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Abstract: CuO/ZnO composites are synthesized using a simple mechanochemical combustion method.
X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy
(EDX), and Fourier transform infrared (FTIR) are used to characterize the prepared oxides. X-ray
diffraction reveals that the prepared CuO/ZnO exhibit a wurtzite ZnO crystal structure and the
composites are composed of CuO and ZnO. The strong peaks of the Cu, Zn, and O elements are
exhibited in the EDX spectrum. The FTIR spectra appear at around 3385 cm−1 and 1637 cm−1, caused
by O–H stretching, and 400 cm−1 to 590 cm−1, ascribable to Zn–O stretching. The photocatalytic
performances of CuO/ZnO nanocomposites are investigated for the degradation of methylene blue
(MB) aqueous solution in direct solar irradiation. The degradation value of MB with 5 wt % CuO/ZnO
is measured to be 98%, after 2 h of solar irradiation. The reactive •O2

− and •OH radicals play
important roles in the photodegradation of MB. Mineralization of MB is around 91% under sunlight
irradiation within 7 h. The photodegradation treatment for the textile wastewater using sunlight is an
easy technique—simply handled, and economical. Therefore, the solar photodegradation technique
may be a very effective method for the treatment of wastewater instead of photodegradation with the
artificial and expensive Hg-Xe lamp.
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1. Introduction

It is evident that water pollution is a global environmental problem now due to the presence of
different types of hazardous pollutants in it [1]. Textile wastewater, which contains huge amounts
of pollutants that are very harmful to the environment, is of special research interest. The release
of textile wastewater to the environment causes aesthetic problems due to the changed color of
the water bodies [2]. Nanocomposites, containing oxides of metal, are of great research interest
at the moment due to their high photocatalytic degradation efficiency, sustainable development
characteristics, and lack of secondary pollution for water pollution treatment [3,4]. Recently, different
types of metal oxide nanocomposites have been synthesized, such as ZnO–Mg [5], CuO/ZnO [6],
ZnO–NiO [7], Co3O4–ZnO [8], and CeO2–ZnO [9]. Saravanan et al. prepared CuO/ZnO, V2O5/ZnO,
and ZnO/γ-Mn2O3 nanocomposites using the thermal decomposition method [10–12]. They also
studied the photocatalytic degradation of rhodamine B under sunlight irradiation using CuO/ZnO
nanocomposite. Li et al. [13] synthesized CuO/ZnO nanocomposites using the thermal decomposition
method and investigated the visible light-driven photocatalytic degradation of methylene blue and
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methyl orange. Kuriakose et al. [14] prepared CuO/ZnO nanocomposites using the carbothermal
evaporation method and evaluated the photocatalytic degradation of methylene blue and methyl
orange dyes under sunlight irradiation. Wang el al. [15] prepared MnO@MnOx microspheres through
the solvothermal process and reported the degradation of levofloxacin under simulated sunlight
irradiation. Nanocomposite photocatalytic technology can be considered a green technology and
provides the advantages of abundance, including postpone electron-hole recombination, higher
photocatalytic activity, and the ability to convert solar energy to chemical energy, which eventually
realizes the solution of energy and environmental issues [16–21].

ZnO is an n-type semiconductor, having a conductivity of about 10−7–10−3 S/cm. It has a relatively
large binding energy of 60 meV. However, the main disadvantages of ZnO are its fast electron-hole
recombination rate and inefficient utilization of sunlight that lead to a reduction in photodegradation
efficiency. The photodegradation performance of ZnO can be increased by modifying ZnO with
transition metals [22]. Among the various transition metals, Cu-doped ZnO nanomaterials are of
special interest due to the photocatalytic efficiency enhancement that creates defects in the lattice
and reduces the recombination of photogenerated charge carriers [23]. Cu also provides plenty of
advantages, such as low cost, more electronegativity than zinc, and a similar atomic size to that
of zinc, and leads to better doping efficiency [24]. CuO is a natural p-type semiconductor with a
narrow band gap, having a conductivity of 10−4 S/cm, and it can be applied in photodegradation
reactions [25]. Among the various metal oxide nanocomposites, researchers are paying more attention
to CuO/ZnO because of its non-toxicity, economical benefits, and availability. It possesses high energy
density and good electrical and piezoelectric properties [26,27]. CuO/ZnO nanocomposites improve
physicochemical properties, compared to pure ZnO and CuO nanostructures [14]. The formation of a
CuO/ZnO heterojunction also enhances the optical and electronic properties, which are considered to
be promising applications in photocatalysis [10].

Herein, the various proportions of CuO/ZnO nanocomposites are prepared using the
mechanochemical combustion method. The synthesized composites are characterized by X-ray
diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX),
and Fourier transform infrared (FTIR). Methylene blue (MB) is a non-biodegradable and hazardous
organic compound intensively used in textile industries and, so, it is selected as the degradation target
to evaluate the photocatalytic performances of the composites using sunlight. The results show that
CuO/ZnO exhibit increased photocatalytic activities, compared with ZnO. The degradation mechanism
and mineralization of the improved photocatalytic performance are also discussed.

2. Materials and Methods

2.1. Chemicals

The samples were synthesized using zinc acetate dihydrate (Zn(CH3COO)2·2H2O), oxalic acid
dihydrate (COOH)2·2H2O), and copper acetate (Cu(CH3COO)2). Methylene blue (C16H18ClN3S)
was employed in the photodegradation experiment. Three scavengers were selected: Ascorbic acid
(C6H8O6), 2−propanol (CH3)2CHOH), and di−ammonium oxalate monohydrate (NH4)2C2O4·H2O).
All of the analytical grade chemicals were used without any purification.

2.2. Fabrication of CuO/ZnO

The mechanochemical combustion method was used to prepare CuO/ZnO. In agitate mortar,
2.195 g of zinc oxalate dihydrate and 2.521 g of acetic acid were taken. Then, the mixture was ground for
10 min to produce Zn(CH3COO)2·2H2O and (COOH)2·2H2O paste. In the above paste, Cu(CH3COO)2

was added as a source of Cu, and then the grinding process was continued for the next 10 min to
produce a precursor of zinc oxalate−copper oxalate. The precursor powders were calcined at 500 ◦C
for 3 h in the presence of air atmosphere to obtain the CuO/ZnO composite [28]. For comparison,
un-doped ZnO was prepared from the zinc oxalate and acetic acid paste.
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2.3. Characterization

The X−ray diffractometer (XRD, Ultima IV, Rigaku Corporation, Akishima, Japan) was selected to
collect the diffraction patterns of materials using Cu Kα radiation (λ = 0.15406 nm, 40 KV, 1.64 mA) in
the ranges of 10◦ to 80◦ of 2-theta angle. The morphologies of oxides were recorded with a scanning
electron microscope (SEM, JSM-6010 PLUS/LA, JEOL Ltd., Tokyo, Japan). Elemental analysis of
CuO/ZnO was examined using a JSM-7900F SEM attached with EDX. The chemical structures of
CuO/ZnO were studied with a Fourier transform infrared (FTIR) spectrophotometer (IR Prestige-21,
SHIMADZU, Kyoto, Japan).

2.4. Evaluation of Photocatalytic Activity

The photocatalytic experimental conditions are presented in Table 1. Briefly, the photocatalytic
performance of CuO/ZnO composites was investigated in aqueous MB solution using sunlight.
Experiments were conducted under similar conditions on a sunny day between 11:00 and 14:00.
In photodegradation, 20 mg of photocatalyst was added into 30 mL aqueous MB of 10 mg/L in
the beakers. To equilibrate the suspension, a magnetic stirrer was used in the dark for 30 min.
Then, the suspensions in the beakers were kept in sunlight for different time intervals. About 3 mL
MB solution was withdrawn and separated with an Advantec membrane filter 0.45 µm. The MB
concentration was calculated using a UV–visible spectrometry (UV-1700 Pharma Spec, SHIMADZU,
Kyoto, Japan). The relative MB concentration (C/C0) was determined at the relative absorbance (A/A0)
of λ = 662 nm, according to the Beer–Lambert law, where A0 and A were the absorbance of aqueous
MB at a starting time (t0) of photodegradation and at any time t, respectively.

The total organic carbon (TOC) was studied using Shimadzu TOC analyzer (TOC–VCPH, Kyoto,
Japan). The oxidation and titration with potassium permanganate method was applied for the
measurement of chemical oxygen demand (COD).

Table 1. Experimental conditions.

Methylene blue 30 mL, 5–20 mg/L
Photocatalyst 20 mg
Temperature ~30 ◦C

pH Natural
Light source Sunlight

Irradiation time 0–150 min

2.5. Detection of Active Species

To scrutinize the reactive species that was responsible for photocatalytic degradation of MB, three
scavenger tests were done in the same procedure as discussed in the photodegradation experiment.
In the scavenger tests, di–ammonium oxalate monohydrate, 2–propanol, and ascorbic acid were
stipulated as h+, •OH, and •O2

− reactive species, respectively [29,30].

3. Results and Discussion

3.1. XRD Patterns Study

The crystal structure of the nanomaterials was confirmed by X−ray diffraction. Figure 1 displays
the XRD patterns of the ZnO and with different copper contents CuO/ZnO nanocomposites. Major
peaks were observed at around 31.82◦ (100), 34.50◦ (002), and 36.32◦(101) of the undoped ZnO (JCPDS
no.36–1451) [31]. CuO/ZnO nanocomposites displayed a very minor peak at 38.8◦, which was indexed
to the (111) of CuO [24]. With the addition of Cu in ZnO, the diffraction intensities and angles changed
remarkably. The diffraction peak of CuO (111) was found with 5 and 7 wt % of copper content.
In addition, with increased amounts of copper, no other peaks or appreciable shifts were observed and
no solid solution was formed in between ZnO and CuO. The Scherrer equation was used to obtain the
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grain size of the ZnO and CuO/ZnO nanocomposites. The estimated grains were found as ~32.16 and
~32.13 nm for ZnO and 5 wt % CuO/ZnO, respectively.
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Figure 1. X-ray diffraction (XRD) patterns of ZnO and CuO/ZnO.

3.2. SEM and EDX Study

Crystal morphologies of the ZnO and CuO/ZnO were evaluated through SEM. Figure 2a shows
that the synthesized ZnO was heterogeneous with rod-shaped branches of building blocks. On the
other hand, Figure 2b shows that the shape of the CuO/ZnO composite changed from rod-like to
spheroid. The particle sizes of synthesized composites were in the nanometer range, which was
similar to the data of XRD. Figure 2c shows the EDX line-scanning values of CuO/ZnO heterojunction.
The presences of copper, zinc, and oxygen atoms were exhibited by the EDX spectra analysis. Sharp
peaks of Zn, Cu, and O were obtained; no other peak related to any other element was detected in the
spectrum within the detection limit, which confirmed that synthesized materials were composed of Zn,
Cu, and O only. The spectrum confirmed that Cu exists in the heterostructure, representing that the
copper nanoparticles were successfully deposited on zinc oxide.
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Figure 2. Scanning electron microscopy (SEM) images of (a) ZnO and (b) CuO/ZnO, and (c) energy-
dispersive X-ray spectroscopy (EDX) pattern of CuO/ZnO.

3.3. FTIR Spectral Study

The FTIR spectra of ZnO and CuO/ZnO nanocomposites are depicted in Figure 3. Generally,
the absorption bands of metal oxides were below 1000 cm−1, due to inter-atomic vibrations. From
Figure 3, it is seen that the absorption band of zinc oxide (stretching of Zn−O) was between 400 cm−1

and 590 cm−1, which confirmed the wurtzite structure of ZnO [32]. The vibration around 3385 cm−1

and 1637 cm−1 was attributed to asymmetric and symmetric stretching H−O−H vibration, which was
due to chemisorbed water. The very weak peak at 2320 cm−1 corresponded to the symmetric C−H
bond vibrations, which may have been present due to the environmental conditions. Stretching modes
of C–O appeared at 1110 cm−1, because of the acetate group improper decomposition [33]. The bands
of 3000–3650 cm−1 were attributed to reversible dissociative absorption of hydrogen on Zn and O [34].
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Figure 3. Fourier transform infrared (FTIR) spectra of ZnO and CuO/ZnO.

3.4. UV-VIS Spectral Changes

The absorption spectra of MB solution with CuO/ZnO under sunlight irradiation are shown in
Figure 4. During photolysis, pure MB was exposed 150 min under sunlight and it was seen that
the change of the absorption spectrum was negligible. The absorption spectrum at 662 nm slightly
decreased under dark after 150 min with CuO/ZnO, indicating the MB dye adsorption on the composite.
The well-defined absorption band disappeared after 150 min, which confirmed the MB degradation
with CuO/ZnO in the presence of sunlight.
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3.5. Photocatalytic Dye Degradation

ZnO and CuO/ZnO were used in the presence of sunlight for the photodegradation of MB
to evaluate the photocatalytic performance. The effect of the doping amounts of copper in the
photodegradation of MB is depicted in Figure 5. The degradation rate increased with increasing copper
amounts up to 5 wt % of the composite. More than 5 wt % of copper decreased the photocatalytic
activity. This was because the ZnO surface was covered by the higher percentage of copper and
reduced the sunlight absorption [35]. Due to efficient charge separation and higher electron transfer,
5 wt % CuO/ZnO composite showed better photocatalytic activity for MB degradation.
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Figure 5. Photodegradation of MB by ZnO and CuO/ZnO using sunlight.

3.6. Effect of Initial Dye Concentration

The photocatalytic degradation of dye depended on its initial concentration, and it was necessary to
investigate the effect of dye concentrations in view of their practical application. The solar photocatalytic
degradation with different initial MB dye concentrations in the presence of CuO/ZnO was studied,
as shown in Figure 6. It was observed that as initial MB dye concentrations increased from 5 mg/L to
20 mg/L, the dye degradation efficiency gradually decreased [36,37]. In this study, methylene blue of
10 mg/L solution was selected to evaluate the photodegradation of dye under sunlight, because of the
high concentration of real wastewater.
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Figure 6. Effect of initial dye concentration on the photodegradation of MB with CuO/ZnO.

3.7. Role of Reactive Species

The scavengers of di–ammonium oxalate monohydrate (AO), 2–propanol, and ascorbic acid (AA)
were used to identify the reactive species for MB photodegradation. The three scavengers’ effect on
the MB photodegradation with CuO/ZnO is displayed in Figure 7. From the results (Figure 7), it was
observed that with the addition of 2–propanol, AO, and AA as a scavenger, photocatalytic degradation
dropped from 66% (without scavenger) to 23% (•O2

−), 13% (•OH), and 53% (h+) for 1h, while the
photocatalytic activity significantly decreased from 88% (without scavenger) to 29% (•O2

−), 37% (•OH),
and 79% (h+) for 2 h irradiation, respectively. It can be surmised that the important roles played for the
photodegradation of MB were by •O2

− and •OH radicals, while a minor role was played by the h+

radical in the degradation process under sunlight [38].
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3.8. Degradation Mechanism

The schematic diagram (Figure 8) shows the photodegradation mechanism of MB with
CuO/ZnO nanocomposite. CuO and ZnO formed a heterojunction, which assisted the separation
of photogenerated carriers [39]. The conduction band (CB) potentials were −0.43 eV for CuO and
−0.15 eV for ZnO vs Normal Hydrogen Electrode (NHE) [40]. The band gaps of CuO and ZnO were 1.4
and 3.23 eV, respectively [41,42]. During sunlight irradiation, CuO and ZnO were excited to generate
electrons and holes at the CB and the valence band (VB), respectively, as displayed in Figure 8, since
the band positions of ZnO were below the CB and VB of CuO. The photoexcited electrons transferred
from CuO to ZnO, whereas the holes migrated from ZnO to CuO. [43]. Then, oxygen molecules in
dye solution reacted with electrons to generate superoxide radical (•O2

−) and the holes combined
with H2O to produce hydroxyl radical (•OH). Moreover, MB was directly oxidized by the holes at the
VB of CuO [44,45]. The strong oxidant radicals of •OH and •O2

− readily oxidized the MB molecule.
We proposed the following possible degradation mechanism of MB with CuO/ZnO in the presence
of sunlight.

ZnO + hν→ ZnO (eCB
− + hVB

+) (1)

e−(CB) + O2→
•O2

− (2)

h+(VB) + OH−→ •OH (3)

•O2
− + MB→ degraded products (4)

•OH + MB→ degraded products (5)

h+(VB) + MB→ degraded products (6)
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3.9. Mineralization of Dye

The evaluation of mineralization of MB was investigated by measuring the total organic carbon
(TOC). The TOC removal is presented in Figure 9a, showing the degradation of MB under sunlight
irradiation. The TOC rapidly decreased with increased solar irradiation time up to 2 h. After 7 h
irradiation using CuO/ZnO, the mineralization of MB was observed at about 91% of TOC reduction.
The chemical oxygen demand (COD) was an effective method, widely used for the measurement of
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photodegradation of organic dye [46]. The test was used to measure the total amount of oxygen needed
for the oxidation of dye to produce carbon dioxide and water [47]. The COD value of MB of aqueous
solution using CuO/ZnO is described in Figure 9b. With increased solar irradiation time, COD values
sharply decreased up to 3 h, and COD reduction was about 84% after 7 h. The reduction of COD and
TOC values after the solar irradiation of MB indicated that methylene blue molecule was mineralized.
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4. Conclusions

The low-cost mechanochemical combustion method was used to synthesize CuO/ZnO
nanocomposites with various Cu contents. The best photodegradation efficiency was obtained
with 5 wt % CuO/ZnO. The values of MB degrading with un-doped ZnO and CuO/ZnO were measured
to be 81% and 98% respectively, after 2 h of solar irradiation. MB photodegradation with CuO/ZnO
under sunlight occurred mainly with •O2

− and •OH radicals, while the h+ radical showed a minor role
in the process. The decrease of TOC values of MB indicated the mineralization in the photocatalytic
process. Therefore, sunlight photodegradation technology may be a more effective technique for textile
wastewater treatment than photodegradation with artificial and expensive Hg-Xe lamp.
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