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Abstract: The possibility of designing composite panels with non-uniform stiffness properties offers
a chance for achieving highly-efficient configurations. This is particularly true for buckling-prone
structures, whose response can be shaped through a proper distribution of the membrane and
bending stiffnesses. The thermal buckling behaviour of composite panels is among the aspects that
could largely benefit from the adoption of a variable-stiffness design, but, in spite of that, it has
rarely been addressed. The paper illustrates a semi-analytical approach for evaluating the thermal
buckling response of variable-stiffness plates (VSP) by considering different boundary conditions.
The formulation relies upon the method of Ritz and a variable-kinematic approach, leading to
a computationally efficient implementation, which is particularly useful for exploring the larger
design spaces, typical of variable-stiffness configurations. Due to the possibility of choosing the
underlying kinematic approach as an input of the analysis, the formulation is not restricted to thin
plates, but is suitable for analyzing the response of thick plates as well. Novel results are derived,
which can be useful for benchmarking purposes and for gathering insight into the mechanical
behaviour of variable-stiffness plates. Furthermore, the importance of transverse shear flexibility is
illustrated with respect to the boundary conditions as well as the degree of steering of the fibers.
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1. Introduction

Thermal buckling phenomena are of crucial importance in the design of aerospace structures [1].
High-speed aircraft and launch vehicles’ structural elements are indeed exposed to aerodynamic
heating that may promote elastic instability phenomena. In some cases, such as for cryogenic
launch vehicles, the source of internal forces leading to instability is due to low temperatures,
and cooling-induced buckling should be considered during the design process. With these motivations,
thermal buckling has been the subject of many investigations in the aerospace structural community.
In this context, an important role is played by rectangular plates that, despite their simplicity, are
often a good approximation, at least in a early design phases, of sub-portions of more complex
structural topologies. For instance, the portion of skin between stringers and frames can be assumed
as a rectangular plate subjected to ideal constraints along the boundaries. Another advantage of
analyzing idealized plate-like structures lies in the possibility of gathering insight into the underlying
structural mechanics in a clear and straightforward manner, obtaining design guidelines that can be
extended even to more complex structures.

Thermal buckling of composite plates was analyzed, in several past works, referring to Classical
Lamination Theory (CLT) [2–6], as well as First-Order Shear Deformation Theory (FSDT) [7]. In some
cases, higher-order approaches [8–11] and 3D solutions [12,13] were formulated for extending the
analysis capabilities to thick plates and sandwich structures.
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The tailoring opportunities offered by composite materials can be further improved by allowing
the orientation of the fibers to vary locally, according to the desired load path to be achieved. This
chance has been known for a long time, with the first scientific paper mentioning this topic dating
back to almost 50 years ago [14]. The lack of available technologies hindered the progress of this
concept until the early 1990s, when the pioneering studies of Leissa and Martin [15], Hyer [16,17] and
Gürdal [18] increased interest in the concept of variable-stiffness structures. In the past several years,
drastic improvements in the manufacturing techniques allowed variable-stiffness constructions to
become a hot topic and suitable candidates for the aerostructures of the next generation. Theoretical
investigations and numerical models were carried out for analyzing their buckling [19–21] and
post-buckling [22–24] response, in most cases referring to thin plate theory or FSDT [25]. Refined
theories have been less commonly employed: the free vibration response of variable-stiffness plates
(VSP) is investigated in [26,27] using finite elements, while the authors presented a variable-kinematics,
Ritz-based procedure for buckling and free-vibration analysis [28] of VSP based on Carrera’s Unified
Formulation (CUF) [29–31]. Tornabene and co-workers discussed the application of variable-kinematics
approaches for analyzing the modal and static response of variable-stiffness laminates [32,33] and
sandwich constructions [34,35].

Recently, the thermal buckling behaviour of variable-stiffness plates was investigated in [36],
using a thin-plate finite element formulation, and [37], by considering FSDT. Thermally induced
multi-stable configurations were assessed by Haldar et al. [38] using finite elements and the Ritz
approach proposed by Dano and Hyer [39].

To the best of the author’s knowledge, no previous attempts could be found in the literature
to analyze the thermal buckling of VSP using refined theories. The present work aims at filling this
gap by presenting a unified Ritz-based modeling framework, where the analyst has the possibility of
choosing the underlying plate theory—both as equivalent single layer (ED) or layer-wise (LD)—so
that both thin and thick plate configurations can be studied.

Furthermore, novel closed-form solutions are presented for the evaluation of pre-buckling internal
stress distribution, which can be successfully employed for gathering further understanding into the
mechanical response of VSP, as well as improving the efficiency of the buckling solution procedure.

2. Theoretical Framework

This work is devoted to the thermal buckling analysis of variable-stiffness composite plates, i.e.,
flat plates characterized by the stacking of plies with non-straight fibers.

Several laws were proposed in the literature for describing the orientation of the fibers within the
panel domain, including linear and nonlinear ones [20,25,40]. Linear variation of the orientation angle
is considered here due to its effectiveness in allowing the description of a variable-stiffness ply by
means of two parameters only. This choice tends to limit the design space with respect to more general
nonlinear descriptions, but it appears useful when trying to condense the behaviour of VSP in design
charts or compact summary tables, as done in this study. In other words, the understanding of the
mechanical response of VSP, their potential for elastic tailoring, as well as the main features associated
with their analysis can be grasped even by restricting the focus to the case of fiber linear variation.

The plates are characterized by planar dimensions a × b, where a denotes the longitudinal
direction along the x-axis and b is the transverse direction parallel to the y-axis, as illustrated in Figure 1.
The total thickness is denoted with h.

According to the notation adopted here, a ply denoted with < θ0|θ1 >x is characterized by a fiber
variation along the x-axis, where θ0 is the orientation, measured with respect to the x-axis, at the
plate center, and θ1 the one at the plate edge (see Figure 1a). Similarly, steering of the fibers along the
direction y is denoted with < θ0|θ1 >y (see Figure 1b). Starting from the fiber passing through the
plate center, the other ones are obtained by translation of the reference fiber along the x- or y-direction,
referring to a strategy sometimes denoted as a shifted method [26,41].
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(a) (b)

Figure 1. Panel geometry and reference system: (a) fiber variation along the x-direction; (b) fiber
variation along the y-direction.

By considering fiber variation along the x-direction, the orientation angle at a generic point is
given as:

θ (x, y) =
2 (θ1 − θ0)

a
|x|+ θ0. (1)

An analogous linear law is obtained when variation takes place along the y-direction. Referring
to common design rules of the aerospace industry, the stacking sequence is taken as symmetric with
respect to the midplane, i.e., a layer oriented at < θ0|θ1 > at the distance z from the plate midplane
implies the presence of another identical layer at the distance −z. In addition, the analysis is restricted
to the case of balanced laminates, meaning that a ply at < θ0|θ1 > requires the presence of another ply
at − < θ0|θ1 > at any position in the stack.

2.1. Variational Formulation and Approximate Solution

A variable-kinematic approach is considered due to the possibility of analyzing wide ranges
of plate configurations. Specifically, the underlying framework refers to the well-known Carrera’s
Unified Formulation (CUF) (see, for instance, [29,42,43]), offering the advantage of allowing a relatively
easy implementation, which is independent from the kinematic model to be used for the structural
analysis. Indeed, the theory is defined as an input of the problem, and can be chosen among the class
of Equivalent Single Layer (ED) and Layer-Wise (LD) formulations.

The formulation is developed in the context of a displacement-based approach, where the three
displacement components are the unknowns of the problem. The buckling condition is sought by
application of the Trefftz criterion, which is written as:

δ
(

δ2Π
)
= 0, (2)

where δ2Π is the quadratic part of the Taylor expansion of the total potential energy, whose expression
is given as:

δ2Π =
1
2

Nl

∑
k=1

∫
Ω

∫ zk+1

zk

(
εkT

p σk
p + εkT

n σk
n + εkT

pnl
σk

p0

)
dz dΩ, (3)

where Ω denotes the domain [−a/2 a/2] × [−b/2 b/2], and k is the ply-related index. Note that
the first five contributions entering the right-hand side of Equation (3) should be intended as variations
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with respect to the equilibrium condition, whilst the last one, σk
p0 , defines the membrane stress state

obtained from the pre-buckling analysis.
The components of the deformation and stress tensors reported in Equation (3), in the case of

a generic 3D elasticity formulation of the problem, are split into the in-plane and normal contributions,
according to the definitions:

εk
p =

{
εk

xx εk
yy γk

xy

}T
, σk

p =
{

σk
xx σk

yy τk
xy

}T
, (4)

εk
n =

{
γk

xz γk
yz εk

zz

}T
, σk

n =
{

τk
xz τk

yz σk
zz

}T
, (5)

while the pre-buckling membrane stresses are:

σk
p0 =

{
σk

0xx σk
0yy τk

0xy

}T
. (6)

The strain components in work-conjugacy relation with those of Equation (6) are the nonlinear
part of the Green–Lagrange strain tensor, which is given by:

εk
pnl

=


1
2

(
uk2

,x + vk2
,x + wk2

,x

)
1
2

(
uk2

,y + vk2
,y + wk2

,y

)
uk

,xuk
,y + vk

,xvk
,y + wk

,xwk
,y

 . (7)

The functional of Equation (3) can be expressed as a function of the displacement vector

uk =
{

uk vk wk
}T

after introducing the constitutive law, in this case taken as the generalized
Hooke’s Law in 3D for an orthotropic material. The approximate solution is sought here referring
to the Ritz method. The procedure is briefly outlined in the following, and the interested reader is
referred to [28,44–48] for more details.

According to the CUF formalism, the displacement components are expanded as the product of
thickness functions Fτ and generalized displacement components uk

τ as:

uk (ξ, η, ζ) = Fτ (ζ) uk
τ (ξ, η) , (8)

where ξ and η are non-dimensional in-plane coordinates, defined as ξ =
2x
a

, η =
2y
b

and defined in

the bi-unitary domain [−1 1] × [−1 1].
The thickness functions of Equation (8) are taken as simple polynomials and a combination of

Legendre polynomials in the case of Equivalent Single Layer and Layer-wise theories, respectively.
Following the classical Ritz scheme, the generalized displacement components uk

τ are represented
as the linear superposition of an arbitrary number of trial functions:

uk
rτ (ξ, η) = Nrτi (ξ, η) ck

rτi, (9)

where summation is implied with respect to the index i, whilst r defines the generic displacement
component. The coefficients ck

rτi are the unknown Ritz amplitudes, and the trial function Nrτi reads:

Nrτi = frτ (ξ) pm (ξ) grτ (η) pn (η) , (10)

where pi are Chebyshev polynomials, while f and g are polynomial boundary functions (for
a definition, see [49]).
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After substituting Equation (9) into the functional given by Equation (3), and applying the criterion
given by Equation (2), the set of discrete equations governing the buckling response is obtained as:

(K + λG) c = 0, (11)

where K and G are the linear and the geometric stiffness matrices, respectively. The scalar λ is
the buckling multiplier, and is obtained as the smallest magnitude eigenvalue of the eigenproblem
established by Equation (11). In the context of thermal buckling analysis, it is generally of interest to
identify the smallest positive and negative eigenvalues, in order to obtain the critical temperatures
associated with heating and cooling. In some cases, all of the eigenvalues have the same sign, thus
instability is possible only for cooling or heating.

2.2. Pre-Buckling Solutions

The geometric stiffness matrix G depends on the membrane pre-buckling stresses, whose
evaluation represents the first step of the overall buckling procedure. To this aim, closed-form
solutions are derived for establishing the state of pre-buckling internal forces—to the best of the
author’s knowledge, they were not previously available in the literature—for four sets of boundary
conditions. The conditions under investigation are summarized in Figures 2 and 3. According to
the nomenclature adopted hereinafter, the term Case-Txi specifies a configuration characterized by
fiber variation along the x-axis, and i is equal to: 1 if all the four edges are restrained against the
expansion/contraction along the direction normal to the plate edge; 2 if only the longitudinal edges
are prevented from the movement along the direction normal to the plate edges. Similarly, Case-Tyi
conditions are relative to two possible cases associated with fiber variation along y.

The approach for deriving the pre-buckling, thermally-induced stresses refers to classical
membrane theory of laminated plates. Under the assumptions introduced here in terms of stacking
sequence and boundary conditions, the solution are exact for a generic 3D laminate. Similar results,
but restricted to the purely elastic case, can be found in [50].

(a) (b)

Figure 2. Pre-buckling boundary conditions for fiber variation along x: (a) Case-Tx1; (b) Case-Tx2.
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(a) (b)

Figure 3. Pre-buckling boundary conditions for fiber variation along y: (a) Case-Ty1; (b) Case-Ty2.

2.2.1. Thermoelastic Strains and Constitutive Relation

Following the classical approach adopted in thermoelastic analysis of laminates [51], the vector of
membrane strains can be organized as:

εtot = εth + εm, (12)

where the superscript εtot is the total deformation, which is represented as the sum of a contribution
due to thermal and mechanical strains, εth and εm. With respect to Equation (4), the subscript p is now
omitted.

Assuming linear thermoelastic behaviour, the thermally-induced strains are expressed as:

εth = α̂∆T, (13)

having indicated with ∆T a temperature variation, taken positive for heating, with respect to the
stress-free reference condition, and α̂ the vector collecting the laminate coefficients of thermal
expansions, which are obtained as:

α̂ = A−1N̂th
= aN̂th, (14)

where A is the well-known membrane stiffness matrix, and its inverse a = A−1 is the membrane
compliance. The unit thermal stress resultant N̂th of Equation (14) can obtained as [51]:

N̂th
= ∑

k

∫
zk

Qkαk dz. (15)

Recalling now the constitutive equation of a symmetrically layered membrane:

N = A
(

εtot − εth
)

(16)

and inverting Equation (16) and using Equation (15),

εtot = aN + α̂∆T (17)

is obtained, which provides an expression for the total strains in terms of membrane forces and
temperature variation.
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2.2.2. Semi-Inverse Approach

The pre-buckling problem is solved by means of a semi-inverse approach, where the initial
assumption regards the shear membrane force per unit length Nxy, which is taken identically null
inside the plate domain and along its boundaries, i.e., Nxy = 0. The closed-form solutions for Nxx

and Nyy are then derived by enforcing the fulfillment of the equilibrium equations and the kinematic
and equilibrium conditions at the boundaries. The final step of the approach consists of verifying the
compatibility of the solution, providing a proof that the resulting solution is indeed the exact solution
of the linear elastic pre-buckling problem.

The in-plane pre-buckling equations, which are uncoupled from the out-of-plane one due to the
assumption of symmetric laminate, are given as:{

Nxx,x + Nxy,y = 0,

Nyy,y + Nxy,x = 0.
(18)

Starting from the tentative solution characterized by Nxy = 0, it is seen, from Equation (18), that
the equilibrium equations reduce to:{

Nxx,x = 0

Nyy,y = 0
⇒
{

Nxx = Nxx(y),

Nyy = Nyy(x),
(19)

meaning that the direct membrane forces are a function of one single coordinate.
Depending on the essential conditions at the boundaries, which are discussed next, and starting

from the equilibrium requirement given by Equation (19), it is possible to determine the pre-buckling
solution. The resulting internal force distribution is verified ex-post to be respectful of the compatibility
condition, which is given by:

εxx,yy + εyy,xx = γxy,xy. (20)

Note that Equation (20) can be written in terms of force resultants Nik after expressing the strain
components εxx, εyy and γxy as function of the laminate membrane compliance coefficients.

It is noted that all the solutions derived next do satisfy equilibrium and compatibility conditions,
although the verifications of Equation (20) are omitted here for the sake of brevity.

2.2.3. Case-Tx1

The first set of conditions is illustrated in Figure 2a, and is relative to a VSP with fibers varying
along the direction x. The in-plane conditions are such that normal displacements at the boundaries
are zero. Recalling Equations (17) and (19), the axial shortening along the x-direction is then:

∆u =
∫ a/2

−a/2
εxx dx =

=
∫ a/2

−a/2
a11 (x) dxNxx (y) +

∫ a/2

−a/2
a12 (x) Nyy (x) dx +

∫ a/2

−a/2
α̂xx (x) dx∆T = 0 ∀y,

(21)

where aik are the coefficients of the compliance matrix a. The expression of Equation (21) shows that
Nxx = Nxx is constant across the panel domain.

The shortening along the transverse direction is:

∆v =
∫ b/2

−b/2
εyy dy =

= b
(
a12 (x) Nxx + a22 (x) Nyy (x) + α̂yy (x)∆T

)
= 0 ∀x.

(22)
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Substituting Equation (22) into Equation (21) and rearranging the expressions leads to:

Nxx = Nxx = −

∫ a/2
−a/2

(
A12 (x)
A11 (x)

α̂yy (x) + α̂xx (x)
)

dx∫ a/2
−a/2

1
A11 (x)

dx
,

Nyy = Nyy (x) =
A12 (x)
A11 (x)

Nxx −
A11 (x) A22 (x)− A12 (x)2

A11 (x)
εT,

(23)

where:
εT = α̂yy (x)∆T. (24)

2.2.4. Case-Tx2

The case illustrated in Figure 2b refers to a plate that is constrained along its transverse edges
to prevent the normal displacement along the x-direction. The transverse sides are free to expand or
contract, but are constrained to remain straight.
The first essential conditions regarding the transverse edges are given by Equation (21), and can be
written as:

∆u =
∫ a/2

−a/2
a11 (x) dxNxx +

∫ a/2

−a/2
a12 (x) Nyy (x) dx +

∫ a/2

−a/2
α̂xx (x) dx∆T = 0, (25)

which is clearly verified by ∀y.
The transverse displacement is unknown and, in general, different from zero. Referring to

Equation (22), its expression is derived as:

∆v = b
[
a12 (x) Nxx + a22 (x) Nyy (x) + α̂yy (x)∆T

]
. (26)

The second boundary condition regards the vanishing of the force resultant directed along the
y-axis, i.e., ∫ a/2

−a/2
Nyy (x)dx = 0. (27)

Substituting Equation (26) into Equation (27) allows for expressing the transverse displacement
as a function of the membrane force Nxx and the temperature variation ∆T as:

∆v = − c
d

bNxx +
b
d

e∆T, (28)

where:

c = −
∫ a/2

−a/2

a12 (x)
a22 (x)

dx d =
∫ a/2

−a/2

1
a22 (x)

dx e =
∫ a/2

−a/2

α̂yy (x)
a22 (x)

dx. (29)

Substituting back Equation (28) into Equations (26) and (27) and solving for Nxx and Nyy leads to:

Nxx = Nxx = −
−ce + d

∫ a/2
−a/2

(
A12 (x)
A11 (x)

α̂yy (x) + α̂xx (x)
)

dx

d
∫ a/2
−a/2

(
1

A11 (x)

)
dx + c2

,

Nyy = Nyy (x) =
A12 (x)
A11 (x)

Nx +
A11 (x) A22 (x)− A12 (x)2

A11 (x)
(ε0 − εT) ,

(30)

where:
ε0 = − c

d
Nx εT =

(
α̂yy (x)− e

d

)
∆T. (31)
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2.2.5. Case-Ty1

The case relative to the plate with fiber variation along the y-direction, and subjected to the
boundary conditions of Figure 3a is analogous to the one discussed in Case-Tx1. The solution is readily
available by modifying Equation (23) to account for the π/2 rotation between the two cases (in other
words, this is obtained by flipping the indexes x and y, and 1 and 2):

Nxx = Nxx (y) =
A12 (y)
A22 (y)

Nyy −
A11 (x) A22 (y)− A12 (y)

2

A11 (y)
εT,

Nyy = Nyy = −

∫ b/2
−b/2

(
A12 (y)
A22 (y)

α̂xx (y) + α̂yy (y)
)

dy∫ b/2
−b/2

1
A22 (y)

dy
,

(32)

where:
εT = α̂xx (y)∆T. (33)

2.2.6. Case-Ty2

Pre-buckling boundary conditions relative to Case-Ty2 are depicted in Figure 3b, and refer to
fiber steering along y, with normal displacement prevented at the two transverse edges, and stress free
conditions along the longitudinal ones.

The first kinematic condition is imposed as:

∆u =
∫ a/2

−a/2
εxx dx =

= aa11 (y) Nxx (y) + a12 (y)
∫ a/2

−a/2
Nyy (x) dx + aα̂xx (y)∆T = 0 ∀y,

(34)

while the second condition regards the membrane forces at the two edges:

Nyy = Nyy (x) = 0 at y = 0, b, (35)

which implies that Nyy = 0 over the entire plate domain. It follows that the pre-buckling solution is:

Nxx = −A11 (y) A22 (y)− A12 (y)
2

A22 (y)
εT,

Nyy = 0,

(36)

where:
εT = α̂xx (y)∆T. (37)

It is straightforward to verify, through the evaluation of the transverse displacement ∆v, that
the condition of Equation (35), along with the fiber variation along the y-direction, implies that the
longitudinal edges remain straight during the pre-buckling deformation process.

3. Results

3.1. Comparison with Literature Results

A first part of the section is devoted to the validation of the present Ritz-based procedure with
results available in the literature and finite element calculations.

The first comparison is presented against the 3D exact solutions derived by Noor and Burton [12]
for a set of angle-ply, straight fiber configurations. Despite the focus of this preliminary example not
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being expressly directed towards the case of variable-stiffness plates, it is of particular interest because
the reference solutions are derived by means of an exact three-dimensional approach.

The plates are square and different ratios b/h are considered for illustrating the role played by
transverse shear deformability. Pre-buckling constraints Case-Tx2 are considered, i.e., the normal
motion of the four edges is prevented, whilst simply supported boundary conditions are considered
along the four edges for solving the buckling eigenvalue problem.

An orthotropic material is considered, having the following non-dimensional thermoelastic
properties:

• E11/E22 = 15.0,
• E33 = E22,
• G12/E22 = G13/E22 = 0.5,
• G23/E22 = 0.3356,
• ν12 = ν13 = 0.3,
• ν23 = 0.49,
• α11/α0 = 0.015,
• α22/α0 = 1.0.

The lay-up is characterized by the stacking of 10 plies oriented at [±θ]5. It should be noted that,
for the problem at hand, the exact elasticity solution of the pre-buckling problem (see also [12]) is
characterized by a membrane state of internal stresses, where the only not null components of the
stress tensor are those reported in Equation (6). It follows that no approximations are introduced in the
pre-buckling analysis if Equation (30) is used.

The results are summarized in Table 1 for different values of b/h, ply angles and equivalent single
layer kinematic theories of order 2,3 and 4. Based on a preliminary convergence analysis, Ritz results
are computed using 12 functions along both directions.

Table 1. Non-dimensional buckling temperatures Tcrα0 for SSSS straight-fiber laminates using
12 × 12 functions.

b/h θ [12] ED2 ED3 ED4

20/3 0 0.1029 0.1075 0.1030 0.1029
15 0.1322 0.1409 0.1325 0.1320
30 0.1859 0.2028 0.1887 0.1877
45 0.1981 0.2187 0.2024 0.2012

10 0 0.5782× 10−1 0.5939× 10−1 0.5782× 10−1 0.5782× 10−1

15 0.7904× 10−1 0.8216× 10−1 0.7897× 10−1 0.7879× 10−1

30 0.1100 0.1159 0.1110 0.1106
45 0.1194 0.1267 0.1209 0.1204

20 0 0.1739× 10−1 0.1754× 10−1 0.1739× 10−1 0.1739× 10−1

15 0.2528× 10−1 0.2557× 10−1 0.2523× 10−1 0.2520× 10−1

30 0.3446× 10−1 0.3515× 10−1 0.3467× 10−1 0.3463× 10−1

45 0.3810× 10−1 0.3897× 10−1 0.3839× 10−1 0.3833× 10−1

100 0 0.7463× 10−3 0.7466× 10−3 0.7463× 10−3 0.7463× 10−3

15 0.1115× 10−2 0.1115× 10−2 0.1114× 10−2 0.1114× 10−2

30 0.1502× 10−2 0.1516× 10−2 0.1515× 10−2 0.1515× 10−2

45 0.1674× 10−2 0.1692× 10−2 0.1691× 10−2 0.1691× 10−2

As seen from Table 1, close agreement can be achieved between the 3D results reported in [12]
and those calculated with the present Ritz formulation. As expected, thicker plates demand increased
orders in the kinematic model to guarantee adequate accuracy of the predictions. When b/h is equal
to 100, no substantial improvement is observed by refining the theory from the second to fourth order.
On the contrary, the critical temperature for thick plates with b/h of 20/3 can be accurately estimated
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using the third- or fourth-order theories ED3 and ED4. In general, it can be noted that the discrepancy
with the reference solution is higher for increasing values of θ. This behaviour is due to the skewness
of the in-plane displacement pattern when the plies are rotated in the off-axis direction. In these cases,
the convergence of the solution is slower, and a proper description of the buckling pattern requires
a larger number of trial functions [45].

A second test case is taken from [37], where the thermal buckling analysis is presented
for variable-stiffness plates subjected to restrained pre-buckling thermal expansion and simply
supported boundary conditions. The material properties are those of an orthotropic material, whose
non-dimensional thermoelastic parameters are given as:

• E11/E22 = 40.0,
• E33 = E22,
• G12/E22 = G13/E22 = 0.6,
• G23/E22 = 0.5,
• ν12 = ν13 = ν23 = 0.25,
• α11 = 1 × 10−6 ◦C−1,
• α22/α11 = 2.0.

Three stacking sequences are considered, with plies oriented at [± < 15|15 >x]4, [± < 15|45 >x]4
and [± < 15|75 >x]4, where the angles are measured with respect to the x-axis, and the variation is
linear with x.

The analysis of [37] is conducted based on finite element models, using FSDT as underlying
kinematic theory with a shear factor equal to 5/6.

To further validate the results, finite element computations are performed with Abaqus finite
element simulations. To this aim, a mesh size of 50 × 50 S4R shell elements was found adequate to
obtain converged results. Note that the mesh is constructed such that each element is characterized
by a constant orientation, thus the fiber steering is represented in a stepwise manner. Given the
linear variation of the fiber angle, each row of elements at x = const share the same orientation, with
a discrete increase of the angle when moving along the x-coordinate.

The results are summarized in Table 2, where the present Ritz formulation is exploited by
considering three different kinematic theories. In addition, the convergence of the method is assessed
by considering an increasing number of trial functions R = S.

Table 2. Non-dimensional buckling temperatures Tcrα11 × 103 for SSSS variable-stiffness plates:
convergence over the number of trial functions and for various kinematic theories. (∗ denotes the
presence of smaller eigenvalues associated with local modes)

b/h = 40 b/h = 20 b/h = 10
Lay-Up R = S ED2 ED4 LD2 ED2 ED4 LD2 ED2 ED4 LD2

[± < 15|15 >x ]4 6 0.6094 0.6056 0.6048 2.2134 2.1633 2.1538 6.5376 6.1240 6.0502
10 0.6085 0.6045 0.6029 2.2110 2.1578 2.1417 6.5339 6.1088 6.0087
14 0.6084 0.6041 0.6018 2.2107 2.1566 2.1375 6.5335 6.1072 6.0010
[37] 0.6010 2.1605 6.2184

Abaqus 0.5970 2.1252 5.9392

[± < 15|45 >x ]4 6 1.0024 0.9942 0.9920 3.5552 3.4550 3.4305 9.9560 9.2104 9.0544
10 0.9971 0.9888 0.9843 3.5316 3.4244 3.3777 9.9069 9.1060 8.8573
14 0.9950 0.9856 0.9782 3.5275 3.4095 3.3432 9.9016 9.0782 8.7768
[37] 1.0131 3.5521 9.5633

Abaqus 0.9769 3.4016 9.0297

[± < 15|75 >x ]4 6 1.3476 1.3383 1.3357 4.8336 4.7177 4.6870 13.9039∗ 13.0001∗ 12.8044∗

10 1.3112 1.3014 1.2958 4.6887 4.5639 4.5089 13.4142∗ 12.4859∗ 12.1912∗

14 1.3097 1.2988 1.2907 4.6843 4.5542 4.4846 13.1196∗ 12.4659∗ 12.1348∗

[37] 1.1425 4.0844 10.6480
Abaqus 1.2882 4.5704 12.6255∗

The convergence of the Ritz solutions is clearly seen from Table 2, where the critical temperatures
get smaller and and smaller as the number of trial function increases. It is observed that the number of
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integration points for evaluating the Ritz in-plane integrals is taken as P + 5. Due to the numerical
integration process, convergence of the temperatures from above cannot be guaranteed a priori,
although it is generally experienced [28]. For the case at hand, a few degrees of freedom are necessary,
in most cases, to reach convergence up to the first two digits. Overall, the convergence is faster for
the straight fiber configuration, whose orientation angle at 15 is responsible for a slight amount of
buckling mode skewness. The convergence is slower when variable-stiffness panels are of concern,
with increasing need to consider more trial functions as the steering of the fibers is stronger.

As seen by the results in Table 2, a substantial agreement is obtained with the predictions of [37],
although in some cases the discrepancies can be non-negligible. For instance, the Ritz results relative
to the [± < 15|75 >x]4 lay-up are higher with respect to those of [37], irrespective of the kinematic
theory. For this reason, Abaqus analyses were performed, demonstrating, on the contrary, very close
agreement. Note that a local buckling mode, characterized by several short half waves in proximity
of the boundaries, is predicted as the first instability by Ritz and Abaqus analyses for the plate with
lay-up [± < 15|75 >x]4 and b/h = 10. Local instabilities are not of concern in this study, so the values
in the table refer to the first global mode. For the configurations with b/h equal to 40, Abaqus and
Ritz results are almost identical. Clearly, no substantial advantages are associated with the adoption
of higher-order theories, and an ED2 model is generally sufficient. The matching with finite element
results is clear even for thicker configurations. In these cases, the adoption of ED4 or LD2 theories can
be beneficial to obtain accurate predictions, whilst a second-order theory ED2 is generally responsible
for large errors. It is noted that LD2 results generally lead to smaller critical temperatures with respect
to Abaqus analyses based on shell elements, as one may expect. In a few cases, this behaviour is not
respected due an over-correction associated with the evaluation of shear corrections factor performed
by Abaqus for non-symmetric lay-ups. Similar issues were observed in [46]. It is useful to note that the
higher-order theories available in the variable-kinematic formulation do not require the definition of
a shear factor, and the effect of transverse shear flexibility is inherently accounted for by the kinematic
models themselves.

An extensive set of results for the thermal buckling of thin variable-stiffness panels is provided
by Duran and co-workers [36]. The authors analyzed several composite materials, focusing on the
sensitivity of the optimal configuration with respect to the material properties. The analyses of [36] are
based on finite element analyses using four-node, Kirchhoff finite elements, so they are restricted to
thin-plate configurations.

A set of results is presented in Table 3, where square plates are analyzed, with non-dimensional
ratio b/h=148. The pre-buckling boundary conditions are those denoted here as Case-Tx1, while
the flexural ones refer to the simply supported assumptions. Different materials and lay-ups are
considered. For the sake of conciseness, the material properties are not reported here but can be found
in [36]. The lay-ups are characterized by a linear variation of the fiber angle along the direction x,
with stacking sequence given by [± < θ0|θ1 >x]s. It is noted that the configurations of Table 3 are
those maximizing the critical temperatures according to the optimizations performed in [36] and,
for this reason, the angles θ0 and θ1 are non-integer values. The results are reported by considering the
equivalent single layer theories ED3 and ED4; furthermore, the second-order layer-wise theory LD2 is
adopted for furnishing lower bound reference results.

As observed, close agreement is noted between the temperatures obtained by Duran et al. [36]
and the present formulation. In most cases, the differences are of a few percent points, thus confirming
the correct implementation of the Ritz code. The same cannot be claimed for the Kevlar/Epoxy and
Carbon/Epoxy configurations, where the discrepancies are very high. To clarify this aspect, Abaqus
results were performed for all the configurations: as seen from Table 3, the differences between Ritz
and Abaqus results are very small for all the cases. It is then concluded that even the evaluation of
the Kevlar/Epoxy and Carbon/Epoxy plates is correct. As a further verification, the comparison
against Abaqus analyses is reported in Figure 4 for the Kevlar/Epoxy plate in terms of pre-buckling
stress resultants and buckled shape. The pre-buckling forces are evaluated for a unitary temperature
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increase, and are characterized by a uniform Nxx distribution, and a nonlinear one for Nyy, according
to Equation (23). The quality of the semi-analytical Ritz predictions can be noticed, also with reference
to the skew buckled pattern, which is correctly predicted using a few degrees of freedom.

Table 3. Critical temperatures Tcr for SSSS variable-stiffness plates considering different materials.

Tcr (◦C)
Materials θ0 θ1 [36] Abaqus ED3 ED4 LD2

Graphite/Epoxy 60.70 32.19 34.26 33.084 33.0033 33.0028 32.9562
E-Glass/Epoxy 6.710 58.04 5.58 5.5558 5.5546 5.5542 5.5532
S-Glass/Epoxy 16.12 54.74 5.04 5.0368 5.0355 5.0351 5.0339
Kevlar/Epoxy 66.05 11.73 22.18 16.544 16.2724 16.2708 16.2566
Carbon/Epoxy 69.00 −5.705 57.79 34.715 33.6616 33.6607 33.6509
Carbon/Peek 63.07 29.50 38.08 35.989 35.8670 35.8653 35.8257

Carbon/Polyimide 56.30 36.68 78.28 77.640 77.6006 77.5995 77.4214
Boron/Epoxy −6.57 63.28 7.50 7.5535 7.5541 7.5541 7.5488

(a) (b)
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Figure 4. Kevlar/Epoxy plate: (a) Nyy distribution (Abaqus); (b) buckled configuration (Abaqus);
(c) Nyy distribution (exact; used in Ritz analysis); (d) buckled configuration (Ritz).

Following the study of [36], the Graphite/Epoxy configuration is analyzed by evaluating the
critical temperatures for all the combinations of θ0 and θ1. between –90 and 90. Note that the current
analyses do not consider any technological requirement, nor the effects of strong fiber steering on the
constitutive law.

The results are calculated using ED3 theory with 12 × 12 functions, and are reported in the plot
of Figure 5.

The contour plot is very similar to the one reported in [36], to which the interested reader is
referred. The symmetry of the plot can be noted, due to the plate configuration, which is such that
Tcr(θ0, θ1) = Tcr(−θ0,−θ1). By considering an angle step of 2.5, the configuration guaranteeing the
maximum is characterized by the lay-up [± < 57.5|40.0 >x]s. The orientation of the angle at the plate
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center is close to the optimal one reported in Table 3, while a slight difference is noted with respect to
the fiber orientation at the plate edge.

Overall, this kind of analysis illustrates the potentialities of a Ritz-based procedure. Indeed,
the possibility of exploring the design spaces offered by variable-stiffness configurations is subjected
to the availability of computationally efficient analysis tools. For instance, the total number of analyses
for generating the plot of Figure 5 is, in this case, beyond 5000. The Ritz approach, due to the few
degrees of freedom required to achieve convergence, is particularly suited for this, and the time for the
analysis is on the order of few seconds.

Figure 5. Critical temperatures for Graphite/Epoxy, SSSS variable-stiffness plates with lay-up
[± < θ0|θ1 >x]s. Results obtained using ED3 theory.

3.2. Pre-Buckling and Buckling Response of Carbon/Epoxy VSP

Having demonstrated the capabilities of the Ritz formulation, further results are discussed in
this section. The present study focuses on carbon/epoxy composites, which are commonly employed
in advanced constructions such as in the aerospace field. The material properties are those relative
to the Graphite/Epoxy material of Table 3, and taken from [36]. For convenience, they are reported
here below:

• E11 = 155,000 MPa,
• E33 = E22 = 8070 MPa,
• G12 = G13 = G23 = 4550 MPa,
• ν12 = ν13 = ν23 = 0.22,
• α11 = 1× 10−6 /◦C,
• α22 = 2.0.

It can be noted that the orthotropy ratio is approximately 20; the thermal coefficient along the
fiber direction is slightly negative, meaning that a shortening is experienced by the material when
subjected to heating, while the value is positive along the transverse direction, i.e., the matrix expands
when heated. The distribution of thermal and elastic properties influences the pre-buckling stress
distribution, and, in general, can be tailored by allowing the fibers to change their orientation in the
panel domain. The pre-buckling distribution of internal membrane forces, in turn, affects the buckling
response of the plate. Furthermore, the overall response depends upon the boundary conditions
applied to the plate, with in-plane ones having the twofold effect of influencing the pre-buckling
response and buckling one. Note that, for symmetric thin laminates, in-plane boundary conditions are
relevant only in terms of pre-buckling response, as the out-of-plane buckling equation is uncoupled
from the in-plane ones. For thick plates, whenever the assumption of in-plane stress constitutive
equation is not adequate to model the plate elastic response, an inherent coupling between in-plane and
out-of-plane behaviour is recovered, and the buckling behaviour is affected by the in-plane boundary
conditions as well.
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A set of panels is studied below here by considering the orientation of the fibers to vary along
the y-axis, and the in-plane boundary conditions Case-Ty1 and Case-Ty2. The panels are square, with
dimensions equal to 150 mm, and are obtained by the stacking of four plies oriented at [± < θ0|θ1 >y]s,
where the angles are measured with respect to the x axis. To illustrate how the panel response is
affected by the fiber path, the angles θ1 are varied between 0 and 90, while two distinct angles θ0 are
considered, and taken equal to 15 and 75. The first case corresponds to a plate with a relatively high
stiffness along the x direction, at least in the middle strips of the plate close to y=0; in the second case
the central region is much weaker along the x-direction due to the almost transverse orientation of the
fibers.

Firstly, the results are assessed in terms of pre-buckling behaviour; then, the buckling response is
illustrated, reporting also the comparison with finite element calculations.

3.2.1. Pre-Buckling Analysis

Results relative to the boundary conditions Case-Ty1 are presented in Figure 6. It is recalled
that the approach developed in the previous section is exact. The comparison against finite element
calculations is not presented for the sake of conciseness. However, the correctness of the derivation
and its implementation has been verified through an extensive set of comparisons against finite
element results.

(a) (b)

Figure 6. Pre-buckling membrane resultants for [± < θ0|θ1 >y]s laminates subjected to Case-Ty1
conditions: (a) θ0 = 15; (b) θ0 = 75.

The membrane forces per unit length are calculated for a unitary temperature increase according
to Equation (32), and are reported by illustrating the resultant Nxx in the left portion of the plot,
and the transverse resultant Nyy in the right part. Positive values denote traction, while negative
ones are associated with compression. Note that the curves are reported for half of the plate’s width.
The remaining part can be easily recovered by exploiting the symmetry of the internal distribution
with respect to the vertical axis.

Referring to Figure 6a, one can note that low values of θ1 are associated with fiber paths running
closer to the longitudinal direction. Given the high value of the ratio |α22/α11|, the thermal expansion
mostly relates to the transverse direction of the laminate. Due to the prescribed null displacement along
the longitudinal edges, a larger force Ny is introduced with respect to those cases with higher angles
θ1. At the same time, the compressive force Nx tends to increase its value for increasing orientations
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of the fiber angle θ1 at the panel’s edge. Looking, for instance, at the case with θ1 equal to 90, it is
possible to notice the higher compressive values at the outer edge, where the thermoelastic response
is dictated by the response along the matrix direction. The compressive force becomes smaller when
moving towards the center of the panel, i.e., when the fibers are progressively rotated along the axial
direction x.

The second case of Figure 6b is relative to a panel with fibers oriented at ±75 at the panel’s
center. In this case, the steering to small values of θ1 (see, e.g., the case for θ1 = 0) determines
a matrix-dominated response along the y-direction. The thermal dilatation is thus reacted with higher
values of Ny. As it concerns the longitudinal direction, one can note that compressive forces are milder
on the outer regions, as far as the fibers are oriented with an angle θ1, which is smaller than θ0: in these
cases, the steering is such that the matrix contribution to thermal dilatation increases when moving
towards the outer regions. An opposite response is observed for θ1 equal to 90, where the thermal
dilation coefficient at the outer part is equal to that of the matrix, and larger with respect to the center,
and similarly the force Nx.

A second set of results is available in Figure 7, where the in-plane boundary conditions Case-Ty2
are considered. The displacements along the normal direction are prevented at the transverse edges,
whilst the longitudinal ones are free to expand or contract. This set of constraints is representative
of a design situation where two sides of the plate are restrained with stringers characterized by high
in-plane bending stiffness, such that the expansion is prevented. On the contrary, the in-plane bending
stiffness of the two other parallel sides is much smaller, and the motion along the normal direction is
not restrained.

(a) (b)

Figure 7. Pre-buckling membrane resultants for [± < θ0|θ1 >y]s laminates subjected to Case-Ty2
conditions: (a) θ0 = 15; (b) θ0 = 75.

From the results of Equation (36), it is seen that no membrane forces develop along the transverse
direction as a response to a uniform heating or cooling. The distribution of internal forces is then
purely uniaxial. The behaviour of plates characterized by θ0 equal to 15 is summarized in Figure 7a.
One can note that steering the angle θ1 from 0 to 90 has the effect of increasing the laminate thermal
coefficient, thus increasing the amount of compression introduced at the outer edges. For the case
at hand, the smallest values of θ1 (0, 22.5) are characterized by a state of internal traction: thermal
buckling is thus possible only if the plate is cooled. The same conclusion holds for θ1 equal to 45
and 67.5, as the compression region is relatively small. When θ1 is equal to 90, an internal state of
compression is promoted, thus making the onset of instability phenomena possible due to heating.
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The results of Figure 7b are relative to configurations where the fiber angle θ0 is equal to 75. This
set of configurations is particularly interesting, as a mechanical buckling-driven design would suggest
configurations where the mid angle is approximately perpendicular to the load direction in order
to allow load re-distribution towards the edges. In this case, fiber angles θ1 equal to 90, 67.5 and 45
are associated with compressive pre-buckling force per unit length Nx. In other words, the matrix
contribution to thermal expansion is dominant along the direction y, resulting in a compressive force in
response to the prevented displacement along y at the two transverse edges. For relatively high values
of fiber steering, i.e., when the external fibers are oriented at 0 or 22.5, the small thermal expansion
associated with the fiber direction is such that the external parts of the plate experience a traction force
resultant, whilst the inner part still is subjected to the matrix-dominated compression forces. Due to
the contemporary presence of compressive and tensile internal forces, this latter configuration can
undergo instability phenomena due to thermal heating.

3.2.2. Buckling Analysis

Non-dimensional buckling temperatures are reported in Table 4 for the plates discussed in the
previous section. In-plane boundary conditions Case-Ty1 and Case-Ty2 are considered, while simply
supported assumptions are introduced for analyzing the buckling problem.

The results are presented by considering a third-order equivalent single layer theory, ED3, while
14 trial functions are considered along both the orthogonal directions.

Table 4. Non-dimensional thermal buckling loads Tα22 × 103 for [± < θ0|θ1 >y]s laminates subjected
to SSSS boundary conditions. Results obtained using ED3 and 14 × 14 trial functions.

Case-Ty1 Case-Ty2
θ0 θ1 b/h = 100 b/h = 50 b/h = 20 b/h = 100 b/h = 50 b/h = 20

15 0 0.9956 3.9413 23.0484 / / /
22.5 1.4483 5.7112 32.7354 / / /
45 2.0031 7.8947 44.3831 / / /

67.5 1.8844 7.4340 42.8737 49.4171 173.7064 532.9265
90 1.5486 6.1172 35.4060 15.7679 58.1094 228.6143

45 0 1.1526 4.5691 26.9298 / / /
22.5 1.6750 6.6240 38.6748 879.1314 2819.5186 /
45 2.1300 8.4043 48.6098 21.6560 85.4415 493.8370

67.5 1.9935 7.8798 45.8766 5.4943 21.6938 125.3990
90 1.6876 6.6841 39.1706 3.0478 12.0012 67.8208

75 0 1.0292 4.0790 24.0499 6.3514 24.7402 131.6711
22.5 1.5674 6.1916 35.9135 3.9223 15.3611 84.2752
45 1.9175 7.5626 43.5285 2.5716 10.0869 56.0495

67.5 1.4448 5.6932 32.5239 1.6004 6.3060 36.0113
90 1.0109 4.0036 23.4429 1.0726 4.2482 24.8736

The results illustrate the dependence of the critical temperature with respect to the fiber path,
boundary conditions and geometry of the plate. As expected, smaller values of b/h, i.e., thicker plates,
lead to higher critical temperatures. In particular, it is noted that the pre-buckling internal forces do
not depend on the panel relative thickness b/h, but they are a function of the thermoelastic properties
only, i.e., the free thermal strains are not affected by the geometry of the plate. As a consequence,
plates with different values of b/h, and heated with a unitary temperature increase, are subjected to
the same internal resultants. On the contrary, the buckling condition depends upon the square of the
ratio h/b, meaning that thicker plates require higher levels of internal membrane forces to buckle,
and thus higher temperature increase. Based on these remarks, one can observe that the ratio between
the critical temperatures associated with values of b/h equal to 100 and 50 are slightly smaller than
four due to effects of transverse shear flexibility. Similarly, the ratio of the temperatures of plates
characterized by b/h equal to 50 and 20 is slightly smaller than 6.25.
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Looking at the role played by in-plane boundary conditions, it can be noted that, for a given
non-dimensional parameter b/h, all of the critical temperatures fall in a relatively small range of value
when the plate is constrained with Case-Ty1 conditions. In particular, the maximum ratio between
the highest and the lowest temperatures is equal to 2, approximately. This is due to the inherent
biaxiality of the internal pre-buckling forces. As noted, from the plots of Figure 6, the fiber steering
has, in general, the effect of mitigating the internal compression along one direction, while increasing
that on the mutually orthogonal direction, and vice versa.

A different response is observed for the in-plane conditions identified by Case-Ty2. In this case,
the uniaxiality of the internal forces leads to a more pronounced dependence on the fiber path. Some
configurations do not buckle under thermal heating, while they are prone to buckling as far as the
fiber is steered along the transverse direction at panel edges.

For clarity, a design chart is presented in Figure 8, where the critical temperatures are reported for
Case-Ty2 conditions and different stacking sequences.

Figure 8. Buckling design charts for different SSSS variable-stiffness configurations, b/h=50.

The results for straight fiber configurations display, with close agreement, the behaviour illustrated
by Nemeth [4]: heating-induced instability is possible in the range between θ equal to 44 and 90 degrees,
while cooling is the only mechanism promoting buckling in the range between 0 and 43 degrees.

The curves of Figure 8 highlight the effect of steering the fibers. One can note that the region of
instability due to heating tends to shift on the upper-right part of the plot as θ0 is reduced. Indeed,
resistance against thermal heating is provided by longitudinally directed fibers. On the contrary,
the effect of progressively rotating the center plate fibers along the longitudinal direction is that of
shifting the cooling stability region to the bottom left of the plot: the matrix-dominated behaviour,
at least in the central part of the plate, has the effect of improving the resistance to cooling. It is
interesting to highlight that, for some range of values, buckling is possible both for heating and cooling,
for temperatures that may reasonably be retained in the field of material linear response. For instance,
when θ0 is equal to 75 and θ1 is 0, positive and negative critical non-dimensional temperatures are
possible with absolute values of 24.74 and 50.68, respectively. The co-existence of positive and negative
buckling multipliers is not possible for straight-fiber configurations, where the uniform pre-buckling
condition is strictly compressive or tensile. The outlined response is thus peculiar of variable-stiffness
plates, where the variability of the internal pre-buckling forces allows for the presence of non-uniform
membrane force resultants with compressive and tensile regions. With similar motivations, one can
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observe that thermal buckling due to heating is always possible for the configurations with θ0 equal to
75, irrespective of the values of the fiber orientation at the edge θ1.

Additional results are presented in Figure 9, where the comparison is presented in terms of
pre-buckling stress resultants and buckled shape for three variable-stiffness configurations with lay-up
[± < θ0|90 >y]s, and one constant stiffness panel with θ0 = 90. The internal stress distribution is
evaluated referring to Equation (36) by considering a unitary temperature increase. As seen from
Figure 9a–d, the internal stress non-uniformity is progressively reduced as the angle θ0 is increased up
to 90. Note that, for clarity, the same color scale is adopted in all of the plots. With the exception of
the case θ0 = 15, which is the buckling configuration associated with the plate cooling, all the other
buckled surfaces are characterized by two half-waves, with increased skewness for smaller values
of θ0 due to increased bending-twisting coupling. Despite the similarity of the buckling modes, it is
noted that the critical temperatures, available from Figure 8, are drastically affected by the steering of
the fibers.
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Figure 9. Pre-buckling and buckling results for SSSS variable-stiffness configurations, b/h = 50,
and [± < θ0|90 >y]s: (a)–(d): pre-buckling distribution of internal forces Nxx, (e)–(h): buckling mode.

The case of clamped conditions is summarized in Figure 10 to quantify the effect of flexural
boundary conditions.

As expected, the effect of adding constraints is that of raising the values of critical temperatures.
It can be noted that the same trends observed for the simply supported case are essentially preserved,
the main difference regarding a translation of the stability regions towards higher absolute values of
the temperature.

The effects of normal and transverse shear deformability are investigated in Table 5 by presenting
the critical temperatures for different values of b/h. All the results are obtained referring to a layer-wise,
second-order LD2 theory, which guarantees the possibility of achieving quasi-3D predictions. Aiming
at highlighting the role played by higher-order deformability effects, the results are now presented
according to the following non-dimensional form [4]:

T̂cr =
12
π2 Tcrα11

(
b
h

)2
. (38)

In other words, the non-dimensional temperature is expressed in terms of the buckling coefficient
T̂cr, which, for thin plate theory, eliminates the dependence on the geometric parameter b/h. In the
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general case of higher-order theories and for fixed plate configuration, any variation of T̂cr is only
ascribable to normal and transverse shear flexibility effects.

Figure 10. Buckling design charts for different CCCC variable-stiffness configurations, b/h=50.

Table 5. Non-dimensional thermal buckling loads 12
π2 Tcrα11

(
b
h

)2
for [± < θ0|θ1 >y]s laminates

subjected to SSSS boundary conditions. Results obtained using LD2 and 14 × 14 trial functions.

Case-Ty1 Case-Ty2
θ0 θ1 b/h = 1000 50 20 10 b/h = 1000 50 20 10

75 0 12.5529 12.3781 11.6295 9.7402 77.9289 74.9501 63.3306 39.9359
22.5 19.1437 18.7351 17.2405 13.8214 48.0354 46.5268 40.5156 28.4722
45 23.4373 22.8613 20.8481 15.4961 31.4840 30.5052 26.8569 19.5422

67.5 17.6631 17.2222 15.6188 12.1018 19.5656 19.0758 17.2935 13.3857
75 15.2747 14.9655 13.7574 10.9351 16.5691 16.2332 14.9202 11.8529
90 12.3309 12.1678 11.3919 9.3832 13.0840 12.9108 12.0871 9.9547

The results provide a clear insight into the importance of properly accounting for shear
deformation effects, when thick and moderately thick plates of concern. For the configurations
at hand, the buckling coefficients associated with b/h equal to 10 are between 0.50 and 0.78 times the
values registered for the thin configurations with b/h equal to 1000.

It is interesting to note that the influence of the fiber orientation on transverse shear effects is
relatively weak when the plate is constrained with Case-Ty1 conditions. This behaviour is ascribable
to the inherent biaxiality of the internal membrane forces, which tends to reduce transverse shear
deformation effects.

When the plate is constrained with Case-Ty2 conditions, the internal forces are uniaxial, and the
effects of transverse shear deformability are more pronounced. Referring to Table 5, it can be noted that
the relevance of transverse shear effects is higher for increasing intensities of fiber steering. The effect
is at a maximum for the lay-up [± < 75|10 >y]s, where the buckling coefficient associated with b/h
= 10 is almost half of the one predicted for the thin plate counterpart. In those cases, the need for
adopting proper kinematic theories is evident. At the same time, even the analysis of moderately thick
plates in the range of b/h between 50 and 20 is susceptible to noticeable approximation if thin plate
theory is adopted, especially for variable-stiffness configurations with aggressive steering.
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4. Conclusions

The work illustrated the analysis of the thermal buckling response of VSP using a
variable-kinematics Ritz approach. The pre-buckling analysis is performed analytically and, to this
aim, a set of novel closed-form solutions was derived for four different sets of in-plane boundary
conditions. The availability of those solutions is particularly useful for obtaining a clear insight into
the pre-buckling stress redistribution. Furthermore, it facilitates the overall buckling procedure as
no linear systems need to be solved to determine the pre-buckling internal stress distributions. Due
to the effectiveness of the approach, case studies can be easily conducted and design charts plotted.
The results illustrate that highly accurate predictions can be achieved for thin and thick plates with
uniform and variable-stiffness. The adoption of high-order theories is particularly relevant when the
normal edge displacement is prevented at two parallel edges, and the two others are free to expand.
Furthermore, high-steering of fibers has the effect of increasing the role played by transverse shear
deformability, thus increasing even more the need for high-order theories.
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Abbreviations

The following abbreviations are used in this manuscript:

C Clamped conditions
EDn Equivalent Single Layer (D denoting a Displacement-based approach) of order n
LDn Layer-wise (D denoting a Displacement-based approach) of order n
S Simply supported conditions
VSP Variable-Stiffness Plate(s)
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