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Abstract: S-N behavior has been a backbone of material fatigue life studies since the 19th century.
Numerous S-N curve models have been produced but they have been arbitrarily chosen in numerous
research works dominantly for composite materials. In this paper, they were critically reviewed
and evaluated for capability using the following criteria: data fitting capability, efficiency of curve
fitting, applicability to data sets at various stress ratios (−0.43, −1, −3, 0.1, and 10), representability
of fatigue damage at failure, and satisfaction of the initial boundary condition. The S-N curve models
were found to be in two categories—one for fatigue data characterization independent of stress ratio,
and the other for those designed for predicting the effect of stress ratio. The models proposed by
Weibull, Sendeckyj, and Kim and Zhang for fatigue data characterization appeared to have the best
capabilities for experimental data obtained from Weibull for R = −1, from Sendeckyj for R = 0.1, and
from Kawai and Itoh (for R = −0.43, −3, and 10). The Kim and Zhang model was found to have an
advantage over the Weibull and the Sendeckyj models for representing the fatigue damage at failure.
The Kohout and Vechet model was also found to have a good fitting capability but with an inherent
limitation for shaping the S-N curve at some stress ratios (e.g., R = −0.43). The S-N curve models
developed for predicting the effect of stress ratio were found to be relatively inferior in data fitting
capability to those developed directly for fatigue data characterization.

Keywords: S-N curve; model; curve fitting capability; curve fitting efficiency; fatigue damage;
stress ratio

1. Introduction

Fatigue is a phenomenon that causes the progressive damage to materials under cyclic loading.
The damage physically consists of cracks and deformation. It eventually leads to the final failure of
materials. There have been two different ways to approach the fatigue damage. One of the ways
is to deal with cracks individually using fracture mechanics parameters such as the stress intensity
factor [1]. The other way is to deal with relatively “small” cracks [2] for fatigue life in a collective
manner including crack initiation at a relatively large scale of un-notched geometry with respect to
the initial flaws, which requires an S-N curve model for characterization. (S and N in the acronym
stand for stress and number of fatigue loading cycles at failure respectively.) Some S-N curve models
have been derived from fatigue damage formulations while some others are intuitively obtained
empirically or statistically using the Weibull distribution [3]. The S-N curve models have been used
for both monolithic and composite materials. The difference between the two types of materials in
S-N curve modelling has not significantly been found although the fatigue damage growth pattern
varies dependent on material structure. Small cracks, for example, grow in polymeric matrix in the
case of fiber reinforced composites but a follow-up crack propagation stage leading to the final failure
(or complete separation into two pieces) is often not clearly defined [4–6] whereas the initiation site(s)
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and crack propagation traces in the case of monolithic materials are usually identifiable on the fracture
surfaces [7–9].

An S-N curve is essential not only for characterizing fatigue test results from un-notched
specimens but also for the remaining fatigue life predictions involving fatigue damage quantification
and stress ratio effect. Thus, the S-N curve behavior has been a backbone of fatigue life studies since
the 19th century. A historian refers to the fatigue test results published in 1837 by Albert [10] and
to the term “fatigue” appeared in 1854 [11] as the first ones. Some early fatigue studies, in fact, had
begun without an S-N curve model [12]. Also, the S-N fatigue study development in history has
been somewhat disorderly in sequence of events, slowing down the knowledge advancement. For
example, the research of stress ratio effect on fatigue life [13–16]) mostly appears earlier than S-N curve
modelling [17–20] although S-N curve modelling should be a prior task to the stress ratio effect for
fatigue life prediction. One would be surprised to find the fact that the stress ratio effect has still been
a contemporary research topic [21,22] since the 19th century. On the other hand, the study on fatigue
damage [23–27] for fatigue life prediction seems to be concurrent with modelling of S-N curve [20,21].

A primary reason for the slow progress in S-N fatigue life prediction studies despite the long
history may be that the studies on other topics such as stress ratio effect and fatigue damage for
fatigue life predictions cannot be efficiently conducted without knowing an adequate deterministic
S-N curve model. Other reasons may be as follows: (a) researchers have been persistent in adhering to
particular S-N curve model(s) or producing their own model(s) regardless of the benefits of existing
models [20,22,24]; and (b) researchers tend to choose particular damage accumulation rules which
are not necessarily valid [28]. Palmgren and Miner’s model [23,29] may be one of those chosen by
many researchers even though the Palmgren and Miner damage model is not accurate as Schutz [10]
in his historical review pointed out. Also, evidence for the slow progress has been found in the
literature. Philippidis and Passipoularidi [30] evaluated nine selected damage models involving
residual strength degradation in relation to fatigue life. They found that no model is consistent in
accurately predicting the residual strength degradation behavior of different composite laminates for
fatigue life. Post et al. [31] also selectively evaluated twelve fatigue life prediction models for spectrum
loading applications; they summarized that most of the investigators who proposed models simply fit
them to their experimental results with their predictive ability remaining uncertain. It is only recently
that Eskandari and Kim [27,32] returned to the fundamentals and provided mathematical reasoning
for how fatigue damage models in the past went invalid for predicting the remaining fatigue life. Also,
it is true that some researchers [33] still concurrently pursue the conventional approach based on the
Palmgren and Miner’s damage model [23,29] without the fundamental basis.

Some literature dealing with S-N curve models has been available since Weibull [34] discussed
S-N curve models. Schutz [10] discussed the Basquin model [17] within the context of fatigue history
for a period of 1838–1996. Kohout and Vechet [35] reviewed a few S-N curve models in relation to a
newly proposed model. Some S-N curve models were overviewed by Nijssen [36]. Recently, Xiong
and Shenoi [37] listed four S-N curve models including Basquin model as the generally accepted ones
in a monograph. However, the capabilities of S-N curve models for applications at different stress
ratios have been neither much known nor extensively reviewed.

In this paper, S-N curve models available since 1910 are critically reviewed and evaluated to
identify their capabilities for applications at a wide range of stress ratios when subjected to the uniaxial
loading for less than giga load cycles which may be more applicable for composite materials. For
evaluation and critical review, the following criteria were adopted: capability of curve fitting, efficiency
of curve fitting, applicability to data sets at various stress ratios, representability of fatigue damage at
failure, and satisfaction of S-N curve initial boundary condition at the first load cycle.

2. Criteria for S-N Curve Model Evaluation

An S-N curve model is a line shape function preferably on a log-log or lin-log scale for
representing the phenomenon of fatigue life dependent on fatigue damage. For evaluation of, and
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critical review on, S-N curve models, the following criteria may be considered [38]: (a) capability of
curve fitting, (b) efficiency of fitting parameter determination, (c) adaptability to various stress ratios,
(d) representability of fatigue damage at failure, and (e) satisfaction of the initial boundary condition
of S-N curve at the first load cycle. These criteria may be useful for evaluation as will be detailed.

Capability of curve fitting may be the most important criterion because the purpose of any S-N
curve, in the first instance, is to characterize the fatigue test data prior to predicting fatigue lives
under various conditions. The capability is virtually for curve shaping, complying with the data trend.
Once capability of curve fitting is sufficient, an efficiency of fitting parameter determination may be
considered. The number of fitting parameters in a model may be judged for the efficiency. If the
number of fitting parameters is two, parameters may typically be determined using the traditional
least square methods for fitting data in log-log coordinates as for the Basquin model or they can be
determined using the well-established statistical methods. However, more than two fitting parameters
would inevitably lead to a low efficiency of determination, requiring an additional algorithm.

Adaptability to various stress ratios may be an important criterion for wider applications although
most of S-N models have been developed for particular stress ratios. It is useful to deal with the complex
fatigue loading involving random variation [39] and to eventually be developed in conjunction with
fatigue damage for predicting the remaining fatigue life. As shown in Figure 1 for a stress amplitude
(σa) vs mean stress (σmean) diagram, the stress ratios are divided into four ranges depending on loading
type: R = 0–1 under tension-tension (T-T) loading, R = 0–−1 under tension-compression (T-C) loading,
R = −1–−∞ under compression-tension (C-T) loading, R = −∞–1 under compression-compression
(C-C) loading. The adaptability can be evaluated for capability of curve fitting by varying values of
fitting parameters in S-N curve model at different stress ratios.
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Figure 1. Stress ratio ranges on σa–σmean diagram for the loading types: T-T, T-C, C-T, and C-C.

Representability of fatigue damage at failure applies to some of S-N curve models derived from
the fatigue damage formulations. The damage accumulated during cycling (D) or damage at failure
(Df) has existed confusingly in many different forms as listed by Hwang and Han [20], Fatemi and
Yang [40], Yang and Fatemi [41], Bathias and Pineau [42], and Christian [43]. A clear difference, though,
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between damage at failure (Df) and damage prior to failure (D) should be made to clarify Df [27].
Damage at failure (Df) is directly related to an S-N curve which is a locus of failure points caused
by damage. Thus, an S-N curve itself indicates damage at failure in a way. Other quantities such
as residual strength and residual modulus [44] may be able to represent the damage as well. More
importantly, however, if the ultimate purpose of damage D is to predict the remaining fatigue life when
applied stress varies, a damage function (D), which is a function of N and applied peak stress σmax, is
required to satisfy the compatibility condition [27] to ensure that σmax and N compatibly contribute
to the damage. If an S-N curve is derived from fatigue damage and to predict the remaining fatigue
life involving independent variables (i.e., Nf and σmax), the damage at tensile failure DfT is required
to satisfy

∂DfT
∂σmax

= −A (1)

or, for damage at compressive failure DfC,

∂DfC
∂|σmin|

= −A (2)

where A = a constant greater than zero.
Satisfaction of the initial boundary condition of S-N curve at the first load cycle is to ensure the

correspondence with a static strength to cover a full range of applied stress levels in establishing a
full S-N plane for fatigue damage determination. It is also a requirement for predicting the remaining
fatigue life because the initial boundary condition affects the size of an S-N plane and subsequently the
damage quantity [27]. The initial boundary condition, in fact, has been arbitrary as will be discussed.
For example, some researchers have adopted Nf = 0 or 0.5 or 1 at σuT in the absence of a rigorous
rational basis while some earlier researchers have ignored the initial boundary condition. Eskandari
and Kim [27] recently provided a rationale for R = 0 to be Nf = 0.5 at σuT. However, it has not generally
been settled down on other stress ratios yet. Nonetheless, it is necessary that Nf at σuT should be 0 <
Nf < 1 or adjustable for the future development until a rational value is found while Nf = 0 should not
be used not only because it is physically impossible to be a failure point but also because it does not
exist on log coordinate axis.

Finally, if an inverse expression of S-N curve equation is obtainable, it would be technically useful
for converting between σmax and Nf without a numerical scheme.

3. S-N Curve Models

3.1. For Fatigue Data Characterisation

S-N curve models developed directly for characterization of fatigue experimental data subjected
to a constant amplitude of loading at a constant stress ratio (R) will be discussed in this section.

Some of early S-N curve models had been intuitively formulated. The Basquin model [17] may be
the first among those:

σmax = α(Nf)
β (3)

where σmax = applied peak stress, α, β = model fitting parameter, and Nf = number of cycle at failure.
It represents a straight line in log-log coordinates. Equation (3) has been the most frequently

used model [45] even though it does not fully fit the experimental data. It is problematic in some
applications although the fitting parameters are easily determined. An alternative form to Equation (3)
may be in a linear-log form given by;

σmax = α(log Nf) + β (4)
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Subramanyan [46], Mandell and Meier [47], Bond and Farrow [48], and Tamuzs et al. [49] adopted
this linear-log form for various stress ratios while Gathercole et al. [50], Adam et al. [51], and Beheshty
et al. [52] adopted polynomial curve fitting of experimental data for σmax versus logNf.

Although the fatigue limit (σ∞) may not exist [53], Stromeyer [54] added an additional term, σ∞,
to Equation (3):

σmax = α(Nf)
β + σ∞ (5)

where σmax = applied peak stress, α, β = model fitting parameter, and Nf = number of cycle at failure.
Palmgren [23] added one more parameter to have,

σmax = α(Nf)
β + σ∞ (6)

where σmax = applied peak stress, σ∞ = fatigue limit, α, β, γ = model fitting parameter, Nf = number of
cycle at failure, and δ = number of stress cycles to which the balls or the grooves are subjected during
one revolution of the bearing.

Weibull [18] considered an equation for modification suggested by E. Epremian in a
private communication;

σmax − σ∞

σuT − σ∞
= 1− ψ(α log Nf + β) (7)

where σmax = applied peak stress, σuT = ultimate tensile strength, σ∞ = fatigue limit, α, β = model
fitting parameter, Nf = number of cycle at failure, and ψ = Gaussian error function, and subsequently
proposed an S-N curve model;

σmax = (σuT − σ∞) exp
[
−α(log Nf)

β
]
+ σ∞ (8)

including both the ultimate strength (σuT) and the fatigue limit (σ∞). The two fitting parameters (α
and β) in Equation (8) can be determined by taking log on both sides of,

σmax − σ∞

σuT − σ∞
= exp

[
−α(log Nf)

β
]

(9)

The Weibull model allows the initial boundary condition of the S-N curve to be Nf = 1 at σmax

= σuT and is efficient for determining the fitting parameters although the fatigue damage was not
considered. The fatigue limit in the equation, which may not exit, is a disadvantage for curve fitting.
However, the assumed fatigue limit may be regarded as being different from a fitting parameter
because they can easily be estimated for fitting purposes whereas fitting parameters can be found
on a trial and error basis in some cases without much idea on the initial trial value unless a known
algorithm is available.

Henry and Dayton [55] assumed

σmax =
α

Nf
+ β (10)

where σmax = applied peak stress, α, β = model fitting parameter, and Nf = number of cycle at failure,
for an S-N curve to derive a “damage equation”, which is far from being accurate for data fitting
although an initial boundary condition at the first load cycle can be managed to be met.

Sendeckyj [19] proposed

σmax =
σuT

(1− α + αNf)
β

(11)

or

Nf =
(σuT/σmax)

1/β − 1 + α

α
(12)

where σmax = applied peak stress, σuT = ultimate tensile strength α, β = model fitting parameter, and
Nf = number of cycle at failure.
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Based on the assumption that so called “equivalent static strength” is of two-parameter Weibull
distribution. A way of determination of parameters (α and β) was suggested to follow the steps: (a)
estimation of initial α and β values using a computer program, (b) transformation of fatigue data using
the estimated initial values into equivalent static strength data, and (c) fitting a Weibull distribution
with a solution of non-linear algebraic equation. The steps (b) and (c) are repeated with renewed
estimated values until the maximum-likelihood value of the shape parameter estimate is obtained. It is
noted that this procedure needs a separate computing algorithm in addition to the first estimation for
fitting parameter determination. Equations (11) and (12), however, are with only two fitting parameters
so that they can be rapidly found without the procedure suggested by Sendeckyj.

Hwang and Han [24] formulated by defining so called “fatigue modulus” and a strain failure
criterion:

Nf =

[
α(1− σmax

σuT
)

]1/β

(13)

or

σmax = σuT

(
1−

Nβ
f

α

)
(14)

where σmax = applied peak stress, σuT = ultimate tensile strength α, β = model fitting parameter, and
Nf = number of cycle at failure.

The Hwang and Han model is based on the assumption that the fatigue modulus degradation
rate follows a power function. Equations (13) and (14), however, do not satisfy an initial boundary
condition, given that Nf should be zero for σmax = σuT, which is not possible on logarithmic coordinates
used for Nf.

Ellyin in 1989 [56] proposed the total strain energy input (∆W) as

∆W = α′(Nf)
β′ + C (15)

where ∆W = total energy input, α′, β′ = model fitting parameter, Nf = number of cycle at failure, and C
= constant.

Subsequently, Ellyin and El-Kadi [57] adopted and converted this equation for a constant stress
ratio with C = 0. They demonstrated that Equation (15) is consequently the same form as the Basquin
model Equation (3).

Kensche [58] used the maximum strain (εmax) instead of the maximum stress for an S-N relation,

εmax = β
− ln P(Nf)

1
α

[(Nf − α′)γ′]γ
(16)

where α, β, γ′ = shape and the scale parameters respectively for the Weibull distribution, and P(Nf) =
probability of survival.

The parameter γ’ allows flattening or steepening of the curve, and α′ = (1 − γ’)/γ’. This equation,
in the first place, is not efficient for curve fitting because of the number of fitting parameters although it
may be capable of curve fitting at different stress ratios as demonstrated in [58]. Also, it is not common
to use the strain vs number of cycles (Nf) for fatigue characterization, unless other aspects are dealt
with (e.g., thermos-mechanical fatigue in [59]), because the strain needs to be converted into stress for
an S-N curve.

Kohout and Vechet [35] proposed a model to describe an assumed geometrical shape of the
S-N curve

σmax = σ∞

[
(Nf + α)

(Nf + γ)

]β

= σuT

[
(1 + Nf/α)

(1 + Nf/γ)

]β

(17)

or

σmax = σ∞

[
Nf

(Nf + γ)

]β

(18)
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or

σmax = σuT

[
(Nf + α)

α

]β

(19)

where σmax = applied peak stress, σuT = ultimate tensile strength, σ∞ = fatigue limit, α, β, γ = model
fitting parameters, and Nf = number of cycle at failure.

Equation (17) is applicable for both low and high cycles, but Equation (18) is not applicable for
high cycles. Equation (19) may be generally applicable without a known fatigue limit. Equations (17)
and (18) extend the Basquin model to both the low-cycle and the assumed fatigue limit (σ∞) regions
while Equation (19) extends to the low-cycle region. The Kohout and Vechet model has generally three
straight lines to describe the assumed S-N curve in log-log coordinates, including two asymptotes
with zero slope for tensile strength and fatigue limit (σ∞), and a tangent for the region described by
the Basquin model. The points of intersection of the tangent with the two asymptotes occur at Nf
= α and Nf = γ in the case of Equations (17) and (18). Thus, the parameters α and γ are numbers of
cycles at which the S-N curve bends at high and low stresses respectively, and β is the slope of the
tangent between the two bends (α and γ) in log-log coordinates. Kohout and Vechet model, therefore,
is limited to the predetermined S-N curve. If the bend at a high stress does not exist at some stress
ratios, it would not fit experimental data. Also, Equation (19) does not satisfy the initial boundary
condition given that Nf should be zero to be σmax = σuT.

To derive an S-N curve, Kim and Zhang [60] quantified the fatigue damage at tensile fatigue
failure (DfT), which satisfies Equation (1):

DfT = 1− σmax

σuT
(20)

and they found that a fatigue damage rate follows

∂DfT
∂Nf

= α(σmax)
β (21)

where σmax = applied peak stress, σuT = ultimate tensile strength, α, β = model fitting parameters, and
Nf = number of cycle at failure.

The number of cycles at failure (Nf) in this equation can be obtained by integration, yielding an
S-N curve as a function of applied peak stress (σmax):

Nf =
σ
−β
uT

α(β− 1)

[(
σmax

σuT

)1−β

− 1

]
+ N0 (22)

or

σmax = σuT

(
α(β− 1)(Nf + N0)

σ
−β
uT

+ 1

) 1
1−β

(23)

The term N0 in the equation is to adjust the initial number of cycles for the first cycle failure
point according to the quantized analysis—it is not possible to find it with the continuity concept
of S-N curve [27]. For example, N0 = 0.5 cycle at σmax = σuT with R = 0. Thus, the Kim and Zhang
model satisfies the initial boundary condition. The fitting parameters for S-N curve in Equations
(22) and (23) are identical to those for damage rate with respect to Nf (Equation (21)), which is an
advantage for understanding a relation between damage rate and S-N curve. The two parameters (α
and β) in Equations (22) and (23) can be determined for a set of fatigue data, given that Equation (21)
is numerically,

∆Df(i)

∆Nf(i)
≈ α(σmax(i))

β (24)
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where subscript i = 1, 2, 3, . . . for different stress levels (σmax(i)) at failure, ∆Df(i) = Df(i-1) − Df(i) for
Df(i-1) > Df(i) or |1 − σmax(i-1)/σuT| > |1 − σmax(i)/σuT|, ∆Nf(i) = Nf(i-1) − Nf(i) for Nf(i-1) > Nf(i), and
σmax(i) = (σmax(i) − σmax(i-1))/2.

Two different ways may be considered for numerically calculating ∆Df(i)/∆Nf(i) and the
corresponding σmax(i). One of the ways is to directly use experimental data points on an S-N plane
by choosing a pair of close data points for each value. The other way is to draw the best fit line
manually through S-N data points for digitization (http://arohatgi.info/WebPlotDigitizer/app/) and
then collect a set of digitized points. Then, log(∆Df(i)/∆Nf(i)) is plotted as a function of log σmax(i)
such that β is the slope and 10α is an intercept. It is practically efficient with, if necessary, a minimal
iteration for the best fit. Figure 2 shows the sequence for plotting the best fit S-N curve.
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Figure 2. Sequence for plotting an S-N curve using the Kim and Zhang model.

Kassapoglou [61] statistically derived an S-N curve expression in a form same as Equation (3)
for stress ratio (R) ranges, 0 ≤ R ≤ 1 and R > 1, and another S-N curve expression for R < 0 but
with more fitting parameters. Thus, Kassapoglou failed to model an S-N curve with one equation for
application at different stress ratios. Nonetheless, further, Kassapoglou [62] replaced α in Equation (3)
with static strength to have a static strength at Nf = 1 for predicting the remaining fatigue life under
spectrum loading.

Kawai and Koizumi [21] assumed an S-N curve in conjunction with a constant fatigue life (CFL)
diagram for stress ratio effect research:

2Nf =
2
α

(
1− σ

χ
max
σB

)β

(
σ

χ
max
σB

)γ (25)

where R = χ = σuC/σuT, and σ
χ
max = σmax at χ.

This equation partially produces negative values for Nf as shown in Figure 3 with the values as
used: α = 0.003, β = 1, γ = 8.5, and σB = (σuT + |σuC|)/2. Thus, the fitting capability of this model
is low. It has three fitting parameters (α, β, and γ) and one conditional property parameter (σB). In
other words, if σuT < |σuC| then σB = σuC; and if σuT > |σuC| then σB = σuT. If a chosen value

http://arohatgi.info/WebPlotDigitizer/app/
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in this way does not allow a good curve fitting, an alternative value σB between σuT and |σuC| is
required. Therefore, the efficiency of curve fitting for modelling is poor because of the number of
fitting parameters and conditions imposed. The authors do not suggest a method of how to determine
fitting parameters. Kawai and Itoh in 2014 suggested a similar S-N curve expression [22]:

2Nf =
1
α

< 1− σ
χ
max
σuT

>β

( σ
χ
max
σuT

)
γ
< σ

χ
max
σuT
− σ

χL
max
σuT

>δ
(26)

where σ
χL
max = peak stress level at R = −∞.
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Figure 3. Experimental data from Kawai and Koizumi [21] for carbon fiber reinforced plastics with
tensile strength = 782 MPa and compressive strength = 532 MPa obtained at R = −0.68. An S-N curve
was fitted according to Equation (25) using α = 0.003, β = 1, γ = 8.5, and σB = (σuT + |σuC|)/2.

The angular brackets <> denote the singular function (if it is negative, then zero to avoid negative
number of cycles). It seems that they attempted to improve Equation (25) for S-N curve fitting but it
cannot be used efficiently for the same reasons.

Major S-N curve models discussed in this section are listed in Table 1 and summarized with
criteria for further discussion below.

3.2. As a Function of Stress Ratio

Some S-N curve models for stress ratio effect have been derived in relation to fatigue damage.
One of reasons for this approach is that once fatigue damage is generally quantified, an S-N curve
can possibly be found because S-N curve represents a special case of fatigue damage at failure as
discussed above. Another reason is that the remaining fatigue life would be predictable if a valid
damage function (D) is found. For these reasons, if damage is arbitrarily quantified, an S-N curve
derived may not necessarily be capable of representing the fatigue data.
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Table 1. Summary of selected S-N curve models for data characterization.

S-N Curve
Models

Capability of
Curve Fitting

Adaptability to
Different Stress

Ratios

Relation with Physical Properties
RemarksBoundary at

Initial Nf

Damage
Representation

Satisfaction of
∂D f T
∂σmax

= −A

Basquin (1910) Poor Poor N/A N/A N/A

Stromeyer (1914) Poor Poor N/A N/A N/A

Weibull (1952) Good Good Yes N/A N/A Fatigue limit is
required

Henry (1955) Poor N/A N/A N/A N/A

Marin (1962) Poor N/A N/A N/A N/A Same form as
Basquin model.

Sendeckyj (1981) Good Good Yes N/A N/A

Hwang and Han
(1986) Poor Poor No N/A N/A

Kohout and
Vechet (2001)
Equation (19)

Good Good No N/A N/A
With limited

curve shaping
(e.g., R = −0.43)

Kim and Zhang
(2001) Good Good Yes Yes Yes

Poursartip et al. [25] defined a delamination damage of laminated composites as delaminated
area divided by the total interfacial area, and subsequently determined the damage at failure (Df) for a
carbon fiber reinforced laminate made of 8 plies [45/90/-45/0/0/-45/90/45] with an average tensile
strength of 586 MPa:

Df = 2.857
(

1− σmax

σuT

)
(27)

where σmax = applied peak stress, and σuT = ultimate tensile strength.
Equation (27) satisfies Equation (1) which is one of damage validity conditions. Further, they

measured the stiffness reduction rate at R = 0.1 and calculated dD/dN by fitting the least square line
to be

dD
dN

= 9.189× 10−5
(

∆σ

σuT

)6.393
(28)

where ∆σ = applied stress range, σuT = ultimate tensile strength, and N = Number of cycles before
failure.

(Please note that D here is not at the failure.) Equation (28) could have been more useful for
characterizing damage on the S-N plane if they found a valid function of D, but it is only for the
linear part of experimental stiffness reduction-cycle curves. Also, it did not consider the compatibility
conditions for fatigue damage (D) [27]. Poursatip and Beaumont [26] subsequently proposed an S-N
curve for stress ratio (R) effect based on an empiricism with Equation (28),

Nf = 3.108× 104
(

σmax(1− R)
σuT

)−6.393(
1.222

1− R
1 + R

)γ(
1− σmax

σuT

)
(29)

where σmax = applied peak stress, σuT = ultimate tensile strength, γ = fitting parameter, Nf = number
of cycle at failure, and R = stress ratio.

Equation (29) can be simplified by converting R into a constant for evaluating S-N
curve performance,

Nf = α

(
σmax

σuT

)−6.393(σuT − σmax

σuT

)
(30)

The fitting parameter α in Equation (29) does not seem to be clearly linked to the damage rate
in Equation (28) although the value 6.393 in Equation (30) indicates some correspondence. Also,
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Equation (30) has only one fitting parameter so that it may be efficient for parameter determination if
it fits data well.

Some S-N curve models simply assumed a residual strength function as the fatigue damage (D)
while the prediction of the residual strength had been a single research topic by many researchers for
fatigue damage [48,63–66]. D’Amore et al. [67] surmised a power law equation for a change rate of
residual strength with respect to number of cycles for calculation and it was simply regarded as being
identical to,

dD
dN

= αN−β (31)

where α, β = model fitting parameters, and N = number of cycle before failure.
The validity of Equation (31) is not known. It was followed by incorporating the stress ratio (R)

with another surmise that one of the constants for the change rate of residual strength with respect to
N is proportional to ∆σ to have:

Nf =

[
1 +

1
α(1− R)

(
σuT

σmax
− 1)

]1/β

(32)

or
σmax =

σuT

α(Nβ
f − 1)(1− R) + 1

(33)

where σmax = applied peak stress, σuT = ultimate tensile strength, Nf = number of cycle at failure, and
R = stress ratio.

Taking R as a constant for S-N curve performance, we have

Nf =

[
σuT − σmax

α′σmax
+ 1
]1/β

(34)

where σmax = applied peak stress, σuT = ultimate tensile strength, α′, β = model fitting parameters, and
Nf = number of cycle at failure.

A value given by (σuT/σmax − 1)/(1 − R) in Equation (32) was experimentally found to be
constant for R = 0.1–0.7, allowing us to determine α and β ratios using data sets from different stress
ratios. For a constant stress ratio, two fitting parameters need to be determined for an S-N curve.
Caprino and Giorlea in 1999 [68] further experimentally verified this for R = 10 and 1.43. Equation
(34) allows the initial boundary condition to be Nf = 1 at σuT and the fitting parameters have a relation
with Equation (31) for damage.

Epaarachchi and Clausen [69] followed an approach similar to that of D’Amore et al. [67]. They
used Equation (31) to propose an S-N curve model not only as a function of stress ratio but also as a
function of loading frequency (and fiber orientation angle of composites):

σuT − σmax = α

(
σmax

σuT

)0.6
σmax(1− R)1.6 1

fβ
(Nβ

f − 1) (35)

where σmax = applied peak stress, σuT = ultimate tensile strength, α, β = model fitting parameters, f =
loading frequency, Nf = number of cycle at failure, and R = stress ratio.

If this equation is simplified for S-N curve performance, it becomes

Nf =

(
σuT − σmax

α′(σmax)
1.6 + 1

)1/β

(36)

where α′ = model fitting parameter, which is not much different from D’Amore model Equation (34).
The only difference from Equation (34) is in an exponent 1.6. Later, Epaarachchi [70] demonstrated that
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the model Equation (35) proposed by Epaarachchi and Clausen is not much capable of predicting S-N
curve at high stress ratios unless so called “fatigue-static-fatigue curve” algorithm is used for fitting.

3.3. Associated with Stress Intensity Factor

Wyzgoski and Novak [71] attempted to relate the S-N curve with the initial and final flaw sizes
using the Paris equation [72] given by

da
dN

= A(∆K)m (37)

where ∆K = stress intensity factor range (=Y∆σa1/2), and A and m = constants.
They integrated this equation with limits for the final crack length (af) and initial crack length (a0)

assuming that geometry factor Y is constant:

Nf =
2

(m− 2)AYm(∆σ)m

 1

a
(m−2)

2
0

− 1

a
(m−2)

2
f

 (38)

where ∆σ = stress range.
To improve the predictability of Equation (38), Wyzgoski and Novak [73] further adopted a

relation between af and a0 with af = a0 for the first cycle fracture and af = t for a low stress fracture:

af = t exp
[
− ln(t)− ln(a0)

σuT

∆σ

1− R

]
(39)

where R = stress ratio.
Please note that they eliminated af in Equation (38) for Equation (39). The initial crack length (a0)

in Equation (38) was regarded as a constant independent of applied stress level. The initial crack length
a0 may not be conceptually applicable for continuous fiber reinforced composites with a multiple crack
damage pattern. However, the initial crack length (a0) may be regarded as an equivalent initial crack
to the damage consisting of multiple cracks, given that the S-N curve behavior pattern may be for
both single and multiple crack damages for un-notched specimens. The Wyzgoski and Novak model
may be useful for providing an insight into internal damage and understanding S-N curve in relation
to the stress intensity factor. At the same time, it should be noted that the stress intensity factor is
limited to the tensile stress, implying that applicability of this model is not certain for stress ratios
involving compressive stress, and may not be practical for S-N curve fitting due to the number of
fitting parameters if A and m are treated as the fitting parameters. Figure 4 shows experimental data
for injection molded PBT reinforced with 30w% short glass fibers [73] (obtained at R = 0.1 with σuT =
100 MPa, specimen thickness (t) = 0.0032 m) in comparison with an S-N curve plotted in dashed line
using Equation (38) for: Paris equation constants A = 1.53 × 10−10 and m = 7.41, geometry factor Y
= 1.17 for a semi-circular surface flaw [74], initial flaw size (a0) = 0.354 mm. Also, another S-N curve
plotted with Kim and Zhang model Equation (22) or (23) with α = 4.9 × 10−35 and β = 15.028 is shown
in solid line. The Wyzgoski and Novak model appear reasonable for curve fitting although it is not as
accurate as the Kim and Zhang model (see below for capability).
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Figure 4. Wyzgoski and Novak [71] experimental data and S-N curve according to Equation (38) with
t = 0.0032 m, m = 7.41, A =1.53 × 10−10 m/cycle, Y = 1.17, R = 0.1, and a0 = 0.354 mm. Another S-N
curve was plotted according to the Kim and Zhang model Equation (23) with α = 1.53 × 10−10 and
α = 15.028.

4. Evaluation of S-N Curve Model Capability

Experimental data obtained at five different stress ratios i.e., R = −1, 0.1, −0.43, −3, and 10, which
are available in the literature, will be used for S-N curve fitting evaluation. The stress ratio R = −1 was
obtained from the rotating beam test which is readily implementable compared to other stress ratios to
represent the loading between T-C and C-T (Figure 1). The other stress ratios: R = 0.1 may represent
the tension-tension (T-T) loading for a range R = 0–1; R = −0.43 the tension-compression (T-C) loading
for range R = 0–−1; R = −3 the compression-tension (C-T) loading for a range R =−1–−∞; and R = 10
the compression-compression (C-C) loading for a range R =−∞–1. When an S-N curve model involves
compressive stress and failure, σmax will be replaced with |σmin|, and σuT with |σuC| for evaluation.

4.1. S-N Curve Models for Data Characterisation

S-N curve models with more than two fitting parameters were eliminated from evaluation because
its implementation is not economical, involving unnecessary efforts, given that some models available
with two parameters are sufficiently accurate for data fitting. Some other models, fitting capabilities of
which are poor due to the obvious limitation for curve shaping, were also eliminated from evaluation.
For example, S-N curve models represented by Equations (4) and (5) are not much different from
Basquin model Equation (3). Experimental data and plots will be in log-log coordinates, which are
convenient for the Kohout and Vechet model Equation (19) in comparing with other models. Equations
(17) and (18) were not employed here because they contain three fitting parameters with a fatigue limit.

An experimental data set for Bofors FR 76 Steel with σuT = 829 MPa obtained from Weibull [18]
with 111 rotating beam tests at R = −1 is plotted in Figure 5 with data points having a probability
of 50% failure. Two curves from the Weibull model Equation (8) with and without fatigue limit (σ∞)
for respective two sets of fitting values—α = 21 × 10−4 and β = 3.8 with an assumed σ∞ = 353 MPa
(provided by Weibull), and α = 0.003 and β = 3.1 with an assumed σ∞ = 0 (to see if there would be
any difference)—are plotted in comparison with other S-N models to be discussed. (Please note that
the plotted lines from some of models are overlapped and therefore not clearly distinguishable.) The
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capability of fitting with a fatigue limit (σ∞) appears to be very good but, with σ∞ = 0, it is relatively
poor at a high Nf. The best fit with the fatigue limit by Weibull model may be regarded as the reference
for comparisons with other S-N curves. Plots generated by other S-N models are shown with: α = 0.001
and β = 0.093 for Sendeckyj model Equations (11) and (12); α = 35 and β = 0.21 for Hwang and Han
model Equations (13) and (14); α = 776.25 and β = −0.0895 for Kohout and Vechet model Equation
(19); and α = 10−38.44 and β = 11.809 for Kim and Zhang model Equations (22) and (23) with N0 = 0.5.
The fitting capabilities for models by Weibull, Sendeckyj, Kohout and Vechet, and Kim and Zhang
appear to be practically identical to each other and may be regarded as being sufficiently good for
practical data characterization. In contrast, the fitting capability of Basquin model Equation (3) is
found to be poor as expected when σuT is included in data despite the fact that it has still been used by
many researchers (e.g., refs. [75–77] to name a few). The fitting capability of Hwang and Han model
appears to be also poor because of its limited capability—as the α value increases in Equations (13)
and (14), σmax approaches the ultimate strength at Nf = 1 but other part of the curve was found to
deviate increasingly from the experimental data. A reasonable fit of Hwang and Han model can only
be achieved by omitting the data points near the ultimate strength. The Basquin, and Hwang and Han
models were accordingly eliminated from further comparison with other models at other stress ratios.J. Compos. Sci. 2018, 2, x  15 of 29 
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Figure 5. Weibull experimental data for R = −1 plotted with data points having a probability of 50%
failure for Bofors FR 76 Steel rotating beam test with σuT = 829 MPa [18]. S-N curves were obtained
from Weibull model with α = 21 × 10−4 and β = 3.8 for an assumed σ∞ = 353 MPa; Weibull model with
α = 0.003 and β = 3.1 for an assumed σ∞=0; Sendeckyj model with α = 0.001 and β = 0.093; Hwang and
Han model with α = 35 and β = 0.21; Kohout and Vechet model with α = 776.25 and β = −0.0895; and
Kim and Zhang model with α = 10−38.44, β = 11.809 and N0 = 0.5.

For T-T loading at R = 0.1, an experimental data set consisting of 28 data points obtained from
Sendeckyj [19] for glass fiber reinforced epoxy composite with σuT = 2013 MPa is given in Figure 6.
Weibull model Equation (8) was plotted with α = 0.088 and β = 1.9 for an assumed fatigue limit of
250 MPa, Sendeckyj model Equations (11) and (12) with α = 0.0485 and β = 0.157, Kohout and Vechet
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model Equation (19) with α = 19.953 and β = −0.155, and Kim and Zhang model Equations (22) and
(23) with α = 3.13 × 10−27 and β = 7.381 for N0 = 0.5. The S-N curve of Sendeckyj model may be
regarded as the best fit as already demonstrated in [19]. The fitting capabilities of the four models still
appear to be equally good and practically identical to each other.J. Compos. Sci. 2018, 2, x  16 of 29 
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Figure 6. Sendeckyj experimental data at R = 0.1 [19] for T-T loading with S-N curves obtained from:
Weibull model with α = 0.088 and β = 1.9 for assumed σ∞ = 250 MPa; Sendeckyj model with α = 0.0485
and β = 0.157; Kohout and Vechet model with α = 19.953 and β = −0.155; and Kim and Zhang model
with α = 3.13 × 10−27, β = 7.381 for N0 = 0.5.

Figure 7 shows fatigue data obtained from Kawai and Itoh [22] for carbon fiber reinforced epoxy
laminates with σuC = 807 MPa and σuT = 1887 MPa for T-C loading at R = −0.43. For comparison
purposes of the models, the original experimental data point for Nf = 0.5 at σuC was changed to Nf = 1
because of the sensitivity of the S-N curve models to the experimental data point for the initial Nf at σuC

also because Sendeckyj and Weibull models are designed to take Nf = 1 at σuC although Kohout and
Vechet model Equation (19) is to take Nf = 0 at σuC while Kim and Zhang model is capable of taking
Nf = 1 cycle at σuC as well, (Note Nf = 0 is not possible on logarithmic coordinate as discussed earlier.)
Accordingly, N0 in Kim and Zhang model Equations (22) and (23) was set to be 1. As a result, the
model fitting parameters were found to be α = 2.5 × 10−1 and β = 0.83 for Weibull model Equation (8)
with an assumed σ∞ = 0, α = 4.485 and β = 0.078 for Sendeckyj model Equations (11) and (12), α = 0.35
and β = −0.08 for Kohout and Vechet model Equation (19), and α = 2.884 × 10−160 and β = 54.388 for
Kim and Zhang model Equation Equations (22) and (23). The fitting capabilities of the three models
(i.e., Weibull, Sendeckyj, and Kim and Zhang) appear equally good and practically identical. However,
as discussed earlier, Kohout and Vechet model Equation (19) is found to be not capable of satisfying
the boundary condition at σuC not because of the experimental data point adjusted to be Nf = 1 at
σuC but because of the predetermined S-N curve shape as seen near the first cycle (at log Nf = logα =
log0.35 = −0.4559 for the bend) although the degree of deviation from other models is not significant
in this case. If the fatigue data point more rapidly decreases at low cycles, the Kohout and Vechet S-N
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curve would have more tendency of deviating from the data for the same reason. Also, the points
of intersection of the tangent with the two asymptotes at log Nf = logα for the bend of S-N curve is
arbitrary to some extent.
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Figure 7. Kawai and Itoh experiment [22] with σuC = 807 MPa and σuT = 1887 MPa with S-N curves
obtained from: Weibull model with α = 2.5 × 10−1 and β = 0.83, and assumed σ∞ = 0; Sendeckyj model
with α = 4.485 and β = 0.078; Kohout and Vechet model with α = 0.35and β = −0.08; and Kim and
Zhang model with α = 2.884 × 10−160, β = 54.388 and N0 = 1.

For C-T loading at R = −3, Figure 8 shows fatigue experimental data obtained from Kawai and
Itoh [22] for carbon fiber reinforced epoxy laminates with σuC = 807 MPa and σuT = 1887 MPa in
comparison with plots from the various S-N curve models. The S-N line shape tendency is similar
to those in Figures 5 and 6 such that the fitting capabilities of all the models are again equally good
without much sensitivity for the initial Nf at σuC. In the case of Kohout and Vechet model Equation
(19), when α is high for the bend of S-N curve, the sensitivity to the initial experimental point Nf at
σuC decreases as the σmin substantially approaches the σuC. The model fitting parameters without
adjusting the initial experimental point Nf = 0.5 at σuC were found to be α =3.5 × 10−3 and β = 3.59 for
Weibull model Equation (7) with an assumed σ∞ = 150 MPa, α = 0.001985 and β = 0.08 for Sendeckyj
model Equations (11) and (12), α = 398 and β = −0.0775 for Kohout and Vechet model Equation (19),
and α = 4.295 × 10−38 and β = 13.506 with N0 = 0.5 for Kim and Zhang model.
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Figure 8. Kawai and Itoh experimental data [22] for carbon fiber reinforced epoxy laminates with
σuC = 807 MPa and σuT = 1887 MPa, and S-N curves obtained from: Weibull model with α = 3.5 ×
10−3, β = 3.59, and assumed σ∞ = 150 MPa; Sendeckyj model with α = 0.001985 and β = 0.08; Kohout
and Vechet model with α = 398.1and β = −0.0775; and Kim and Zhang model with α = 4.295 × 10−38,
β = 13.506, and N0 = 0.5.

For C-C loading at R = 10, an experimental data set obtained from Kawai and Itoh [22] for carbon
fiber reinforced epoxy laminates with σuC = 807 MPa, (σuT = 1887 MPa) is shown in Figure 9. For
comparison purposes of the models, an experimental data point is adjusted again to be Nf = 1at σuC for
the same reason in the case of R = −0.43 shown in Figure 7 for Weibull, and Secdeckyj models except
Kohout and Vechet model Equation (19). Also, N0 in Kim and Zhang model Equations (22) and (23)
was set to be 1. The model fitting parameters were found to be α = 0.138 and β = 0.66 for Weibull model
Equation (7) with an assumed σ∞ = 185 MPa, α = 1.3 and β = 0.019 for Sendeckyj model Equations
(11) and (12), α = 1and β = −0.02 for Kohout and Vechet model Equation (19), and α = 2.88 × 10−160

and β = 54.388 for Kim and Zhang model with N0 = 1. The fitting capabilities of all the models appear
to be equally good and practically identical indicating that all the models can fit the approximate
straight line. However, the inherent nature of Kohout and Vechet model from the predetermined S-N
curve is again detectable due to the pre-determined points of intersection of the tangent with the two
asymptotes at logNf = logα = log1 = 0 for the bend of S-N curve of the model.
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Figure 9. Kawai and Itoh experimental data [22] for carbon fiber reinforced epoxy laminates with σuC

= 807 MPa and σuT = 1887 MPa, and S-N curves obtained from: Weibull model with α = 0.138, β = 0.66,
and assumed σ∞ = 185 MPa; Sendeckyj model with α = 1.3 and β = 0.019; Kohout and Vechet model
with α = 1 and β = −0.02; and Kim and Zhang model with α = 2.88 × 10−160, β = 54.388 and N0 = 1.

Table 1 lists selected S-N curve models with two or less fitting parameters for data presentation.
The performances of major S-N curve models among those may be summarized as follows: (a) the
three models proposed by Weibull, Sendeckyj, and Kim and Zhang have the highest fitting capabilities;
(b) Kohout and Vechet model has a limited capability of S-N curve line shaping at some stress ratios
although its capability, otherwise, is approximately equal to the three models; (b) Sendeckyj, and Kim
and Zhang models have an advantage over Weibull model for fitting efficiency given that Weibull
model needs an additional assumed fatigue limit for curve fitting; and (c) the Kim and Zhang model
has an advantage over Sendeckyj model for representability of fatigue damage in which the fitting
parameters serve as the damage parameters as well. Table 2 lists the four models with parameter
values for different stress ratios.

Table 3 lists citation statistics available in the Google Scholar. A citation rate per year for Basquin
model is given 12, Kohout and Vechet 4.3, Sendeckyj 3.0, Kim and Zhang 0.88, and Weibull 0.21. It
brings our attention to the fact that the most incapable model has been the most frequently cited,
indicating that many researchers might have compromised the fitting capability for simplicity if they
had been aware of capabilities of the existing S-N curve models.
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Table 2. Summary of S-N curve models for data characterization proposed by Weibull, Sendeckyj, Kohout and Vechet, and Kim and Zhang.

Experimental Data Loading S-N Curve Models
Fitting Parameters

α β σ∞ (MPa) N0

Weibull (1952) [18]
with σuT = 829 MPa

R = −1 for T-C or C-T
loading

Weibull (1952)
σmax = (σuT − σ∞) exp

[
−α(log Nf)

β
]
+ σ∞

2.1 × 10−5 3.8 353 -

0.003 3.1 0 -

Sendeckyj (1981)
σmax = σuT/(1− α + αNf)

β 0.001 0.093 - -

Kohout and Vechet (2001)
σmax = σuT[(Nf + α)/α]β

776.25 −0.090 - -

Kim and Zhang (2001)

Nf = σ
−β
uT /[α(β− 1)]

[
(σmax/σuT)

1−β − 1
]
+ N0

10−38.44 11.81 - 0.5

Sendeckyj (1981) [19]
σuT = 2013 MPa

R = 0.1 for T-T loading

Weibull (1952) 0.088 1.9 250 -

Sendeckyj (1981) 0.0485 0.157 - -

Kohout and Vechet (2001) 19.953 −0.155 -

Kim and Zhang (2001) 3.13 × 10−27 7.381 - 0.5

Kawai and Itoh (2014)
[22] with σuC = 807
and σuT = 1887 MPa

R = −0.43 for T-C
loading

Weibull 2.5 × 10−1 0.83 0 1

Sendeckyj (1981) 4.485 0.078 - 1

Kohout and Vechet (2001) 0.35 −0.08 - -

Kim and Zhang (2001) 2.88 × 10−160 54.39 - 1

Kawai and Itoh (2014)
[22] with σuC =

807MPa and σuT =
1887 MPa

R = −3 for C-T
loading

Weibull (1952) 3.5 × 10−3 3.59 150 -

Sendeckyj (1981) 1.985 × 10−3 0.08 - -

Kohout and Vechet (2001) 398.1 −7.75 ×
10−2 - -

Kim and Zhang (2001) 4.295 × 10−38 13.506 - 0.5

Kawai and Itoh (2014)
[22] with σuC = 807
MPa and σuT = 1887

MPa

R = 10 for C-C loading

Weibull (1952) 0.138 0.66 185 1

Sendeckyj (1981) 1.3 0.019 - 1

Kohout and Vechet (2001) 1 −0.02 - -

Kim and Zhang (2001) 2.88 × 10−160 54.388 - 1
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Table 3. Citations of S-N curve models available in the Google Scholar as of 23 May 2018.

S-N Models Google Scholar Citations Citation Rates/Year

Basquin (1910) 1311 12
Weibull (1952) 14 0.21

Sendeckyj (1981) 111 3.0
Kohout and Vechet (2001) 73 4.3

Kim and Zhang (2001) 15 0.88

4.2. S-N Curve Models for Predicting Stress Ratio Effect

The same experimental data sets used for evaluation of S-N curve models for fatigue data
characterization will be employed in this section for evaluation of S-N curve models developed for
predicting the fatigue stress ratio effect. The best fit provided by the three models (Weibull, Sendeckyj,
and Kim and Zhang) will be represented by the Kim and Zhang model as the best fit reference for
comparisons. It is noted that D’Amore model Equations (32)–(34), and Epaarachchi and Clausen model
Equations (35) and (36) adopt the initial condition Nf = 1 at σmax = σuT while Poursatip and Beaumont
model Equations (29) and (30) adopts Nf = 0 at σuC, which does not exist on logarithmic coordinate.
Therefore, the same condition i.e., Nf = 1 at σmax = σuT as those in Figures 7 and 9 was employed for
comparison purposes such that the other models and experimental data were accordingly adjusted.
Experimental data and plots will be in lin-log coordinates.

An experimental data set from Weibull [18] is shown in Figure 10 in comparison with S-N curves
generated from the various models for R = −1: Kim and Zhang model Equations (22) and (23) as the
reference with α = 3.63 × 10−39 and β = 11.809 for N0 = 1; Poursatip and Beaumont model Equation
(30) with α = 17,000 and an added N0 = 1; D’Amore model Equation (34) with α′ = 0.053 and β = 0.2;
and Epaarachchi and Clausen model Equation (36) with α′ = 0.0007 and β = 0.245. It is seen that all
the models do not agree with the reference performed by the three models or Kim and Zhang model.
The Poursatip and Beaumont model, however, appears closer to the reference fit than the other two
models. It was found, at the same time, that the S-N line shape of Poursatip and Beaumont model is
controlled by a single fitting parameter α which only allows it to move around the first data point (for
Nf = 1 at σmax = σuT) as the hinge without much controlling the shape. On the other hand, the fitting
capabilities of D’Amore, and Epaarachchi and Clausen models appear relatively poor, given that radii
of the curvature of the S-N curves at low cycles are too large compared to the reference fit. A possible
reason for this is that the derivation may not be validly conducted as discussed earlier. Also, it would
not be surprising to find that D’Amore, and Epaarachchi and Clausen models are practically identical
in this case probably due to their similarities in expression and derivation [see Equations (34) and (36)].
The only difference made by the exponent 1.6 in the Epaarachchi and Clausen model Equation (36) is
found to be reflected only in values of fitting parameters α′ and β.

An experimental data set from Sendeckyj [19] obtained for glass reinforced epoxy laminates with
σuT = 2013 MPa is shown in Figure 11 in comparison with S-N curves generated from the various
models for R = 0.1 under T-T loading. The fitting parameters were found as follows: α = 10−26.505 and
β = 7.3813 for Kim and Zhang model Equations (22) and (23) with N0 = 1; α = 60 and an added N0 = 1
for Poursatip and Beaumont model Equation (30); α′ = 0.033 and β = 0.44 for D’Amore model Equation
(34); α′ = 0.00035 and β = 0.51 for Epaarachchi and Clausen model Equation (36). D’Amore, and
Eparrachchi and Clausen models appear improved for fitting capabilities compared to those for R = −1
(Figure 10) probably because of the rapid decrease in experimental data at low cycles as expected
from their S-N curve performances shown in Figure 10 although clear deviations from the best fit
are noticed. However, the added exponent 1.6 in Equation (36) does not seem to greatly improve the
D’Amore model Equation (34). A fitting capability of Poursatip and Beaumont model appear still good
although a slight difference from the best fit is noticed.
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Figure 10. Weibull experimental data at R = −1 [18] plotted with data points having a probability of
50% failure for Bofors FR 76 Steel rotating beam test with σuT = 829 MPa, and S-N curves obtained
from: Kim and Zhang model with α = 3.63 × 10−39, β = 11.809, and N0 = 1; Poursatip and Beaumont
model with α = 17,000 and added N0 = 1; D’Amore model with α′ = 0.053 and β = 0.2; and Epaarachchi
and Clausen model with α′ = 0.0007 and β = 0.245.
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D’Amore models noticeably deviated from the reference fit. The difference in behavior between 
D’Amore model, and Epaarachchi and Clausen model indicates that the added exponent 1.6 in 
Equation (36) noticeably affects the S-N curve shape in this case. 
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Figure 11. Sendeckyj experimental data at R = 0.1 for glass reinforced epoxy laminates with σuT = 2013
MPa [19] under T-T loading, and S-N curves obtained from: Kim and Zhang model with α = 10−26.505,
β = 7.3813, and N0 = 1; Poursatip and Beaumont model with α = 60 and added N0 = 1; D’Amore with
α′ = 0.033 and β = 0.44; and Epaarachchi and Clausen model with α′ = 0.00035 and β = 0.51.
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Figure 12 shows experimental data from Kawai and Itoh [22] with σuC = 807 MPa and
(σuT = 1887 MPa) for R = −0.43 in comparison with various models: Kim and Zhang model
Equations (22) and (23) with α = 8.18 × 10−41 and β = 13.6 for N0 = 1; Poursatip and Beaumont
model Equation (30) with α = 29 and added N0 = 1; D’Amore model Equation (34) with α′ = 0.3
and β = 0.19; and Epaarachchi and Clausen model Equation (36) with α′ = 0.0169 and β = 0.14. The
Epaarachchi and Clausen model appear very close to the reference fit (or Kim and Zhang model)
while Poursatip and Beaumont, and D’Amore models noticeably deviated from the reference fit. The
difference in behavior between D’Amore model, and Epaarachchi and Clausen model indicates that
the added exponent 1.6 in Equation (36) noticeably affects the S-N curve shape in this case.
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Figure 12. Kawai and Itoh experiment at R = −0.43 [22] with σuC = 807 MPa and σuT = 1887 MPa,
and S-N curves obtained from: Kim and Zhang model with α = 8.18 × 10−41, β = 13.6, and N0 = 1;
Poursatip and Beaumont model α = 29 and added N0 = 1; D’Amore model with α′ = 0.3 and β = 0.19;
and Epaarachchi and Clausen model with α′ = 0.0169 and β = 0.14. An experimental data point for
Nf = 0.5 cycle was adjusted to have the initial condition Nf = 1 at σuC for comparison purposes.

An experimental data set from Kawai and Itoh [22] with σuC = 807 MPa, (σuT = 1887 MPa) for
R = −3 representing C-T loading is shown in Figure 13 with S-N curves generated from the various
models: Kim and Zhang model with α = 4.3 × 10−38, β = 13.506, and N0 = 1; Poursatip and Beaumont
model Equation (30) with α = 11,000 and added N0 = 1; for D’Amore model Equation (34) with α′ =
0.053 and β = 0.2; for the Epaarachchi and Clausen model Equation (36) with α′ = 0.001 and β = 0.25.
The fitting capabilities of all models appear to be good but differences between models are not as
obvious as those for R = −1 in Figure 10 because the experimental data set is relatively small compared
to that for R = −1. However, the same tendencies of D’Amore, and Epaarachchi and Clausen models
are seen such that the radii of the curvature of S-N curve at low cycles is still large. Also, it is noted
that D’Amore, and Epaarachchi and Clausen models behave similarly again without much effect of
the modified exponent 1.6 in Equation (36) on the S-N curve shape.
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Figure 13. Kawai and Itoh experimental data at R = −3 [22] for carbon fiber reinforced epoxy laminates
with σUc = 807 MPa and σuT = 1887 MPa, and S-N curves obtained from: Kim and Zhang model with
α = 4.3 × 10−38, β = 13.506, and N0 = 1; Poursatip and Beaumont model with α = 11,000 and added
N0 = 1; D’Amore model with α′ = 0.053 and β = 0.2; and Epaarachchi and Clausen model with α′ =
0.001 and β = 0.25.

Figure 14 shows an experimental data set from Kawai and Itoh [22] with σuC = 807 MPa
(σuT = 1887 MPa) for R = 10 with S-N curves generated from the various models: the Kim and Zhang
model Equations (22) and (23) with α = 2.9 × 10−160 and β = 54.388 for N0 = 1; the Poursatip and
Beaumont model Equation (30) with α = 719 and added N0 = 1; the D’Amore model, Equation (34),
with α′ = 0.043 and β = 0.01; the Epaarachchi and Clausen model Equation (36) with α′ = 0.0075 and
β = 0.048. The fitting capabilities of the D’Amore, and Epaarachchi and Clausen models appear to
be practically identical to the reference fit (or Kim and Zhang model). In contrast, the Poursatip and
Beaumont model significantly deviates from the reference fit and seems to have a strong tendency
of producing the concave-down S-N curve at low cycles. Judging from the earlier observations, the
Poursatip and Beaumont model seems incapable of producing other shapes than the concave-down
S-N curve at low cycles regardless of stress ratio. A possible reason for this may be due to some defects
during derivation as discussed earlier even though Equation (27) satisfies Equation (1).
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Figure 14. Kawai and Itoh experimental data at R = 10 [22] for carbon fiber reinforced epoxy laminates
with σuC = 807 MPa and σuT = 1887 MPa, and S-N curves obtained from: Kim and Zhang model with
α = 2.9 × 10−160, β = 54.388, and N0 = 1; Poursatip with α = 719 and added N0 = 1; D’Amore model
with α′ = 0.043 and β = 0.01; and Epaarachchi and Clausen model with α′ = 0.0075 and β = 0.048.

In summary, the three S-N curve models developed for predicting for stress ratio effect appear
inferior to those best performed for data characterization. They are listed in Table 4 and their
performances are summarized.

5. Conclusions

S-N curve models proposed by Weibull, Sendeckyj, and Kim and Zhang for fatigue data
characterization have been found to have the highest fitting capabilities for experimental fatigue
data obtained by Weibull for R = −1, Sendeckyj for R = 0.1, and Kawai and Itoh for R = −0.43, −3,
and 10. The Kohout and Vechet model was also found to have good fitting capabilities but with
a limitation for shaping S-N curve at some stress ratios (e.g., R = −0.43). Also, S-N curve models
developed for predicting the effect of stress ratio were found to be relatively inferior in fitting capability
to those developed directly for data characterization. The Kim and Zhang model appeared to have
an advantage over the Weibull and Sendeckyj models for representing the fatigue damage at failure,
which may be further useful for developing applicative models.
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Table 4. S-N curve models developed for stress ratio effect.

S-N Curve Models

Capability of Curve Fitting and Applicability
to Different Stress Ratios Number of Fitting

Parameters

Relation with Physical Properties

Boundary at Initial
Nf

Damage
Representation

Satisfaction of
∂D f T
∂σmax

= −A
R Capability

Poursartip and
Beaumont (1986)

Nf =

α
(

σmax
σuT

)−6.393(
σuT−σmax

σuT

)
1 Good

1 Yes Partially Yes Yes
0.1 Good
−0.43 Poor
−3 Reasonable
10 Poor

D’Amore et al. (1996)
Nf =[

σuT−σmax
α′σmax

+ 1
]1/β

−1 Poor

2 Yes N/A N/A
0.1 Reasonable
−0.43 Poor
−3 Reasonable
10 Good

Epaarachchi and
Clausen (2003)

Nf =(
σuT−σmax

α′(σmax)
1.6 + 1

)1/β

−1 Poor

2 Yes N/A N/A
0.1 Reasonable
−0.43 Good
−3 Reasonable
10 Good
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