum humidity 50% rh, maximum temperature 130 °C).
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The micro-computed topography (u-CT) measurements of the glass fiber-reinforced materials
allow the determination of the experimental fiber orientation tensors. The u-CT specimens have been
prepared from the center of the plate material from the same batch as the bending specimens. Based
on these p-CT results, it is possible to adjust the setup of the filling simulation to improve the quality
for predicting the fiber orientation. Based on the calculated velocity field of the flow, the Folgar-Tucker
model has been used to determine the fiber orientation tensor [19].

In the next step, a nearest neighbor mapping process has been used to couple the calculated fiber
orientation tensors from the computational fluid dynamic (CFD) mesh of the filling simulation to the
finite-element (FE) model mesh. Then, the material properties from the ARDI material database have
been assigned for each element of the component according to the smallest error deviation of the
Euclidean standard of the orientation tensors.

In the last step the calculation of the structural dynamics for each continuum element under
update of the stiffness and damping tensor has been performed. For this, a linear-viscoelastic material
law based on a Prony-series formulation via subroutine (UMAT) has been used [14].

The comparison of the results of the existing RDI to the ARDI model allows the assessment of
the significant extension to the state of the art. For this purpose, the existing RDI model has been
combined with a global modal damping (GMD) behavior approach. The GMD behavior has been
modeled as ratio between stiffness and damping tensor and thus corresponds to the dissipation factor.

The calculation of the FRF of the bending specimens allows a comparison to the experiments
and an assessment of the quality of the developed ARDI model for the selected temperatures and
humidities. Thus, it is possible to assess whether the ARDI model is able to simulate a wide range of
humidity and temperature conditions under the usage of the defined calibration method. The concept
of this work is shown in Figure 1.

ARDI Material Model

T 1. Homogenization | | 2.Homogenization | | Material Database h
(uni. Stiffness/Damping) . (Max. Entropie Method) — (discrete orientations)
T et frem (Cves)  (Cugp)
Fill Simulation | | Orientation Coupling | | Properties Asgmt.
(fiber orientation tensor) (CFD = FEM) g (min. error deviation)
Qg nearest neighbour | Ten
Post-Processing FE-Simulation
(Frequency Response) g (Prony-Series)
|G =G icy

iy

Figure 1. Concept for embedding the Arbitrary-Reconsidered-Double-Inclusion (ARDI) material model
in a simulation routine.

3. Arbitrary-Reconsidered-Double-Inclusion (ARDI) Material Model

This section presents the equations of the ARDI model and corresponding, the implementation of
the model in a simulation routine. The ARDI model consists of four significant steps: the first and
second homogenization step, the generation of a material database and the property assignment.

3.1. First Homogenization Step

The ARDI model is based on the RDI model according to literature [7]. The RDI model is a
two-step homogenization method to characterize three-phase composite structures with respect to a
unidirectional, transversal-isotropic effective composite stiffness. In semi-crystalline thermoplastics,
the three phases are the fibers, the matrix and a highly crystalline interphase between matrix and fiber.
The effective stiffness tensor has been calculated by Equation (1):

cl =¥+ flackMAT + fEACS™MAC, (1)
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with
ACEM =y -CY, )

and
ACs™M = ¢S - Y. ®)

Here, Cs represents a fourth rank stiffness tensor, f the fiber volume fraction and A a strain
concentration tensor. The index M stands for the matrix, ! for the inclusion (e.g., glass fibers) and ©
for the coating or interphase. A detailed derivation of Equation (1) is given in [7]. Assuming that the
main damping contribution in the composite is introduced by the matrix [20], Equation (1) has been
modified to Equation (4):

¢/ = it - fleyial - fecyiac. @)

Here, the fibers and interphases have a negligible damping behavior. Therefore, the determined
total damping tensor of the matrix material CZLVI is reduced by the volume fraction of the fibers and the
interphases. Furthermore, Cy, represents a fourth rank damping tensor.

The tensors CM, C! and C have been assumed as transversal-isotropic stiffness Cs or damping
C. matrices and have been determined by the inverse of the matrix C™! according to Equation (5):

1 e
E TF F 00 0
v 1 %
—E—g g —g 0 0 0
@ 1
1 _':”_‘k‘ —E—; EY 000
G 00 0 £ )
00 0 o A
k
00 0 2(14+7)
0 0 £

with E’ as unidirectional module and v* as Poisson’s ratio of the respective phase a : M;I;C and
depending on whether the storage or loss module k : S; L have been used. The values of E{’ correspond
to experimental determined storage Eg/[ or loss module EZLVI .

In the next step, the effective tensors have been rotated in discrete directions. For this, the spatial
construction of an icosphere has been used. A detailed description can be found in [15]. In the next
step, the effective tensors are rotated into a discrete number of directions of the icosphere, according to
Equation (6):

cll =kckT. ©)

The rotation matrix K is defined by:

1 2
k= [ ﬁai 215(59) ] @
with
Kf].l) =02, ®)
KI(JZ) = Qimod(j+1,3) Limod(j+2,3)7 ©)
K,(]s) = Quod(i+13)] Ymod (i+2,3)j» (10)
Kl(f) = Qyiod(i41,3)mod(j+1,3) lmod (i+2,3)mod(j+2,3) (11)

+Qmod(i+1,3)mod(]’-&-2,3) Qmod(i+2,3)mod(j+1,3) ’



J. Compos. Sci. 2020, 4, 37 5o0f 21

andi,j = 1...3. Furthermore:
. i ifi<3
mod(z,3)—{ i—3 ifi>3 } (12)
Q) corresponds to an orthogonal transformation matrix from the basis vectors e = {e, e, e3} and
m = {my, my, m3}, whereby:
Ql’]’ = mi'e]-, (13)

and
o0’ =0Ta=1, (14)

with I as unit tensor. A detailed derivation of the rotation matrix K can be found in [21,22].

3.2. Second Homogenization Step

In the second homogenization step, the ODF is reconstructed for a discrete number of eigenvalue
combinations according to the MEM. As result, it is possible to calculate the effective composite stiffness
and damping over a sum function for all of these discrete eigenvalue combinations.

First, a discrete number of eigenvalue combinations has been generated. The eigenvalues represent
the reduced second order orientation tensor and can accept values between the following equations:

filxy) = —x1 +1, (15)
fa(x2) = =224+ 1, (16)
f3(x3) = x3, (17)

with {x; €eR | 0<x1 <05}, {xx e R|0<x<1/3} and {x3€R | 1/3 <x3 <0.5}. The intersection
points of these equations represent a two-dimensional triangle. A meshing of the inner area of this
triangle has been implemented on basis of a Delaunay method [23]. As a result, the coordinates of
the mesh nodes correspond to a discrete number of two dimensional eigenvalue combinations. With
regard to the following two boundary conditions:

ayx +ayy +az;z =1, (18)
Axx 2 Ayy 2 Oz, (19)

the complete second order orientation tensor:
a= {axx/ Ayy, azz}/ (20)

can be derived for all of these mesh nodes. Figure 2 shows the meshed two-dimensional triangle with
the corresponding eigenvalue combinations.
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Qyy

Figure 2. Delaunay-based triangle mesh with the corresponding eigenvalue combinations.

Next, the MEM is applied to reconstruct the ODF for the discrete number of eigenvalue
combinations of the previous step. This leads to a discrete number of ODFs. The MEM uses
the entropy to assess the coherence to an existing information content. In case of ODF reconstruction,
the entropy represents the deviation of the calculated probability. The MEM has been used due to the
following advantage: The method is based on a physical approach without the necessary of a closure
formulation and can reconstruct a large area of fiber orientation distribution, with respectively small
error deviations compared to other reconstruction methods [15].

A Bingham distribution function has been used for reconstructing the ODF. This implementation
corresponds to a normal distribution on the unit sphere. The general bivariate MEM has been
reformulated to a minimization problem. Thereby the deviation (entropy) between a calculated and a
given second order fiber orientation tensor is minimized. The minimization problem can be defined
with the MEM as:

2
fuaem = (digtw; = ax)? + (diywi = ayy ) + (dizw; — az2)7, (21)

whereby:
dij = ﬁ?j, (22)

and ﬁi]- correspond to the surface points of the icosphere. axy, 4,y and 4z, correspond to the entries of
the major axis of a given second order fiber orientation tensor of the previous step. w; is the probability
which the fibers in a volume element point in discrete direction p;. A detailed derivation of the
corresponding equations of the MEM is given in [15].

3.3. Material Database

For the determination of the representative composite stiffness, the orientation averaging approach
after Advani and Tucker [24] has been used. Thereby, the individual stiffness in discrete directions
multiplied by the corresponding value of a given ODF results in the effective composite stiffness,

according to:
N

(Cyes)~ Y CaL wi. (23)

i=1

and transferred to the composite damping applies:

N

(CveL) ~ Z C;lewz (24)
im1

This approach of a sum function for describing the effective composite stiffness has already been
successfully used in existing studies [7,25-28]. The approach of a sum function to describe the effective
damping of a composite material represents a new methodology. On the use of a discrete numbers of
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ODFs, it is possible to create a material database consisting of a defined number of composite stiffness
(CyE,s) and damping tensors (Cyg ).

In the next step, an assignment of the properties from the material database to the volume elements
of the components to be calculated has been performed. It is based on the principle of the smallest
error deviation of the Euclidean standard between the fiber orientation tensor of the elements of the
components and the stored orientation tensors of the database. Here:

2 2 2
fEN = (axx,G - ﬂxx,C) + (ayy,G - ayy,C) + (azz,G - ﬂzz,c) ’ (25)

has been minimized, where:
ac = {axx,Gr Ayy,Gs aZZ,G}/ (26)

corresponds to the orientation tensors of the volume elements of the component and:
ac = {axx,C/ Ayy,C/ azz,C}/ (27)
corresponds to an orientation tensor of the material database.

3.4. User-Defined Material Subroutine

In the present work, the frequency-dependent, linear-viscoelastic material behavior of the plastics
has been calculated using a Prony-series into a user subroutine (UMAT) in the FE software Abaqus
version 2017. Thereby, the frequency dependent stiffness tensor le]. (f) has been determined by a
Prony-series:

('=f)
r

n
Cij(f) = Cljg+ ). Cpj e 7 (28)
r=1

C.

ij,
experimental determined EISVI( fo) in Formula (5) and inversion. The Prony-series elements of the
stiffness matrix result from the evaluation of E]SVI( f) at the selected support point r. For the Prony
support points result:

o corresponds to the stiffness tensor at start frequency fo and is determined by inserting the

(fmax — fo)
Eb{fo+ L)) )
where 7 is the total number of selected interpolation support points. The Prony support point E]SVI has

been inserted in Equation (5) and inverted to the Prony stiffness tensor C.. . Following, the stress of a

ijr
volume element with viscoelastic material behavior can be defined as:
f
o = f C(f)é; df, (30)
fo

whereby ¢;, is determined as Prony strain. A detailed description of the used Prony series formulation
can be found in [14].

In the present work, an extended approach is followed to consider the frequency-dependent
damping behavior. The frequency-dependent stiffness defined in Equation (30) has been extended by
the damping tensor to:

f
o= [(cptn +icyn)esar, (1)
fo
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where C;; (f) corresponds to the frequency-dependent damping tensor and i to the complex
number. Thus:

C;i(f) = Ci;(f) +iCL(f), (32)

canbe treated as a complex module. The frequency-dependent damping tensor C;; (f) is also determined
by a Prony-series with

Ci(f)=Ciy+ Z C;, e (33)

C;},o corresponds to the damping tensor at start frequency and C;;',r corresponds to the Prony

damping part, which are formulated with E]LVI (f), analogous to the procedure described above.

4. Bending Vibration Tests

The determination of the dynamic material properties of the glass fiber-reinforced plastics has
been carried out on bending specimens with the dimension 180 x 15 X 2 mm which have been prepared
from an injection molded plate material at 0° (Inflow - IF), 45° (Midflow - MF) and 90° (Crossflow - CF)
to the flow direction, according to Figure 3. The injection molded plate material dimension is 180 x
180 x 2 mm. With regard to Figure 3, the bending specimens of the pure matrix plate material have
been prepared as 0° oriented respected to the injection flow direction. Preliminary investigations show
that the dynamic material properties of the pure matrix material do not differ with variation of the
direction of orientation.

1Injection sidel

0° specimen (Inflow — IF)

90° specimen (Crossflow — CF)

N

Figure 3. Positions of the 0° (IF), 45° (MF) and 90° (CF) orientated bending specimens.

The bending specimens have been applied to a connection structure via a clamp fit. A shaker
with stinger connection to this structure allows a uniaxial vibration excitation of the test specimens.
Furthermore, the testing structure has been placed in a climatic chamber and allows a vibration
excitation of the specimens under defined temperature and humidity conditions.

To excite the specimens, the shaker was driven with a defined sine sweep in the range from 100 Hz
to 8 kHz. The acceleration of the specimens under vibration excitation has been recorded by using the
PSV-500-3D scanning laser Vibrometer of the company Polytec. The excitation force of the specimens
has been recorded using a Type 8001 impedance sensor of the company Briiel & Kjaer. Thus, it is
possible to determine the FRF of the bending specimens as ratio between the displacement of the lower
end of the specimens and the applied excitation force. A detailed description of the method used to
characterize the dynamic material properties is given in [16]. Figure 4 shows schematically the used
test arrangement with resulting FRF.
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climatic chamber
4y

windm\p\v ~ clamp fit Impedance Shaker FRE
\ bending , sensor :
3D Laser ‘] specimen =
Vibrometer n
Stinger ] i
B i ;
2 i SR T
Force (F) T § ::= ii i
] i i, s /A |
connection__ Sal) | < / : '\1\ . {j\.j Wi
structure [0 £ -
% Frequency

Acceleration (a) computer

Figure 4. Principle sketch of the used bending vibration test arrangement.

Assuming a fixed-free connection and excitation of an Euler-Bernoulli beam, the m-th natural
frequency wy ,; has been obtained according to:

E’'l
2. —, 34
wo,m = (Km ) 0 Cl4 (34)

where E’ is the storage modulus of the material, I is the moment of inertia of the bending specimen, p
is the density of the material, Ac is the cross-sectional area of the bending specimen, ! is the length of
the specimen. ;! is a characteristic factor for describing the shape of natural oscillation as a function
of the bearing of the beam. This can be determined using;:

kml = (2m—-1)=, (35)

N3

for the m-th natural frequency and m € N. Switching Equation (34) to the storage module results with:

W5, pAclt
Om_P2C (36)

E =
(Kml)4 I

Equation (36) allows to evaluate the FRF of the bending vibration tests at the occurring resonance
frequencies to the storage module. Using linear inter- and extrapolation, the storage module as function
of the frequency has been determined. Furthermore, under conditioning and testing the plastics in the
climatic chamber, it is possible to determine the frequency-, temperature- and humidity-dependent
storage modulus EX(f, T, rh).

Following, the dissipation factor tan(9) at m-th natural frequency can be determined using the 3
dB method [18] according to Figure 5.



J. Compos. Sci. 2020, 4, 37 10 of 21

wO,m
xD,max

= = __ Xomax
o 0,—3dB =
T V2
e Wy m — Wim
_ tan(§) = ——
g-l ‘:')(],m
<

...................... W1 ||| @zm " e,

Frequency w

Figure 5. Estimation of the dissipation factor tan() at m -th natural frequency of a FRF.

Equation (37) describes the relationship between dissipation factor, storage and loss module with:

"

tan(6) = TR

(37)

Thus, it is possible to convert Equation (37) to the loss modulus E” and determine the loss modulus
as function of the frequency, temperature and humidity E]LVI (f, T, rh) by linear inter- and extrapolation
over the frequency. As result, the values of EISVI and E%’I allow calibrating the ARDI model.

5. Simulation

In the present work, the developed ARDI material model has been applied to investigate the
structural dynamics of a bending specimen. Starting point is the geometry of the bending specimen
with the dimension 180x15x2mm. Using Abaqus CAE version 2017, this geometry has been discretized
into 27,000 C3D8 tetrahedral elements. This corresponds to an element size of 1x1x0.2 mm and thus
10 elements across the thickness. A fixed-free boundary condition has been applied. As result, in
the simulation, the upper area of the bending specimen has been excited unidirectional with a force
amplitude, whereas all other directions have been blocked against movement. Figure 6 shows the
discretized bending specimen with applied boundary conditions.

Boundary Conditions

FE mesh

Figure 6. Finite-element (FE) mesh of the discretized bending specimen with position of applied
boundary conditions.
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6. Results

6.1. Stiffness and Damping Behaviour

The unidirectional, transversal-isotropic, fourth ranked stiffness Cgf / and damping C‘;f ! tensors
were rotated by the rotation matrix K into different planar spatial directions of the icosphere and thus
resulting fiber directions in the plain, corresponding to Figure 7.

(0,0,1) planar
. cross-section

Icosphere
’ N -- ™~ 90° Orientation

<\ (0,1,0) (0,L,0) — — = —
) | Rotation
angle

- Fiber

~ - - Orientation
0,0,1) (1,0,0)

Finite volume P T 11
> o T | |
element ——+— ~ ! |
P = ‘ |
o s s [
[ | | | ‘
// i// - - - | | ]l | | |
] L - ~
“ e~ "~ 7| (0,1,00 0°Orientation
P
TR P —
(1,0,0), Jeet
fiber

Figure 7. Schematic explanation of the rotating procedure of the unidirectional, transversal-isotropic
tensors in different fiber directions.

C;flfnl describes the modulus orientated to the main global (1,0,0)—direction and k : S;L

depending on whether the experimental determined storage S or loss modulus L has been used to

calibrate the tensor. Following, CIi{ZfZZZ describes the modulus in the (0, 1, 0)—direction. C;;g;% is equal

to Clifzj;zz due to the used transversal-isotropic behavior. and Cifzj;zs describes the main transverse
modulus components.

Figure 8 shows the main matrix entries of the fourth ranked stiffness Cgf f and damping tensor sz f

of PA66-GF30 at 23 °C and 0% rh. Figure 8a shows that the stiffness in the main axis direction Cgf {111 is

highest, when all fibers pointing in the main (1,0, 0)-direction (0°). As the angle deviation of the fibers

from the main axis increases, the stiffness Cesf 1f111

main axis C‘,;f {222 remains relatively constant. This applies up to a rotation angle of the fibers of about
ff

45°. The transverse modulus C§,1212

its maximum under 45° fiber orientation. At this point, the trend of the modulus Cesf {111 and C‘;f {222

reverses for a further rotation from 45 to 90°. In this case, the transverse modulus Cesf 2f323 is constant
due to the planar rotation.

decreases, whereas the stiffness perpendicular to the

increases continuously with a rotation from 0 to 45° and reaches



J. Compos. Sci. 2020, 4, 37 12 of 21

C:f{r] 11 C;,[z‘;zz C:,Ixiz 12 Cg_’z&z‘{ - Ci{l’l 11 Ci,’zfzzz C:Il’;uz Ci,’z’szs
10000 S0 -

E 8000 E,,u - 1
Z 6000 = =
E §40 —
=S 4000 ———— =
’3 5 )
= 2000 =

0 0

0 10 20 30 10 50 60 70 80 90 0 0 20 30 10 50 60 70 80 90
Fiber Orientation [°] Fiber Orientation [?]
(a) (b)
Figure 8. Components of the fourth ranked (a) stiffness and (b) damping tensors of PA66-GF30 at 23

°C and 0% rh.

Figure 8b shows that the damping C; / {111 is lowest, when all fibers pointing in the main

(1,0,0)—direction (0°), while the damping perpendicular Cz 570y 18 highest. This is due to the used
definition of the damping tensor. Here, the strain concentration tensor, which includes the geometry
tensor of the ellipsoid inclusions, increase the more fibers point in the main axis direction. Thus, the
effective composite damping decrease.

As the angle deviation of the fibers from the main axis increases, the damping perpendicular

oidd

L2222
a rotation angle of the fibers of about 45°. Following, the trend of the modulus C; / {111 and sz {222
reverses for a further rotation from 45 to 90°, comparable to the stiffness tensor.

Figure 9 shows the matrix entries of the fourth ranked stiffness C‘Zf / and damping tensor C‘Zf S of
PPA-GF50 at 23 °C and 0% rh. Due to the same definition of the stiffness and damping tensors, the
trend of the curves of the tensor components of PPA-GF50 are comparable to the PA66-GF30, according
to Figure 8. Due to the increased fiber volume fraction, the stiffness tensor of the PPA-GF50 is increased.
The damping tensors of the PPA-GF50 are comparable to the PA66-GF30. This is due to an increased
damping tensor of the pure PPA matrix material, but stronger reduction of this damping tensor due to

decreases, whereas the damping in the main axis CeLf 1111 remains relatively constant up to

an increased fiber volume fraction.

= C;ﬂflu C;{z';zz C: ilzu C:Izﬂzx T C:{IJ‘I 11 szlzu CLL’nlz 12 szz{u;
13000 100
= B \\ = S0 -
- \ - i
= 12000 T s P
— N — ) /
3 & = 10 g
= 6000 -] . 2
= = 2
1) 0
0 10 20 30 10 50 60 70 80 90 0 10 20 30 10 50 60 70 80 90
Fiber Orientation [°] Fiber Orientation [?]
(a) (b)
Figure 9. Components of the fourth ranked (a) stiffness and (b) damping tensors of PPA-GF50 at 23 °C
and 0% rh.

Figure 10 shows the main matrix entry of the stiffness ¢/’ 1111 and damping tensor Cif {111
PA66-GF30 at 23 °C and 0% rh, 23 °C and 50% rh, 130 °C and 0% rh Figure 10a shows that the stiffness
decreases with increasing humidity and temperature. Figure 10b shows that damping increases
sharply with an increase in humidity and temperature. The influence of temperature increase is more
pronounced than the influence of humidity increase. Both, the decrease in stiffness and the increase in
damping is generally due to the softening behavior of the matrix material with an increase in humidity
or temperature [29,30].
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Figure 10. Components of the fourth ranked (a) stiffness and (b) damping tensors of PA66-GF30 at 23

°C and 0% rh, 23 °C and 50% rh, 130 °C and 0% rh.

Figure 11 shows the main matrix entry of the stiffness Cgf {111 and damping tensor Cif {111 of
PPA-GF50 at 23 °C and 0% rh, 23 °C and 50% rh, 130 °C and 0% rh. In comparison to Figure 10,
Figure 11 also shows that the stiffness of the PPA-GF50 decreases with an increase in humidity and
temperature, while damping increases. In comparison to PA66-GF30, the influence of the increase in
humidity on the stiffness and damping of the PPA-GF50 is less pronounced, as the PPA matrix material

has a reduced water absorption capacity [31].

eI C0%rh

oI 23 Cs0%rh
5,1111

o/ fA30°C.0% h
51111

51111
18000

12000

6000

Modulus [MPa]

0 10 20 30 10 50 60 70 80

Fiber Orientation [°]

90

Modulus [MPa]

350
300
250
200
150

100

el s nvirn

ef f,23°C,50%rh
L1111 C

&I 130°C. 0% h
L1111

L1111

0 10 20 30 10 50 60 70 50 90

Fiber Orientation [°]

(a)

(b)

Figure 11. Components of the fourth ranked (a) stiffness and (b) damping tensors of PPA-GF50 at 23 °C
and 0% rh, 23 °C and 50% rh, 130 °C and 0% rh.

6.2. u-CT Measurement and Filling Simulation

The convention of the axis system of the p-CT specimens is shown schematically in Figure 12.
In this case, the z-direction corresponds to the injection flow direction. Using the filling simulation
of the three-dimensional geometry of the plate material, it is possible to derive the second order
fiber orientation tensor agpy. The filling simulation in this work was performed with the software
CADMould by the company PART Engineering.

X

Figure 12. u-CT specimen with convention of the associated axis system.
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In the first step of the filling simulation, a CFD mesh of the plate material has been generated.
Then the process parameters for the production of the material plate have been set. The process
parameters of the PA66-GF30 originates from the material database of the CADMould software and the
parameters of the PPA-GF50 have been taken from a specification of the manufacturer. In the next step,
the filling simulation has been performed. The fiber orientation tensors of the filling simulation agjys of
the plate material have been evaluated at the same center positions of the plate material comparable
to the u-CT investigations. The measured act and calculated agpy fiber orientation tensors of the
PA66-GF30 plate material are shown in Figure 13.

0.8 CT
L e N Ot N S SRR z-Dir.
'g 0.7 . £ L ] x-Dir.
a 0.6 vy y-Dir
= 05 A
g 0.4 : i Sim.
= P ——2z-Dir.
1] H—

e 03 —=—x-Dir.
-2 0.2 ——y-Dir
O 01 i —fF_—4 e M
0
0 0.2 0.4 0.6 0.8 1

Nom. Thickness [-]

Figure 13. Fiber orientation tensors of the measured (CT) and calculated (Sim.) PA66-GF30 specimens.

Figure 13 shows that the PA66-GF30 has a narrow, but very pronounced edge and middle layer.
Furthermore, Figure 13 shows a good correlation of the trend of the measured fiber orientation tensors
of the PA66-GF30 in comparison to the filling simulation. Only the pronounced orientation gradient in
the middle layer is not covered due to the absence of an evaluation point in the middle of the plate.
This is associated with loss of information. As result, the orientation tensor in flow direction is slightly
increased in the middle of the flow channel.

The measured act and calculated agjy fiber orientation tensors of the PPA-GF50 plate material
are shown in Figure 14. Figure 14 shows that the PPA-GF50 has a continuous transition from edge to
middle layer. As result, there is a broad and strong pronounced middle layer. Figure 14 also shows
that the continuous transition and thus the change in the orientation gradient of the PPA-GF50 material
does not show a good correspondence to the filling simulation. The result is a loss of information in
the middle of the flow channel comparable to the PA66-GF30, which also leads to an increase of the
orientation tensor in the flow direction.
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Figure 14. Fiber orientation tensors of the measured (CT) and calculated (Sim.) PPA-GF50 specimens.

The comparison shows that the calculated fiber orientation tensors of the filling simulation are
sufficient to be used for the calculation of the direction-dependent material properties. In this case, an
adjustment of the settings of the filling simulation was purposeful.

6.3. Orientation Tensor Mapping Procedure

In order use the calculated second order fiber orientation tensor agyys for the FE simulation of the
structural dynamics, the data of the filling simulation (CFD) have been transferred. This has been done
using the nearest neighbor principle.

The vector distance between the nodes of the CFD and FE mesh has been evaluated. Any node of
the FE mesh with the smallest distance to another node of the CFD mesh has been assigned to each
other. As result, the eigenvalues have been transferred from the CFD to the FE mesh. The assignment of
the eigenvectors of the elements has been performed to the same principle. The eigenvectors describe
the position of the elements (local coordinate system) relative to a base (global coordinate system).

In order to keep the loss of information low, a fine discretization of the FE mesh is necessary. For
the mapping process the software Converse has been used. In addition, [10,32] describes the principle
of the nearest neighbor in more detail. Figure 15 shows the fiber orientation tensor of the filling
simulation of the plate material, as well as the transferred fiber orientation tensor to the geometry of an
IF bending specimen.

100
Edge Layer (E)

Interlayer (1)

Middle Layer (M)

Interlayer (1)

degree of orientation [%]

Edge Layer (E)

M 1 I E
0

Figure 15. Fiber orientation of the fill simulation of the plate material and mapped bending specimen.
6.4. Comparison between RDI and the ARDI Model
Figure 16a shows the FRF of the RDI model combined with the approach of a GMD behavior.
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Figure 16. (a) Frequency response function (FRF) of the Reconsidered-Double-Inclusion (RDI) model
with global modal damping (GMD), the ARDI model and the experiment of PA66-GF30 of the IF
orientation at 23 °C and 0% rh and (b) dissipation factors of the RDI and ARDI model.

The RDI model is based on the definition of a homogenized, unidirectional, transversal-isotropic
stiffness tensor and does not provide a reconstruction of ODFs for different fiber orientation tensors.
As result, the stiffness tensor can only be rotated in discrete spatial directions.

Following, the comparison of the FRF of the RDI model with the experiment shows that the
natural frequencies are shifted towards higher frequencies, corresponding to Figure 16a. This is due to
a stiffer behavior of the modelled stiffness tensor of the RDI model compared to the experiments. In
structural dynamics, an increase in the stiffness is shown by a shift of the natural frequencies to higher
frequencies. This is derived from the resonance-curve method and Equations (34) to (36).

Furthermore, Figure 16a shows the FRF of the extended ARDI model. Using the MEM to
reconstruct discrete ODFs, the effective composite stiffness can be reconstructed very well by the ARDI
model. The result is that the ARDI model shows a good agreement of the natural frequencies of the
FRF compared to the experiment.

Corresponding to the 3 dB method, the amplitude of the FRF is a parameter to assess the damping
of a system. In the present case, both the RDI model with GMD behavior and the ARDI model shows a
good agreement of the amplitude of the FRF in comparison with the experiment. The optimization of
the GMD behavior has been performed numerically in a reverse engineering approach using Altair
HyperStudy software and the FRF of the experiment.

Figure 16b shows the dissipation factors tan(0) as ratios of the main entries of the stiffness and
damping tensors of the RDI and ARDI model as a function of frequency. The dissipation factors of the
RDI model tan(é)RDI’GMD start uniformly at 0 Hz with a value of 0. After a curved increase a linear
course follows with different slopes up to the maximum frequency. The dissipation factor pointing in

the main axis direction tan(é)fﬁll’GMD is lowest and the dissipation factor perpendicular to the main

axis direction tan((S)Iz{ZIZ’GMD is highest. The dissipation factor in thickness direction tan(é)?ﬁé’GMD is

RDI,GMD
2222 :

In comparison, the dissipation factors of the ARDI model tan(5)**P" do not start with a value of 0
at 0 Hz, whereas the further course is approximately linear to maximum frequency. Furthermore, the

dissipation factor in the main axis direction tan (5)‘1411211131 is lowest and the dissipation factor perpendicular

to the main axis direction tan(é)’zggl is highest. The dissipation factor in thickness direction tan(é)éﬁgl

is identical to the dissipation factor tan(é)?ﬁ?l, due to the used transversal-isotropic behavior.

On the one hand, the comparison shows that the reverse engineering approach is a good method
to determine the dissipation factors and thus the components of the damping tensor, if there exists
no knowledge about the damping of an entire system. This is shown by a good agreement of the
amplitudes of the FRF of the RDI model with GMD behavior compared to the experiment.

On the other hand, the stiffness tensor of the RDI model does not represent a reliable input for the

simulation due to a too stiff behavior. This shows the main disadvantage of the reverse engineering

slightly reduced compared to tan ()
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approach, it is a pure numerical optimization of the damping behavior based on the defined input of
the simulation.

In comparison, the ARDI model provides a material-specific description of the stiffness and
damping tensors based on calibration data of bending vibration tests. This is shown by a good

agreement of the natural frequencies and the amplitudes of the FRF of the ARDI model compared to
the experiment.

6.5. FRFs of ARDI Model

Figure 17 shows the FRF of the IF, MF and CF bending specimens of the PA66-GF30 at 23 °C and
0% rh. Figure 17 shows that the IF-FRF has the highest stiffness (high natural frequencies). This is due
to the high orientation of the fibers in the flow direction of the IF specimens, which correlates with the
resulting stiffness. As result, the stiffness of the PA66-GF30 decreases (reduced natural frequencies)
with increasing deviation to the IF direction of the material.

Simulation - Experiment
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— — 1
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- ] ) ]
E L NNV £ AW
T N\ VYL 10 oW v Vi
100 1000 10000 100 1000 10000
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Figure 17. FRF of the simulation and the experiments of PA66-GF30 of the IF (a), MF (b) and CF (c)
orientation at 23 °C and 0% rh.

Furthermore, the damping increases with increasing deviation of the fibers from the direction of
propagation of the vibrations. Energy dissipation in the matrix and at the fibers can be considered
as potential physical reason. The more the fibers are transverse to the direction of loading, the more
energy is dissipated at the fibers and the interphases. Vice versa, the more fibers in the direction of the
vibrations, the lower the damping, since the fibers and interphases act like a vibration conductor. This
effect correlates to a number of existing investigations such as [33,34]. Corresponding to Figure 17,
the damping of the PA66-GF30 increases (reduced amplitudes) with increasing deviation to the IF
direction. The FRF of the PPA-GF50 according to Figure 18 shows a similar behavior.
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Figure 18. FRF of the simulation and the experiments of PPA-GF50 of the IF (a), MF (b) and CF (c)
orientation at 23 °C and 0% rh.

The MF orientation of the PPA-GF50 according to Figure 18b shows a significant deviation of the
amplitude towards higher frequencies and can be traced back to an error during the execution of the
bending vibration tests.

Furthermore, all FRFs of Figures 17 and 18 show that the oscillation grounds in the simulation
are shifted towards higher amplitudes with increasing frequency. This is mainly due to the defined
modelling of the damping using the ARDI model with inter- and extrapolation via Prony-series
formulation. The evaluation of the damping behavior of the glass fiber-reinforced PA66-GF30, as well
as the PPA-GF50, generally tends to a non-linear course of the damping, especially in the direction of
higher frequencies.

Figure 19 shows the IF-FRF of the PA66-GF30 bending specimens at 23 °C, 50% rh and 130 °C, 0%
rh. It shows that an increase in temperature and/or humidity leads to a strong reduction in stiffness
(decrease of natural frequencies) and a strong increase in damping (decrease of amplitude). This
corresponds to the results of chapter 6.1. In the present case with selected test conditions, the influence
of the temperature increase on stiffness and damping is more pronounced than the increase in humidity.
The PPA-GF50 shows a similar behavior with an increase in temperature and humidity, according to
Figure 20.
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Figure 19. FRF of the simulation and the experiments of PA66-GF30 of the IF orientation at 23 °C and
50% rh (a) and 130 °C and 0% rh (b).
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Figure 20. FRF of the simulation and the experiments of PPA-GF50 of the IF orientation at 23 °C and
50% rh (a) and 130 °C and 0% rh (b).

The comparison between the FRFs of the simulation with the ARDI model and the experiments
generally shows a good correlation of the natural frequencies up to 6 kHz and a good correlation of the
amplitude up to 1 kHz.

The ARDI model is not sufficient above 1 kHz to describe the damping behavior. This applies in
particular to an increase in temperature or humidity. This is shown by a strong shift of the oscillation
grounds in the simulation with increasing frequency in the direction of higher amplitudes and tends to
the assumption, that the damping behavior is nonlinear.

On the other hand, this effect is enhanced by the used calibration method. The ARDI model
have been calibrated with the stiffness and damping of the pure matrix material. However, due to the
increased humidity and temperature, only a small number of natural frequencies can be evaluated with
the usage of the resonance-curve method and the 3 dB method below 1 kHz. Higher frequency ranges
are too noisy and do not provide acceptable values for the stiffness and damping. Consequently, the
linear extrapolated stiffness and damping tensors are not sufficient to describe the structural dynamics
behavior on the use of the ARDI model.

7. Conclusions

In the present work, the novel ARDI model for the description of the anisotropic, viscoelastic
stiffness and damping of short glass fiber-reinforced thermoplastics has been presented.

The comparison between simulation and experiment of the FRF of an IF-, MF- and CF-bending
specimen of the PA66-GF30 and PPA-GF50 shows in general a sufficient correlation of the
natural frequencies and the amplitudes. Thus, the ARDI model is in general able to predict
the frequency-, temperature- and humidity-depending stiffness and damping of short glass
fiber-reinforced thermoplastics.
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At higher frequencies, the linear inter- and extrapolation of the experimentally determined
damping results in a shift of the oscillation grounds to higher amplitudes and thus in a significant
deviation from the experiments. This effect is more pronounced with an increase in humidity and
temperature and tends to the assumption, that the damping behavior is nonlinear. Due to the small
number of investigated conditioning states, a nonlinear course of the damping can only be assumed as
possible reason for the deviation of the structural dynamics behavior.

Taking into account that the properties of the composite are homogenized from the properties of
the matrix, the fibers and the interphase and the resulting composite properties are linearly inter- and
extrapolated, the ARDI model provides a good prognosis for the structural dynamics of short glass
fiber-reinforced thermoplastics.

Further investigations concentrate on the execution and evaluation of bending vibration tests with
a larger variation of humidity and temperature gradients. These tests form the basis for reconsidering
the formulation of the stiffness and damping tensors of the ARDI model.
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