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Abstract: This paper is concerned with the free vibration problem of nanobeams based on
Euler–Bernoulli beam theory. The governing equations for the vibration of Euler nanobeams
are considered based on Eringen’s nonlocal elasticity theory. In this investigation, computationally
efficient Bernstein polynomials have been used as shape functions in the Rayleigh-Ritz method.
It is worth mentioning that Bernstein polynomials make the computation efficient to obtain the
frequency parameters. Different classical boundary conditions are considered to address the titled
problem. Convergence of frequency parameters is also tested by increasing the number of Bernstein
polynomials in the simulation. Further, comparison studies of the results with existing literature
are done after fixing the number of polynomials required from the said convergence study. This
shows the efficacy and powerfulness of the method. The novelty of using the Bernstein polynomials
is addressed in detail and solutions obtained by this method provide a better representation of the
vibration behavior of Euler nanobeams.
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1. Introduction

Nanomaterials are those for which a single unit is sized between 1 and 100 nm. In the present
time, nanomaterials are used in many sectors, e.g., information technology, solar panels, optical and
electronics, medical and health care applications, etc. Small-scale effects and the atomic forces are
admissible to get the acceptable accuracy from nanoresonators [1] and nanoactuators [2]. Research
on nanobeams show that the classical beam theories could not capture the small-scale effect in the
mechanical properties of nanobeams [3]. The ignorance of small-scale effect may cause a completely
incorrect solution in nano-designing fields and hence it causes improper designs. Wang and Hu [4]
showed that classical beam theories could not able to predict the decrement of phase velocities of
wave propagations in a carbon nanotube when the wavenumber is so large that the microstructure
has a significant influence on the flexural wave dispersion. In this regard, the nonlocal elasticity
theory has been introduced by Eringen [5]. Various beam theories including Euler–Bernoulli and
Timoshenko beam theories have been reformulated using the nonlocal differential constitutive relations
by Reddy [6]. The author derived the equation of motion considering the nonlocal theories and also
provided the corresponding analytical solution of bending, buckling, and vibration of beams.

The nonlocal elasticity has been used for the analysis of nanostructures like nanobeams, nanoplates,
nanorings, carbon nanotubes, etc., because forces between atoms and internal length scale are considered
in this theory [7–9]. A nonlocal beam theory to investigate the bending, buckling and free vibration
of nanobeams was proposed by Aydogdu [10]. Wang et al. [11] solved the free vibration problem of
Euler–Bernoulli nanobeams by analytical methods. Authors have compared the frequency parameters
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for different scaling effect parameters and for various boundary conditions such as, Simply Supported
(S-S), Clamped-Simply Supported (C-S), Clamped-Clamped (C-C) and Cantilever beams.

Phadikar and Pradhan [12] solved equations for bending, buckling, and vibration of Euler
nanobeams by finite element analysis. The authors computed results for nanobeams with various
boundary conditions viz. Simply Supported, Clamped, and Free. Few authors have used different
methods viz. the finite element method [13], Chebyshev polynomials in the Rayleigh-Ritz method [14],
meshless method [15], differential quadrature method [16], and differential transform method [17]
to study vibration analysis of nanostructures. Further, free vibration of Euler nanobeams has been
investigated by using the Rayleigh-Ritz method with boundary characteristic orthogonal polynomials
with different boundary conditions [18–22]. Fernandez-Saez J et al. [23] solved the bending of
Eule–Bernoulli beam considering the Eringen’s integral formulation. Authors formulate the problem
of the static bending of Euler–Bernoulli beam using the nonlocal integral equation.

In the present paper, we have used Bernstein polynomials in the Rayleigh-Ritz method to analyze
the free vibration of Euler nanobeams. The Bernstein polynomials are helpful for implementation
in computer programs since it satisfies various recurrence relations for differentiation as well as
integration [24]. In this work, we study the vibration analysis of Euler nanobeams with different
boundary conditions (S-S, C-S, C-C). The numerical results are compared with previous records and
we found a very good agreement. Furthermore, this computational procedure takes less time than the
previous methods by using Bernstein polynomials. Here we have used Simple Bernstein polynomials
(SBPs) and further, we also orthogonalize the SBPs by using the Gram–Schmidt orthogonalization
process to get Orthogonal Bernstein polynomials (OBPs). The OBPs are also used to find the frequency
parameters of Euler nanobeams. The advantage of using Bernstein polynomials has been about less
computation time compared to other polynomials as shape functions. Further, the orthogonalized
Bernstein polynomials have also advantage compared to simple Bernstein polynomials as in the former
case the generalized eigenvalue problem transforms to standard eigenvalue problem thereby reducing
computational complexity. Further, a new convergence theorem has been developed here to show the
theoretical convergence of displacement function with respect to the said polynomials.

2. Theoretical Formulation

The strain displacement relation based on Euler–Bernoulli beam theory is given by,

εxx = −z
d2w
dx2 (1)

where x is the longitudinal coordinate measured from the left end of the beam, εxx is the normal strain,
z is the coordinate measured from the mid-plane of the beam, and w is the transverse displacement.

Let U be the strain energy, which is given by Reference [18]

U =
1
2

L∫
0

∫
A

σxxεxxdAdx (2)

where σxx is the normal stress, A is the area of the cross-section of the beam, and L be the length of
the beam.

The bending moment is given by,

M =

∫
A

σxxzdA (3)
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We use Equations (1) and (3) in Equation (2), then the maximum strain energy may be
expressed as [15]

Umax = −
1
2

L∫
0

M
d2w
dx2 dx (4)

Assuming the free harmonic motion, the maximum kinetic energy is obtained as [18]

Tmax =
1
2

L∫
0

ρAω2w2dx (5)

where ω is the circular frequency of the vibration and ρ be the mass density of the material of the beam.
The governing equation of motion is given by Reference [25] (we consider the harmonic vibration

and effects of rotary inertia is neglected)

d2M
dx2 = −ρAω2w (6)

For an elastic material in the one-dimensional case, Eringen’s nonlocal constitutive relation may
be written as [10]

σxx − (e0a)2 d2σxx

dx2 = Eεxx (7)

where E is Young’s modulus, e0a is the scale coefficient that incorporates the small-scale effect. Here, a
is the internal characteristic length (e.g., lattice parameter, C-C bond length, and granular distance)
and e0 is a constant appropriate to each material. The magnitude of e0 may be determined from
experiments or approximated by matching the dispersion curves of plane waves with those of atomic
lattice dynamics.

Now multiplying Equation (7) by zdA and integrating over the area A, we obtain

M− (e0a)2 d2M
dx2 = −EI

d2w
dx2 (8)

where I is the second moment of area.
Substituting Equation (6) in Equation (8), we get,

M = −EI
d2w
dx2 − (e0a)2ρAω2w (9)
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3. Solution Methodology

The vibration equation of Euler nanobeam has been solved by using Rayleigh-Ritz method, with
Bernstein polynomials as the basis function. For this, we introduce the following non-dimensional terms

X =
x
L

W =
w
L

α =
e0a
L

= scaling effect parameter

Bernstein Based Rayleigh-Ritz Method

Here, the displacement function is assumed as

W(X) =
n∑

i=0

ciφi (10)

where ci’s are the unknowns (to be determined) and n is the order of the approximation.
The shape functions φi’s are chosen as

φi(X) = ηbBi,n(X) (11)

where Bi,n(X)’s are the Bernstein polynomials [21]

Bi,n(X) = (n
i )X

i(1−X)n−i (12)

where (n
i ) =

n!
i!.(n−i)! ; i = 0, 1, . . . n. And ηb is the non-dimensional boundary polynomial for nanobeam

with different boundary conditions which may be written as

ηb = Xp(1−X)q (13)

where p and q take the values of 0, 1, or 2 according to Free, Simply Supported, or Clamped, respectively.
Thus, we can easily handle the boundary conditions of the problem by using various values of p and q.

In the Rayleigh-Ritz method, we have

Umax = Tmax (14)

Substituting the Equation (10) into the Equation (14) and differentiating partially with respect to
unknown coefficients ci’s, we get a generalized eigen value problem as

[K]{Y} = λ2[M]{Y} (15)
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where, λ2 =
ρAω2L4

EI = frequency parameter, {Y} = [c0c1 . . . . . cn]
T and the matrices M, and K are the

mass and stiffness matrices respectively, which are given below

K =



1∫
0
φ′′0 φ

′′

0 dX
1∫

0
φ′′1 φ

′′

0 dX . . .
1∫

0
φ′′nφ

′′

0 dX

1∫
0
φ′′0 φ

′′

1 dX
1∫

0
φ′′1 φ

′′

1 dX . . .
1∫

0
φ′′nφ

′′

1 dX

:: :: :: ::
1∫

0
φ′′0 φ

′′

n dX
1∫

0
φ′′1 φ

′′

n dX . . .
1∫

0
φ′′nφ

′′

n dX



M =



1∫
0
(φ0φ0 −

α2

2 φ0φ
′′

01 −
α2

2 φ
′′

0 φ0)dX
1∫

0
(φ1φ0 −

α2

2 φ1φ
′′

0 −
α2

2 φ
′′

1 φ0)dX . . .
1∫

0
(φnφ0 −

α2

2 φnφ
′′

0 −
α2

2 φ
′′

nφ0)dX

1∫
0
(φ0φ1 −

α2

2 φ0φ
′′

1 −
α2

2 φ
′′

0 φ1)dX
1∫

0
(φ1φ1 −

α2

2 φ1φ
′′

1 −
α2

2 φ
′′

1 φ1)dX . . .
1∫

0
(φnφ1 −

α2

2 φnφ
′′

1 −
α2

2 φ
′′

nφ1)dX

:: :: :: ::
1∫

0
(φ01φn −

α2

2 φ0φ
′′

n −
α2

2 φ
′′

0 φn)dX
1∫

0
(φ1φn −

α2

2 φ1φ
′′

n −
α2

2 φ
′′

1 φn)dX . . .
1∫

0
(φnφn −

α2

2 φnφ
′′

n −
α2

2 φ
′′

nφn)dX


where φ′′i = d2

dX2 (Bi,n(X).ηb(X))

4. Method of Solution Using Orthogonal Bernstein Polynomials (OBPs)

We express the displacement function as

W(X) =
n∑

i=0

ciφ̂i (16)

where φ̂i’s are now Orthogonal Bernstein Polynomials (OBPs), which are may be obtained by using the
Gram–Schmidt orthogonalization process.

The procedure works as follows
θi = ηbBi,n(X),

where Bi,n(X), ηb are defined in Equations (12) and (13), respectively.

φ̂0 = θ0

φ̂i = θi −

i−1∑
j=0

βi jφ̂ j (17)

where βi j =
<θi,θ j>

<φ̂ j,φ̂ j>
.

Here, the inner product < , > is defined as < φ̂i, φ̂ j >=
1∫

0
φ̂i(X)φ̂ j(X)dX, and the norm can be

written as

||φ̂i|| =< φ̂i, φ̂i >
1/2=


1∫

0

φ̂i(X)φ̂i(X)dX


1/2

(18)

We now claim that the assumed displacement function in Equation (10) will converge with respect
to the considered shape functions viz. Bernstein polynomials (defined in Equation (12)). As such below
we introduce a theorem to prove the same.
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5. Convergence Theorem

Let us consider the Equation (10),

W(X) =
n∑

i=0

ciφi= c0φ0 + c1φ1 + . . . .+cnφn, where c′i s are scaler (real). (19)

where φi’s are given in Equation (10).
It is known that the Bernstein polynomials form a partition of unity [17], i.e.,

n∑
i=0

Bi,n(X) = 1, X ∈ [0, 1] (20)

Now using Equation (11) in the Equation (19), we have

W(X) = ηb

n∑
i=0

ciBi,n = ηb[c0B0,n + c1B1,n + . . .+ cnBn,n] (21)

Let us suppose ck = max{c0, c1, . . . . ., cn}, then we can write,

W(X)≤ ηbck[B0,n + B1,n + . . .+ Bn,n ] (22)

Utilizing Equation (20) one may get,

W(X)≤ ηbck (23)

where ηb = Xp(1−X)q.
Since the values of p, q are any of {0, 1, 2} which implies the right-hand side of the inequality (23)

is convergent. Hence, W(X) is also convergent by comparison test.

6. Numerical Results and Discussions

The frequency parameter λ has been obtained by solving Equation (15) using the Matlab program
developed by the authors.

In the numerical evaluation, we have taken single-walled carbon nanotube (SWNT) with
the properties:

diameter d = 0.678 nm; length L = 10 d; Young’s Modulus E = 5.5 TPa; G = E
[2(1+v)] ; Poisson’s

ratio v = 0.19 and I = πd4/64, α = 0.5 [11].
In Table 1 we represent the convergence of first three frequency parameters for Simply Supported

beam taking the Bernstein polynomials as shape function.

Table 1. Convergence of first three frequency parameters for Simply Supported beam.

N First Second Third

3 2.302557 3.847474 5.058655
4 2.302557 3.466762 5.058655
5 2.302231 3.466762 4.323108
6 2.302231 3.460430 4.323108
7 2.302231 3.460430 4.294516
8 2.302231 3.460401 4.294516
9 2.302231 3.460401 4.294516
10 2.302231 3.460401 4.294516
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Further, the orthogonal Bernstein polynomials φ̂i’ is defined in Equation (17), have been used
to find frequency parameters. In Table 2, the convergence of first three frequency parameters for
Simply Supported nanobeam is compared by using orthogonal Bernstein polynomials as well as Simple
Bernstein polynomials with α = 0.5.

Table 2. Comparison of the convergence of first three frequency parameters for Simply Supported
nanobeams using Bernstein polynomials and Orthogonal Bernstein polynomials.

Frequency Parameters First Second Third

N Orthogonal Simple Orthogonal Simple Orthogonal Simple

3 2.3026 2.3026 3.8475 3.8474 5.0587 5.0586
4 2.3026 2.3026 3.4668 3.4668 5.0587 5.0586
5 2.3022 2.3022 3.4668 3.4668 4.3231 4.3231
6 2.3022 2.3022 3.4604 3.4604 4.3231 4.3231
7 2.3022 2.3022 3.4604 3.4604 4.2945 4.2945
8 2.3022 2.3022 3.4604 3.4604 4.2945 4.2945
9 2.3022 2.3022 3.4604 3.4604 4.2941 4.2941
10 2.3022 2.3022 3.4604 3.4604 4.2941 4.2941

In Table 3 we compare our numerical results with Behera and Chakraverty [18]. The results
are found to be in good agreement. We observed that the number of approximations is same but
the computational time is less while using orthogonal Bernstein polynomials. We observed that
for N = 10 the run time is 6.743 s and for orthogonal Bernstein polynomial, it is 6.170 s by using
Matlab programming.

Table 3. Comparison of the convergence of Frequency Parameters with the results of Reference [18].

Frequency Parameters First Second Third

N Reference [18] Present [18] Present [18] Present

3 2.3026 2.3026 3.8475 3.8474 5.0587 5.0586
4 2.3026 2.3026 3.4668 3.4668 5.0587 5.0586
5 2.3022 2.3022 3.4668 3.4668 4.3231 4.3231
6 2.3022 2.3022 3.4604 3.4604 4.3231 4.3231
7 2.3022 2.3022 3.4604 3.4604 4.2945 4.2945
8 2.3022 2.3022 3.4604 3.4604 4.2945 4.2945
9 2.3022 2.3022 3.4604 3.4604 4.2941 4.2941

10 2.3022 2.3022 3.4604 3.4604 4.2941 4.2941

Further, we have also used the Laguerre polynomials as shape functions and study the convergence
of first three frequency parameters to have a comparison with Bernstein polynomials. In Table 4, we
present the convergence of first three frequency parameters for Simply Supported nanobeam with
scaling parameter α = 0.5 taking Laguerre polynomials as shape functions.
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Table 4. First three frequency parameters taking Laguerre polynomials as shape functions (S-S, α = 0.5).

N First Second Third

3 2.3026 3.8475 5.0587
4 2.3026 3.4668 5.0587
5 2.3022 3.4668 4.3231
6 2.3022 3.4604 4.3231
7 2.3022 3.4604 4.2945
8 2.3022 3.4604 4.2945
9 2.3022 3.4604 4.2945
10 2.3022 3.4604 4.2941
11 2.3022 3.4604 4.2941

From Table 4, we may observe that we need at least 11 terms for the convergence of first three
frequencies whereas in the case of orthogonal Bernstein polynomials, it starts converging from 10th
term. It is worth mentioning that for getting the converged third frequency only, orthogonal Bernstein
polynomials are a winner by one term in this particular case. So, in general, we may see that the
number of terms for both the polynomials needs similar but as said earlier that orthogonal Bernstein
polynomials have less computational complexity.

In Table 5 we compare first four frequency parameters with different scaling parameters and
different boundary conditions with the result of Wang et al. [11]. The results are found to be in
good agreement.

Table 5. Comparison of first three frequency parameters for Simply Supported nanobeam with different
scaling parameters

Frequency Parameter α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7
OBPs Reference [11] OBPs [11] OBPs [11] OBPs [11] OBPs [11] OBPs

Simply Supported-Simply Supported (S-S)
First 3.1416 3.1416 3.0685 3.0685 2.6800 2.6800 2.3022 2.3022 2.0212 2.0212

Second 6.2832 6.2832 5.7817 5.7817 4.3013 4.3013 3.4604 3.4604 2.9585 2.9585
Third 9.4248 9.4248 8.0400 8.0400 5.4423 5.4423 4.2941 4.2941 3.6486 3.6486

Fourth 12.566 12.566 9.9162 9.9162 6.3630 6.3630 4.9820 4.9820 4.2234 4.2234
Clamped-Simply Supported (C-S)

First 3.9226 3.9226 3.8209 3.8209 3.2828 3.2828 2.7899 2.7899 2.4364 2.4364
Second 7.0686 7.0686 6.4649 6.4649 4.7668 4.7668 3.8325 3.8325 3.2776 3.2776
Third 10.210 10.210 8.6517 8.6517 5.8371 5.8371 4.6105 4.6105 3.9201 3.9201

Fourth 13.252 13.252 10.469 10.469 6.7145 6.7145 5.2633 5.2633 4.4645 4.4645
Clamped-Clamped (C-C)

First 4.7300 4.7300 4.5945 4.5945 3.9184 3.9184 3.3153 3.3153 2.8893 2.8893
Second 7.8532 7.8532 7.1402 7.1402 5.1963 5.1963 4.1561 4.1561 3.5462 3.5462
Third 10.996 10.996 9.2583 9.2583 6.2317 6.2317 4.9328 4.9328 4.1996 4.1996

Fourth 14.137 14.137 11.016 11.016 7.0482 7.0482 5.5213 5.5213 4.6817 4.6817

For nanobeams, the scaling effect parameter plays a significant influence. This may be visualized
in Figure 1, where we represent the variation of first four frequency parameters with respect to scaling
effect parameters for various boundary conditions, such as Figure 1a for Simply Supported-Simply
Supported, Figure 1b for Clamped-Simply supported, and Figure 1c for Clamped-Clamped.
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Figure 1. Variation of frequency parameters (first four) with changes of scaling effects for different
boundary conditions ((a) for Simply Supported (S-S), (b) for Clamped-Simply Supported (C-S), (c) for
Clamped-Clamped (C-C)).
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We observed that the frequency parameters are becoming smaller when the scaling effect
parameters are increased. However, it is interesting to note that the deflection is high with respect to
scaling effects for higher modes with various boundary conditions. Thus we may conclude that the
nanobeams are more flexible due to small scale effects.

7. Conclusions

In this investigation, an efficient numerical technique has been developed for the study of
vibration of Euler–Bernoulli nanobeam using Eringen’s nonlocal theory and considering the Bernstein
polynomials as base functions. Bernstein polynomials are easy to handle different boundary conditions
and also it takes less computational time. The convergence study of frequency parameters are studied
in terms of tables. Furthermore, the results are in good agreement with Wang et al. [11]. Here we also
introduce the Orthogonal Berstein Polynomials and we found that the number of approximations
is same but the computational time is less while using orthogonal Bernstein polynomials. Further
comparisons have also been made with other polynomials as shape functions viz. that of Laguerre
polynomials. It is demonstrated that Laguerre polynomials take more terms with respect to particular
frequency but the requirement of the number of terms compared to orthogonal Bernstein polynomials is
not so significant. The main value of the use of the Bernstein polynomials takes less time in computation
and simple computer implementation. A new convergence theorem has been developed here to show
the theoretical convergence of displacement function with respect to the Bernstein polynomials.

Finally, we may conclude that this method may easily be extended to other nanostructures related
vibration problems.
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