
Article

Optimization of Fiber Orientation Model Parameters
in the Presence of Flow-Fiber Coupling

Tianyi Li * and Jean-François Luyé

Promold, 42 rue Boursault, 75017 Paris, France; jfluye@promold.fr
* Correspondence: tianyi.li@promold.fr or tianyikillua@gmail.com

Received: 30 November 2018; Accepted: 17 December 2018; Published: 18 December 2018 ����������
�������

Abstract: In this paper, we propose a novel systematic procedure to minimize the discrepancy
between the numerically predicted and the experimentally measured fiber orientation results on an
injection-molded part. Fiber orientation model parameters are optimized simultaneously using Latin
hypercube sampling and kriging-based adaptive surrogate modeling techniques. Via an adequate
discrepancy measure, the optimized solution possesses correct skin–shell–core structure and global
orientation evolution throughout the considered center-gated disk. Some non-trivial interaction
between these parameters and flow-fiber coupling effects as well as their quantitative importance are
illustrated. The parametric fine-tuning of orientation models mostly leads to a better agreement in the
skin and shell regions, while the coupling effect via a fiber-dependent viscosity improves prediction
in the core.

Keywords: fiber reinforced plastics; fiber orientation; flow-fiber coupling; surrogate modeling;
parametric optimization; injection molding simulation

1. Introduction

Local fiber alignment is greatly governed by complex flows during the molding process of fiber
reinforced composites [1]. An accurate prediction of the final orientation state is essential for integrated
simulations of these composites, as the fiber-induced material anisotropy leads to non-homogeneous
effective thermomechanical properties [2] and may also impact the fatigue, damage and ultimate
failure mechanisms of these composites [3,4]. This calls for a better understanding of current fiber
orientation models as well as their two-way interaction with the flow kinematics.

In an injection-molding simulation framework, many widely-used fiber orientation models are
based on the initial work of Folgar and Tucker III [5] and Advani and Tucker III [6]. These models
are characterized by the introduction of several phenomenological parameters reflecting orientation
kinetics in response to different flows. For a given material and the associated rheological properties,
these coefficients can be analyzed theoretically through direct micromechanical modeling (see for
instance [7]). Nevertheless, due to their empirical nature, their values are more often simply
determined through a fitting/optimization procedure by comparison with the experimentally
measured orientation data.

Two approaches have since emerged to fit these fiber orientation model parameters. The first
approach relies on the transient response of fibers under shear flow (see [8–12]). The model parameters
are optimized such that the predicted temporal orientation evolution and the rheological behavior match
the experimental data. However, a recent study [13] argues that the transient shear flow does not reflect
all the kinematic characteristics of injection molding and hence the fitted parameter values may only be
valid for some flow problems. Instead, the authors of [13] suggested the use of a well-designed process
problem (squeeze flow) and a direct fitting of fiber orientation measured on the part.
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The latter fitting method is here referred to as the second approach. In the literature, quantitatively
agreeing model parameters are found by analyzing the fiber orientation on end-gated plates or
center-gated disks at some chosen positions, for instance in [14–19]. However, in the authors’ opinion,
the fitting is performed with a heuristic procedure. In particular, the testing model parameters are often
selected manually and the discrepancy between simulation and experimental data is not quantified
with an adequate measure. A more algorithmic approach is adopted in [18]. However the optimization
is carried out independently and sequentially for each parameter, while some non-trivial interaction
does exist between them [20]. An objective of this paper is thus to present in Section 2 a systematic
procedure to optimize the orientation model parameters simultaneously using a well-chosen sampling
plan and surrogate modeling techniques. Its application on a center-gated disk for a 30 wt% fiber filled
material is discussed in Section 3.

Another objective is to illustrate the interaction between these parameters and flow-fiber
coupling effects, as suggested by our previous work [21]. According to [21,22], the introduction
of a fiber-dependent viscosity as well as the consideration of a non-uniform fiber concentration
contributes to a further slowed-down fiber orientation kinetics, especially in the core, and leads to a
better agreement with experiment. It can be argued that such coupling effect is not important or even
negligible compared to the optimization of fiber orientation model parameters, in terms of their ability
to decrease discrepancy. Through figures and mathematical measures, we present and discuss at the
end of Section 3 their quantitative importance and some possible interaction between them.

2. Optimization of Fiber Orientation Model Parameters via Surrogate Modeling

In this section, we describe a novel systematic procedure to minimize the discrepancy
between the numerically predicted and the experimentally measured fiber orientation results on
an injection-molded part. The numerical results are obtained in a three-dimensional injection molding
simulation framework [23]. The fiber orientation model, flow-fiber coupling, and the optimization
variables are first presented. We then propose a quantitative measure of the differences between
simulation and experimental results that take into account the total variation along the thickness
direction or flow path. Due to the computationally intensive nature of these finite-element based
simulations, a surrogate modeling approach [24] is adopted. It is comprised of a sampling plan
and a metamodel [25]. The sampling plan contains multiple choices of the optimization variables.
At each of these sampling points Xi, a full injection molding simulation is to be performed. Combined
with its corresponding discrepancy value ei, a surrogate model is then constructed, which represents
approximately the complete discrepancy response surface. Its analytical nature facilitates subsequent
adaptive optimization through of the use of gradient enhanced algorithms. The flowchart diagram is
presented in Figure 1.

�� ��Sampling Xi

�� ��Discrepancy ei�� ��Surrogate model

�� ��Optimization
�� ��Endconvergednot converged

�� ��Experiments�� ��Simulations

Figure 1. Optimization flowchart to minimize the discrepancy between numerical and the experimental
fiber orientation results via surrogate modeling.

2.1. Fiber Orientation Predictions in the Presence of Flow-Fiber Coupling

In this work, the Reduction Strain Closure (RSC) model [9] is used to predict fiber orientation
evolution using Moldflow Insight 2019 Technology Preview [26]. Local fiber orientation is characterized
by a second-order symmetric tensor a introduced by Advani and Tucker III [6]. The rate of evolution of
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this tensor is based on the classical Folgar–Tucker model [5,6] that contains an interaction coefficient Ci

measuring orientation diffusion due to inter-fiber entanglement. Suggested by experimental evidences,
authors of [9] introduced an additional reduction factor 0 < κ ≤ 1 that slows down fiber orientation
rate in an objective way. Within the principal frame (λi, ei) of the second-order fiber orientation tensor
a, the RSC model reads

λ̇RSC
i = κλ̇FT

i (Ci) and ėRSC
i = ėFT

i (Ci) , (1)

where (λ̇FT
i , ėFT

i ) refers to the Ci-dependent Folgar–Tucker orientation equation [6]. The main variables
involved in our optimization process are hence the (Ci, κ) parameters of the RSC fiber orientation
model. It is denoted by X = (Ci, κ).

Most injection molding simulations are performed with a flow-fiber decoupled approach (see [1,27]).
In these simulations, the fiber microstructural properties (orientation, concentration, etc.) are not
taken into account in the rheological modeling of the suspension. With this simplifying assumption,
most state-of-the-art fiber orientation models (including RSC) may still tend to predict an over-aligned
orientation state, especially in the core region (cf. [19,20]). This motivated the authors of [21] to propose
an optimal scalar viscosity model that characterizes the effective rheological behavior with a simple
scalar value. The scalar nature of the model facilitates its implementation under the Moldflow Insight
API framework [28]. Given an arbitrary fiber orientation state a and a strain rate tensor D describing
the local flow mode, the optimal scalar viscosity η∗ reads

η∗ = (1 + Npa∗)η with a∗ =
D ·AD
‖D‖2 ,

where Np is an additional scalar (particle number) measuring the fiber-induced coupling intensity
on the stress tensor, η is the viscosity of the matrix and A refers to the fourth-order orientation
tensor [6]. Standard decoupled simulations can be retrieved by setting Np = 0. Interested readers
can refer to [21,22] and references therein for detailed presentation and discussions on this model.
We have shown that, in junction with the RSC model, the fiber orientation kinetics can be further
reduced with coupling, which may lead to a better agreement with the experiments. In this work,
the effect of flow-fiber coupling is hence also evaluated along with the optimization of fiber orientation
model parameters.

Recently, we also proposed to consider non-uniform fiber concentration effects in the flow-fiber
coupling context [22]. In a nutshell, the previous Np parameter now depends on a spatially-varying
fiber concentration due to fiber migration both in the thickness direction and along the flow
path [29]. This phenomenon is modeled by the suspension balance model [30], which was previously
validated by the authors of [31,32] in a injection-molding simulation framework against several
experimentally measured fiber concentration distribution. Our work [22] shows that flow-fiber
coupling is enhanced by considering such effect, leading to a further improvement of fiber orientation
prediction. The non-uniform fiber concentration effects are also considered during optimization.

2.2. Discrepancy Measure between Simulation and Experiment

To quantify the difference between the numerically predicted fiber orientation results and the
experimental observations, a discrepancy measure needs to be defined. In most cases, the experimentally
measured fiber orientation data are available at several thickness height levels at one or several
specific fixed positions on the surface (see, for example, [14,33,34]). This representation focuses on
the gapwise variation and is often used to identify the well-known skin–shell–core layer structure
in the thickness direction reviewed in [1]. A new measurement strategy has also appeared recently
(see [11]), which consists in measuring the final fiber orientation state along certain specified flow
path at different thickness height levels. Compared to previous approaches, the focus is placed on
providing a global picture of fiber orientation variation in the whole part. In this work, these two
representations of the experimental data are used.
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To measure the difference (real number) between the simulated and the measured fiber orientation
(as a second-order tensor) along a particular direction (thickness or flow path), the following
discrepancy expression is used

e =

∫ ∥∥a(num) − a(exp)
∥∥dx∫ ∥∥a(exp)

∥∥dx
, ‖a‖ =

 ∑
(i,j)∈I

∣∣aij
∣∣p 1

p

, (2)

where x represents the integration variable (thickness position or flow path distance) and I denotes
the fiber orientation components used for error computation. The integration domain is to be specified
according to the experimental data. Since both the experimental and numerical results are discrete
in nature, the integration in Equation (2) is performed with the trapezoidal rule assuming a linear
interpolation between successive data points. In this work, we use p = 1, which amounts to simply
calculating the absolute error for each component. In [18], the individual errors are squared (p = 2)
and then multiplied by a weighting function maximal in the core. This can be justified since the 2-norm
tends to ignore small differences and non-uniform weights can be used to compensate this effect.
Our experience suggests that this is not necessary with p = 1.

This particular discrepancy measure is proposed in [21] but is similar in essence to other definitions
used in [18,35]. The idea is to take into account the difference throughout the thickness or the flow path
direction. The presence of the denominator is to provide a relative error compared to the experimental
value. In the literature, other authors have used thickness-averaged orientation value for comparison
(see, for instance, [19]). Using our notation, their discrepancy measure is given by

e =

∣∣∣∫ ∥∥a(num)
∥∥dz−

∫ ∥∥a(exp)
∥∥dz

∣∣∣∫ ∥∥a(exp)
∥∥dz

. (3)

By doing so, the simulation and experimental results are individually averaged and then compared.
These two discrepancy measures (Equations (2) and (3)) are illustrated in Figure 2 using the results
reported in Section 3.

-1.0 -0.5 0.0 0.5 1.0
Normalized thickness

0.2

0.4

0.6

0.8

a r
r a

t B

Dotted lines: thickness averages

Default RSC
Exp

Figure 2. Illustration of different discrepancy measures between the predicted and the measured
gapwise fiber orientation: one based on the the difference throughout the thickness direction
(shaded region), and the other based on the thickness-averaged values (dotted lines).

It can be seen that, while Equation (2) measures in fact the area of the shaded region throughout
the thickness direction in Figure 2, Equation (3) only compares the distance between two averaged
horizontal lines. It can thus be expected that Equation (3) provides an underestimated measure of
discrepancy. This is confirmed in Table 1, where the numerical values of Equations (2) and (3) are
computed. In this work, the more appropriate error measure (Equation (2)) is used.
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Table 1. Comparison between different discrepancy measures for the case considered in Figure 2.

Using (2) Using (3)

Discrepancy 12% 2.9%

2.3. Metamodeling and Adaptive Global Optimization

Traditional metamodeling procedures consist of a (fractional) factorial design-based sampling
plan and the subsequent construction of a linear or quadratic polynomial response surface using
the least-squares technique, see a review in [25]. However, these approaches are less adapted for
deterministic computer simulations, when one needs to construct and optimize the global response of a
potentially highly-nonlinear objective function. On the one hand, the deterministic nature of numerical
simulations favors interpolating metamodels which recover the exact values obtained at previous
sampling points (see [25,36]). On the other hand, the nonlinearity and the subsequent optimization
requires a comprehensive sampling plan that spreads adequately in the whole design domain. Based
on these reasons, Latin hypercube sampling [37] and kriging [38] are used to construct our surrogate
model of discrepancy.

Each point Xi in our sampling plan is comprised of a particular choice
(

C(i)
i , κ(i)

)
of the RSC

model parameters. In this paper, Latin hypercube sampling is performed with the widely used φp

criterion [39] (with p = 10), which approximately maximizes the distances between each sampling
point. The enhanced stochastic evolutionary algorithm [40] is used to efficiently construct the optimal
design plan. The obtained sampling plan satisfies both the space-filling (uniform spreading) and
non-collapsing (each parameter being equally sampled) requirements for a well-designed computer
simulation experiment.

Given all sampling points Xi and their corresponding discrepancies ei calculated based on
Equation (2), our metamodel is an approximate analytical function ê that extends ei to arbitrary
values of X = (Ci, κ). As discussed above, an appropriate surrogate model should interpolate the
existing data

ei = êi = ê(Xi) for every Xi =
(

C(i)
i , κ(i)

)
. (4)

Hence, kriging [38] is well adapted to construct such surrogate functions. Interested readers are
invited to refer to [24,36,41] and references therein for a review on this subject. In our work, kriging
consists in regarding the approximate prediction ê as a special Gaussian stochastic process of spatial
covariance given by

cov
(
ê(Xi), ê(Xj)

)
= σ2 corr

(
ê(Xi), ê(Xj)

)
= σ2 exp

(
−θ1

(
C(i)

i − C(j)
i

)2
− θ2

(
κ(i) − κ(j)

)2
)

, (5)

where σ2 is the variance, corr is the correlation function and θ provides a separate length scale for Ci

and κ. Intuitively, the covariance equation (Equation (5)) states that the predictions at two different
points are highly correlated corr

(
ê(Xi), ê(Xj)

)
≈ 1 if and only if these two points are close to each other,

i.e., C(i)
i ≈ C(j)

i and κ(i) ≈ κ(j). The hyperparameters (µ, σ, θ1, θ2) of the surrogate model can then
be computed by maximizing the likelihood of the observations (Xi, ei) (see [36]). After such training
process, the constructed surrogate predictor not only provides a global estimator of the discrepancy
at arbitrary X, it also calculates the standard deviation σ measuring the uncertainty of the surrogate
model (Surrogate Modeling Toolbox (https://github.com/SMTorg/SMT) is used for sampling plan
generation and kriging).

Based on the previous surrogate model, an adaptive global optimization process introduced
in [42] is carried out to locate the optimal RSC parameters. The “expected improvement” criterion
is maximized at each iteration to suggest further infill points to be included in the sampling plan.
Moldflow simulation is then launched for each of these additional infill points. This criterion predicts
the further decrease of the objective function at a particular point. It has been used in the injection

https://github.com/SMTorg/SMT


J. Compos. Sci. 2018, 2, 73 6 of 17

molding community to reduce warpage (see [43]). This method is known to balance the minimization
of the constructed surrogate objective function (discrepancy) and the exploration of the design domain,
which decreases the uncertainty of the surrogate model. We also use the “constant liar” (cl-mean)
heuristic strategies described in [44] so that multiple infill points can be proposed. Global optimization
is performed with a stochastic algorithm described in [45] and implemented in [46]. The gradient-based
minimization is accompanied by random perturbations to avoid local minimizers. The optimization
iterations are controlled by a convergence criterion based on [42]

C =
max EI(X)

min ei
≤ tol. (6)

It is defined by the ratio between the maximal value of expected improvement and the best
(minimal) discrepancy e∗ = min ei among all sampling points. As more infill points are added into the
sampling plan, the expected improvement will gradually decrease and the optimal solution found
by Wales and Doye [45] will become closer to the currently-best solution X∗.

3. Application on a Center-Gated Disk Problem

3.1. Problem Statement

In this section, the general surrogate-modeling based optimization procedure described in
Section 2 is applied to a center-gated disk problem. An abundance of experimental fiber orientation
and concentration measurements has been reported in [11,15,34]. Based on these data, flow-fiber
coupled injection molding simulations are performed in [22], where the effects of flow-fiber coupling
and non-uniform fiber concentration are analyzed. Using a particular choice (Ci, κ) = (0.015, 0.2)
of the RSC parameters, it is found that they lead to further slowed-down orientation kinetics in the
core and contribute to a better agreement with experiments. As shown below, this conclusion is also
confirmed in a parametric optimization context.

The simulations details are reported in [22], but the geometry and injection information can also
be found in [11,15,34]. The geometrical parameters and fiber orientation measurement positions are
summarized in Figure 3. Here, it is more essential to specify the discrepancy function used to compare
numerical and experimental fiber orientation results.

rout = 51.53 mm

rin = 2.97 mm

2H = 1.38 mm

rB
= 22.425 mm

rC = 46.575 mm

B C
40%

90%

(a)

ez

er

rin = 2.97 mm rout = 51.53 mm
B C40% 90%

z = H

z = −H

Shell layer

Transition layer

Core layer

0.75H

0.42H

0.08H

rB = 22.425 mm rC = 46.575 mm

O

(b)

Figure 3. Geometrical parameters and measurement positions of the center gated plate: (a) 3D view
with B and C two measurement radial positions along the thickness direction; and (b) cut view with
three additional measurement height levels (shell, transition and core layers) along the radial direction.

In order that the predicted fiber orientation captures both the correct skin–shell–core structure
and a global radial evolution along the flow path, in the discrepancy function, we propose to taken into
account the experimental data at two measurement radial positions B and C (in the thickness direction)
and along the three height levels (shell, transition and core layers) illustrated in Figure 3. We are mainly
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interested in the radial (rr) component for comparison, i.e., I = { (r, r) } in Equation (2), although
other components can also be included, as in [21]. Since both the simulation and experimental data
present some uncertainties (angular variability for simulation, see [22]), only the average values are
used. With the previously defined discrepancy measure in Equation (2), the discrepancy (objective)
function to be optimized for this center-gated (CG) problem is

eCG =
1
5
(eB + eC + eshell + etransition + ecore). (7)

It can thus be regarded as the mean error produced along the thickness direction or the flow path.

3.2. Adaptive Optimization Iterations

The initial sampling plan is crucial since it should already provide a relatively accurate global
picture of the response in the design domain (see [36]). With Latin hypercube sampling, it amounts
to choosing the pertinent lower and upper bounds for each of the parameters. The material being
considered is a 30 wt% short glass fiber filled polybutylene terephthalate (PBT-GF30) under the trade
name Valox 420. Some previous RSC parameter values reported in the literature for this material are
taken into account when constructing the sampling plan.

• For the interaction coefficient Ci, the initial sampling interval [10−3, 0.02] is used. This interval
covers in particular the default value Ci = 4.1× 10−3 automatically proposed by Moldflow, as well
as the value Ci = 0.0112 previously found by fitting against their rheological measurements [9,11].
The empirical equation of Phan-Thien et al. [7] also provides an estimation of Ci at a given fiber
aspect ratio and concentration fraction. Its predicted value Ci = 0.019 also falls in the proposed
interval.

• Concerning the reduction factor κ, the interval [10−2, 0.5] is chosen. The lower bound is chosen
so that the RSC orientation model is well-posed and does not predict a zero fiber orientation
evolution rate (see Equation (1)). The upper bound is selected to include the default value κ = 0.1
and the previous ones κ = 0.119 and κ = 0.4 given by Wang et al. [9] and Mazahir et al. [11].

Since the κ parameter acts linearly on the fiber orientation rate (see Equation (1)), Latin hypercube
sampling is performed on the linear scale. Meanwhile, since the Ci parameter is much smaller than κ,
it seems more appropriate to sample the values of log Ci. Our initial sampling plan is composed of
18 points in the (Ci, κ) design space and is illustrated in Figure 4. It can be observed that the sampling
plan fills quasi-uniformly the design space and each parameter axis is sampled equally.

10 3 10 2

Ci

0.0

0.1

0.2

0.3

0.4

0.5
Sampling points = 18

Default
Wang
Mazahir

Figure 4. Initial sampling plan for in the (Ci, κ) design space. The default parameter value of Moldflow
as well as the values used in [9,11] are also indicated.

A total number of 19 Moldflow simulations (including that with the default parameters) are first
carried out without flow-fiber coupling effects. For each sampling point Xi, a discrepancy value is
calculated using Equation (7). The discrepancy response surface constructed with kriging (Equation (5))
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is presented in Figure 5a. The current best (minimal discrepancy) solution among all sampling points
is denoted by ?, while the optimal point by minimizing the surrogate discrepancy response surface is
indicated by ×.

10 3 10 2

Ci

0.0

0.1

0.2

0.3

0.4

0.5

Discrepancy
Default Best Optimal

0.18

0.20

0.22

0.24

0.26

0.28

(a)
10 3 10 2

Ci

0.0

0.1

0.2

0.3

0.4

0.5

Standard deviation
Default Best Optimal

0.005

0.010

0.015

0.020

(b)

Figure 5. (a) Discrepancy response surface; and (b) standard deviation (uncertainty) based on the
initial sampling plan.

We can observe a gradual decrease of the discrepancy (hence a better agreement of the
experimental data) as the Ci value is increased. The optimal discrepancy values are located in a
slightly broad valley (along the κ direction) near the right boundary of the sampling points. Hence,
the surrogate function is not guaranteed to be highly representative of the true discrepancy function
there. This is confirmed by the standard deviation contour presented in Figure 6b, which provides
an uncertainty measure of the approximate response surface. While very small approximation error
is found near the sampling points, confirming the interpolation nature of kriging, the uncertainties
are indeed higher on the right side of the figure where the optimal solution lies. This motivates the
introduction of additional infill points in this area to reduce uncertainties and help the model converge,
see Section 3.2.

The “expected improvement” criterion is illustrated in Figure 6a. The two additional infill points
using the “cl-mean” strategy are also indicated. On the one hand, the lower left infill point is near the
previously found optimal solution, favoring hence the minimization of the true discrepancy function.
On the other hand, the upper right infill point is focused on exploration of the design domain, in order
to reduce the uncertainty of the surrogate. Based on the suggested locations, three more infill points
(two during the first iteration, and another at the second iteration) are gradually included into the
sampling plan (see Figure 6b).

10 3 10 2

Ci

0.0

0.1

0.2

0.3

0.4

0.5

Expected improvement
Default Best Infill

0.000

0.001

0.002

0.003

(a)
10 3 10 2

Ci

0.0

0.1

0.2

0.3

0.4

0.5
Sampling points = 21

Default
Infill #1
Infill #2

(b)

Figure 6. (a) Expected improvement predicted by the surrogate model; and (b) infill points added to
the initial sampling plan.
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The convergence of such adaptive optimization procedure is presented in Figure 7. The convergence
criterion C given by Equation (6) decreases as more infill points are added into the sampling plan.
We consider that convergence is achieved at the second iteration, where the maximal expected
improvement can only further reduce the discrepancy by 0.4%.

Initial DoE #1 #2
Infill iteration

10 2

4 × 10 3

6 × 10 3

2 × 10 2

Co
nv

er
ge

nc
e 

cr
ite

rio
n

Figure 7. Convergence of the surrogate model.

3.3. Effect of the RSC Model Parameters Based on Uncoupled Simulations

Using the converged surrogate model, we now analyze the effect of the RSC model parameters
when flow-fiber coupling is not considered. The final response surface is presented in Figure 8a.
Using the information provided by the infill points, we observe that, when the inter-fiber
interaction is overestimated, the difference between simulation and experimental data may increase.
The Ci-dependence of the discrepancy is also illustrated in Figure 8b for two fixed κ values.
The uncertainty of the surrogate model is indicated by shaded regions using a 95% confidence
level, i.e., ±1.96σ. Due to the adequate placement of the sampling points, the surrogate model
provides a sufficiently accurate approximation of the true discrepancy function, except possibly near
the boundaries due to the lack of data. At these two different values of κ, the respective minimal
values of discrepancy are also achieved at different Ci, indicating some interaction between these
two parameters.

10 3 10 2

Ci

0.0

0.1

0.2

0.3

0.4

0.5

Discrepancy
Default Best Optimal

0.18

0.20

0.22

0.24

0.26

(a)
10 3 10 2
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0.18

0.20

0.22

0.24

0.26

0.28

Di
sc

re
pa

nc
y

= 0.05
= 0.2

(b)

Figure 8. (a) Converged discrepancy response with uncoupled simulations; and (b) discrepancy
variation along the lines κ = 0.05 and κ = 0.2, with a confidence level of 95% represented by
shaded regions.

Through optimization, we have thus reduced the discrepancy value from 0.223 when using the
default parameter values to 0.174 when using the currently best or the optimal parameters (see Table 2).
Note also the closeness between the “best” and the “optimal” solutions, which indicates a satisfying
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converged behavior. The optimal RSC parameters found here are close to those fitted with rheological
experiments and used in [9,11,15].

Table 2. Discrepancy values using the default or optimized RSC parameters without fiber-flow coupling.

RSC Parameters Discrepancy

Default (Ci, κ) = (0.0041, 0.1) 0.223
Best (Ci, κ) = (0.015, 0.2) 0.174
Optimal (Ci, κ) = (0.016, 0.179) 0.174

To visually perceive the effect of optimization, the radial fiber orientation arr is presented in
Figure 9. The default and the best RSC parameters are compared in the thickness direction at B and
along the radial direction on the shell layer. On the one hand, the optimized parameters lead to a
better agreement especially on the skin and in the shell layer. The core, on the other hand, is not
much impacted. Concerning the radial evolution of fiber orientation, its behavior near the gate is not
well predicted compared to the experimental data. It could be due to some modeling simplifications
discussed in [22] and should be washed out as the flow advances. Nevertheless, the general decreasing
trend is well captured and a quantitative agreement is achieved with the best found parameters.

-1.0 -0.5 0.0 0.5 1.0
Normalized thickness

0.2

0.4

0.6

0.8

a r
r a

t B

Default
Best
Exp

(a)
10 20 30 40 50

Radius (mm)

0.0

0.2

0.4

0.6

0.8

1.0

a r
r

Shell region

Default
Best
Exp

(b)

Figure 9. Radial fiber orientation (a) at B and (b) in the shell region, using the default or the best RSC
parameters, without flow-fiber coupling.

As can be observed in Figure 8a, the optimal region that minimizes the discrepancy is
approximately delimited by Ci = 0.01 and Ci = 0.02, while the κ parameter, which governs the
transient phase of fiber orientation evolution, plays a less important role within the range κ ∈ [0, 0.5].
In Figure 10, the discrepancy value is presented separately as a function of Ci and κ, using the
sampling points. The behavior of the Ci parameter is obvious and more deterministic, indicating a
stronger influence than the κ parameter which presents a quasi-random response especially for κ ≥ 0.2.
A mathematical measure can be used to quantify the influence of each parameter on the objective
function. It is discussed below, when we consider flow-fiber coupling effects.
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Figure 10. Discrepancy as a function of (a) Ci and (b) κ without flow-fiber coupling.

3.4. Effect of Flow-Fiber Coupling During Optimization

Now, the effect of flow-fiber coupling with or without non-uniform fiber concentration
effects [21,22] are considered during parametric optimization. For comparison concerns, the same final
sampling points indicated in Figure 6b are used. The convergence criterion in Equation (6) confirms
an acceptable converged behavior for the constructed surrogate response surface for all coupled
simulations presented below.

In [22], it is found that a non-uniform fiber concentration enhances flow-fiber coupling and further
decreases the discrepancy. The influence of the A parameter controlling the intensity of such coupling
can only be perceived when the fiber volume fraction varies in space. With A = 35% (compared to the
default value A = 50%), the coupling effect is more important and also leads to a better agreement
with experiment. In Figure 11a, the response surface in such strongly coupled situation is presented.
According to the colorbars, the general discrepancy has decreased in the whole domain compared to
the decoupled situation in Figure 8a. On the one hand, the region that maximizes discrepancy has
moved downward and becomes more localized. On the other hand, the optimal region is slightly
reduced in size and the optimal as well as the best solutions are also shifted upward. This indicates
some non-trivial interaction between flow-fiber coupling and fiber orientation model parameters.
Nevertheless, the optimal value of Ci is still inside the previous [0.01, 0.02] interval.
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Figure 11. (a) Response surface with flow-fiber coupling, non-uniform fiber concentration effects
(coupled w/ φ) and A = 35%; and (b) discrepancy as a function of Ci at κ = 0.2, for several
coupling situations.

At fixed κ = 0.2, the discrepancy variation is presented in Figure 11b for the uncoupled case,
the flow-fiber coupled case with nominal fiber concentration (coupled w/o φ), the coupled case
with non-uniform fiber concentration (coupled w/ φ), and when A = 35% is also included in
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the latter case. This presentation confirms what is found in [22] concerning flow-fiber coupling:
a spatially-varying migration-induced fiber concentration contributes to an enhanced coupling
behavior and leads to a better agreement with experiment. When fiber concentration is assumed at its
nominal value, the coupling does reduce slightly the discrepancy, however the effect is less visible for
the optimal parameters. Along with the corresponding discrepancies, they are summarized in Table 3.
The relative reduction of discrepancy compared to the default value of 0.223 in Table 2 is also indicated.
With maximum flow-fiber coupling (coupled w/ φ, A = 35%), another 21% reduction can be obtained
compared to the previous optimization without coupling effects.

Table 3. Optimal parameters for the RSC fiber orientation model with or without fiber-flow coupling.

Optimal Parameters Discrepancy Compared to “Default”

Uncoupled (Ci, κ) = (0.016, 0.179) 0.174 −22%
Coupled w/o φ (Ci, κ) = (0.0166, 0.222) 0.170 −24%
Coupled w/ φ (Ci, κ) = (0.0157, 0.416) 0.149 −33%
Coupled w/ φ, A = 35% (Ci, κ) = (0.0154, 0.289) 0.127 −43%

Compared to the uncoupled optimization where fiber orientation prediction is mostly improved
in the shell and skin layers (see again Figure 9), under flow-fiber coupling the gain from optimization
is mostly concentrated in the core region (see Figure 12). On the one hand, the already optimized shell
region is not much impacted by the coupling. On the other hand, the coupled optimization increases
greatly the agreement in the core, due to a further slowed-down orientation kinetics. This result also
agrees with our previous results reported in [21].
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Exp

(b)

Figure 12. Radial fiber orientation (a) in the shell and (b) in the core region, using the default or the
best RSC parameters, with or without flow-fiber coupling.

The benefit of flow-fiber coupling can also be perceived from the point of view of the global
response surface. In Figure 13, the relative variation of the discrepancy compared to the uncoupled
case is calculated at every sampling point (so using the same RSC parameters) and then combined to a
response surface using the same kriging method. Apart from a localized area far away from the optimal
region, flow-fiber coupling indeed leads to a further 20% reduction of discrepancy in a large portion of
the domain. This illustrates again the importance of coupling in terms of fiber orientation prediction.
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Figure 13. Relative discrepancy variation (a larger negative value stands for a greater reduction of
discrepancy) using flow-fiber coupling, non-uniform concentration effects and A = 35%, compared to
the uncoupled case.

In Figure 14, we provide a novel representation of the flow-fiber coupling effect using parallel
coordinates. Each sampling point (RSC parameters) is indicated by a dot and is connected by several
segments of the same color. The effect of coupling is evaluated for each of the sampled RSC parameters,
as we move from left to right in the horizontal direction. It can be seen that, as the coupling effect is
enhanced gradually, the general discrepancy is also decreased.
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Figure 14. Effect of flow-fiber coupling using parallel coordinates, where each line with the same
color connects the same RSC parameters (same sampling point) and evolves according to flow-fiber
coupling situation.

Finally, to mathematically quantify the influence of the RSC parameters and the flow-fiber
coupling effect, the “mutual information” measure implemented in the well-known machine learning
toolkit scikit-learn [47] is used. This function characterizes the (linear and nonlinear) dependency
between two random variables. While the two RSC parameters are continuous, the coupling effect is
considered as a discrete one, with the four possible situations in Table 2 and Figure 14. The mutual
information values are calculated in Table 4. As can be expected from Figure 10, the Ci parameter
explains a major (78%) variance of the discrepancy, while κ is indeed negligible. Flow-fiber coupling
accounts for 22% of the total optimization effort and should not be neglected when one seeks to reduce
the fiber orientation discrepancy between simulation and experiment.

Table 4. Relative influence on the discrepancy measured by the mutual information.

Interaction Coefficient Ci Reduction Factor κ Flow-Fiber Coupling

78% 0% 22%
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Remark 1. The influence of the reduction factor κ is unexpectedly evaluated to be 0%. Howeverm it indeed
characterizes its quasi-random behavior illustrated in Figure 10b within the considered range [0, 0.5]. It can be
expected that beyond this interval the effect of κ will be more obvious, even though it may increase the discrepancy.

4. Conclusions and Future Work

In this paper, a novel systematic approach to optimize the fiber orientation model parameters
has been proposed. Constructed via Latin hypercube sampling and kriging, the surrogate response
surface provides a global picture of how discrepancy varies in the parameter space. Its analytical
nature permits a relatively straightforward identification of the optimal parameters. Adaptive infilling
procedure can be employed to accelerate the minimization process and to decrease the uncertainty
of the surrogate. The general procedure is not limited to the two-parameter RSC model and can be
applied in the future to other advanced fiber orientation models with more parameters. Additional
visualization techniques could be used to analyze such high-dimensional optimization. It is hoped
that, when combined with a well-designed process and the associated flow kinematics representing
injection molding [13], the systematic and robust optimization procedure described here may identify
the correct parameters for fiber orientation kinetics during the molding process.

The discrepancy function to be minimized here measures the differences between the predicted
and experimental fiber orientation data. Compared to previous approaches, here both the gapwise
and the flow path directions are taken into account. The optimized solution hence possesses correct
skin–shell–core structure and global orientation evolution throughout the part. It can be expected that
the use of several measurement positions and height levels leads to a more robust optimization. For the
same material, multiple injection molding experiments could also be conducted on different geometries.
Using orientation measurements on several geometries in the same discrepancy function can also be
considered in the future. Furthermore, in this paper, we are only interested in the fiber orientation
predictions. We could have also performed a multiphysics optimization, where the differences in
(non-uniform) fiber concentration between simulation and experiment are also included.

This paper also illustrates some non-trivial interaction between fiber orientation model parameters
and flow-fiber coupling effects. The parametric fine-tuning of these orientation models mostly leads to a
better agreement in the skin and shell regions, while the coupling effect via a fiber-dependent viscosity
improves prediction in the core. The optimal region with minimal discrepancy in the parameter
space may vary depending on whether flow-fiber coupling is taken into account. The influence of
coupling on discrepancy reduction is also quantitively measured. Our results highlight the importance
of coupling [21] and a non-uniform fiber concentration [22], along with the optimization of fiber
orientation model parameters.
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