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Abstract: The present work considers a computational study on laminated composite plates by using
a linear theory for moderately thick structures. The present problem is solved numerically because
analytical solutions cannot be found for such plates when lamination schemes are general and when
all the stiffness constants are activated at the constitutive level. Strong and weak formulations are
used to solve the present problem and several comparisons are given. The strong form is dealt
with using the so-called Strong Formulation Finite Element Method (SFEM) and the weak form is
solved using commercial Finite Element (FE) packages. Both techniques are based on the domain
decomposition technique according to geometric discontinuities. The SFEM solves the strong form
inside each element and needs the implementation of kinematic and static inter-element conditions,
whereas the FE solves the weak form and the continuity conditions among the elements are given
in terms of displacements only. The results are reported in graphical form in terms of the first three
natural frequencies. The accuracy and stability of SFEM and FE are thoroughly discussed.

Keywords: laminated composite plates; first-order shear deformation theory; strong formulation
finite element method; finite element method; free vibrations

1. Introduction

As it is well known, engineering theories for plates and shells simplify the three-dimensiona (3D)
elasticity problem by introducing the kinematic hypothesis, which leads to simpler mathematical
problems. Therefore, such simplified theories have limitations that are strictly related to the initial
hypotheses. The present work is based on the so-called Reissner–Mindlin theory or First-order Shear
Deformation Theory, which is used to study moderately thick plates [1,2]. The term “moderately thick”
refers to the fact that the plate is not “thin” as in the Classical Laminated Plate Theory (CLPT)
or Kirchhoff-Love Theory and not “thick” as in the classical 3D theory of elasticity. Once the
physical problem is mathematically well-posed, it is generally solved via numerical methods due
to the complexity of finding analytical or semi-analytical solutions for general configurations.
The present work aims to show a peculiar behavior in the solution of such problems by comparing
the results obtained using strong and weak form finite element methods when the plates are in free
vibrations. In particular, the authors compare the results obtained with two- and three-dimensional
theories as a function of the plate thickness and material configuration, such as isotropic and
laminated composite.

The free vibration problem of plates with regular shape has been developed since the XIX century.
The study on vibrations of composite laminates started in the early 60s and is nowadays still a topic
of great interest among researchers. In particular, plates of arbitrary shape and made of composite
materials are investigated in the following article.
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Rectangular plates were the first structures to be studied, because for some configurations
an analytical or semi-analytical solution could be found. In 1970, Srinivas et al. [3] studied thick
homogeneous and laminated plates. In 1978, Nelson [4] presented the vibration problem of rectangular
plates and bars with a solution that satisfied the Mindlin equations. The same topic was presented
by Ali and Atwal [5]. In 1992, Lee and Lim [6] studied squared isotropic and orthotropic plates with
in-plane forces. Farsa et al. in 1993 [7,8] used the Generalized Differential Quadrature (GDQ) method
for the vibration of rectangular orthotropic and anisotropic laminated plates. Coupled rectangular
plates were investigated in 1996 by Bardell et al. [9]. The GDQ method was considered in 1998 by
Wang et al. [10]. In 1999, Huang and Sakiyama [11] studied rectangular plates with holes of different
shapes. In 2003, Karami and Malekzadeh [12] proposed a new version of the GDQ method in which
multiple boundary conditions were implemented in the weighting coefficients for the derivative
approximation in square and rectangular plates. In the same year, Liew et al. [13,14] used the Ritz
method and the FSDT for studying laminated rectangular plates with central holes. In 2004, Huang and
Li [15] studied the flexural strength of plates with anti-symmetrical lamination schemes. Seok et al. [16]
presented the out-of-plane motions of cantilevered rectangular plates. In 2006, Singh and Tanveer [17]
investigated multi-connected rectangular plates in several configurations. In 2007, Shu et al. [18]
used the finite difference method based on the least squares, for the free vibration problems of thin
isotropic plates of general shape. Among all, square plates with semi-circular cut-outs were considered.
In 2008, Houmat [19] studied the free vibration problem of plates with curvilinear edges and square
plates with holes. In the same year, Secgin and Sarigul [20] used the Discrete Singular Convolution
(DSC) method for the free vibration of square plates. Quadrilateral plates were studied with a Fringing
meshfree interpolation technique by Bui et al. [21]. In 2011 and 2012, Dozio and Carrera [22,23]
presented the free vibration problem of quadrilateral plates with various thicknesses and different
plate theories. A modified version of the Differential Quadrature (DQ) method was proposed by
Eftekhari and Jafari in 2013 [24] for rectangular plates with several boundary conditions. Quadrilateral
plates were studied using the DQ method also by Nassar et al. [25]. In 2014, Kurtaran [26] investigated
the effect of element shape on the free vibrations of plates made of Functionally Graded Materials
(FGMs) [27–35]. Finally, Kumar et al. [36] have recently proposed laboratory tests and theoretical
analyses for the free vibrations of composite laminated plates made of glass/epoxy.

When the plate is not of regular shape, numerical or complex analytical approaches should be
considered. However, due to the geometric distortion, the accuracy of a methodology might be lower
than others according to the applied distortion. The free vibration problem of skew plates was first
studied by Claasen [37] in 1963. Nair and Durvasula [38] in 1973 and Mizusawa et al. [39] in 1979
also studied the same problem. In 1980, Kanaka Raju and Hinton [40] and in 1988, Gorman [41]
studied simply-supported and fully clamped skew plates. The finite element method was used
by Bardell in 1992 [42] for the free vibration problem of skew plates and analogous studies were
conducted by Liew and Wang [43] in 1993. Several geometries, with skew plates with different skew
angles, were studied using the DQ method by Bert and Malik in 1996 [44] and Hosokawa et al. [45]
in the same year. Han and Dickinson [46] proposed the study of skew plates with symmetric lamination
schemes. Wang [47,48] published a similar study using the First-order Shear Deformation Theory
(FSDT). A shear-deformable finite element was used for the free vibration problem of skew plates by
Sheikh et al. [49] in 2002. In 2003, Karami and Malekzadeh [50,51] implemented a DQ technique for
quadrilateral plates with straight edges of skew and trapezoidal shape. The FSDT was considered
by Liew et al. [52] for investigating the skew plate strength. Garg et al. [53] studied skew plates with
laminated and sandwich configurations. In 2008, several studies were published on skew plates by
Civalek [54], Das et al. [55], Nallim and Oller [56], and Zhou and Zheng [57]. Ashour [58] focused
his research on skew plates symmetrically clamped and Gurses et al. [59] presented skew plates
studied with FSDT. In 2012, Rao and Babu [60] presented thin skew plates symmetrically laminated
with holes. Skew plates, made of composite materials, were studied by Dozio and Carrera [22,23]
and also by Srinivasa et al. [61]. The DQ method was used for studying skew plates with free edges by
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Wang and Wu [62]. Other studies were presented by Kurtaran [26], Zhang and Xiao [63], Zhang [64]
and Wang et al. [65]. Finally, Mohazzab and Dozio [66] presented a study on skew plates in 2015.

Circular, annular, and sectorial plates have been thoroughly studied in the last 40 years.
First studies were conducted by Ramakrishnan and Kunukasseril [67] in 1976. Irie et al. [68,69]
published two works on orthotropic circular plates with simply-supported edges. Clamped circular
plates were presented by Maruyama and Ichinomiya [70]. Srinivasan and Thiruvenkatachari [71,72]
treated the problem of annular isotropic plates in free vibrations for the first time. An analytical
solution for sectorial plates was presented by Harik and Molaghasemi [73] in 1989. Sectorial plates
were analyzed by Misuzawa and Kajita [74], whereas annular plates were considered by Misuzawa
and Takami [75]. In the same topic, other researchers focused their studies using different techniques
such as Liew and Lam [76] and Xiang et al. [77]. In 1995, McGee et al. [78,79] presented two papers
on annular plates with several boundary conditions, as well as Bert and Malik in 1996 [44]. Circular
Mindlin plates (with and without discontinuities) were investigated by Liew et al. and Liu et al. [80–84]
using the DQ method. In 2002, Zhong [85] applied the triangular DQ method to sectorial plates using
a curvilinear mapping for triangular elements. In 2003, Civalek and Catal [86] used the HDQ method
for linear static and free vibration problems of annular and circular plates. Between 2003 and 2004
Liew et al. [14,52,87] published several papers on sectorial and annular plates with the DQ method.
The buckling and vibration of sectorial plates was investigated by Sharma et al. [88]. Similarly, Nie and
Zhong [89] and Shu et al. [18] presented other studies on circular plates. In 2008, Dong [90] presented
a three-dimensional analysis of annular plates in free vibrations. Several papers about sectorial and
annular plates were presented by Civalek [91,92], Xing and Liu [93], and Zhou et al. [94]. Civalek and
Ozturk [95] studied the free vibrations of sectorial plates using a quadrilateral finite element with
curvilinear edges. Finally, plates with curvilinear edges were studied by Kurtaran [26].

The most difficult geometries to treat in numerical analysis are the triangular and trapezoidal
shapes, due to their geometry, which can lead to strong shape distortion. Triangular isotropic
and orthotropic plates were studied for the first time by Lam et al. [96] in 1990 and by
Dubliner [97] in 1991. Triangular isosceles plates were investigated by Kitipornchai et al. [98]
and partially supported plates were presented by Mirza and Alizadeh [99], whereas cantilever
plates of triangular and trapezoidal shape were illustrated by Qatu [100]. In 1996, Abrate [101]
and Karunasena et al. [102] studied simply-supported triangular plates. Singh and Saxena [103],
Karunasena and Kitipornchai [104], and Singh and Hassan [105] investigated triangular plates with
variable thicknesses. In 2000, Sakiyama and Huang [106] dedicated their studies to triangular plates of
variable thickness and in the same year Zhong [107] presented isosceles plates with the DQ method.
Sheikh et al. [108] showed a shear-deformable finite element for laminated composite plates of several
shapes. Trapezoidal plates were presented by Karami and Malekzadeh [50] and Karami et al. [51].
The previously cited Shu et al. [18] also studied trapezoidal plates with the finite differences method
based on the least squares. The same for Civalek [54] in 2008, who also presented trapezoidal plates.
Plates of trapezoidal shape were presented by Nallim and Oller [56] and Civalek and Gurses [109].
Thick trapezoidal plates were deeply studied by El-Sayad and Ghazy [110], Quintana and Nallim [111],
and Rango et al. [112,113].

Other plates of complex shape are elliptic plates, pentagonal, heptagonal, and plates with
holes. The free vibrations of elliptic plates were presented by Singh and Chakraverty [114]
in 1992, followed by Bert and Malik [44] in 1996. Not-homogeneous elliptic plates were presented by
Chakraverty et al. [115] in 2005 and the DQ method was used by Xing and Liu [93], and Civalek and
Ozturk [95]. Elliptic laminated plates were presented by Bui et al. [21] and Kurtaran [26].

Pentagonal and heptagonal plates were not investigated much in the past. Some studies by
Ghazi et al. [116] and Xing and Liu [93] must be mentioned.

Complex analysis is carried out for plates with holes due to the strong geometric discontinuity,
rather than the geometric distortion. Plates with holes were presented by Lim and Liew in 1995 [117].
Plates with holes were also considered by Houmat [19] and Liu et al. [118]. In 2011, Bui et al. [21]



J. Compos. Sci. 2018, 2, 16 4 of 50

studied laminated plates in free vibrations with openings. Moreover, laminated pierced plates were
presented by Rao and Babu [60] and recently by Rango et al. [112,113].

Other studies [119–174] regarding plates made of composite materials and higher order theories
are noted. They are important because they represent the background of the present work. The problem
of plates can be treated with innovation. Other methods, both numerical and analytical, the interested
reader can find in the list of papers given.

2. First-Order Laminated Plate Theory

The so-called First-order Shear Deformation Theory (FSDT) or Reissner–Mindlin theory is the most
common and well-known theory for studying plates and shell structures. It is not the purpose of the
present work to extensively present such theory but to compare the numerical results obtained using
FSDT with different approaches, in particular strong and weak formulations. Therefore, only main
equations are reported in the following. According to the given hypothesis of FSDT, the displacement
field considers five kinematic parameters as shortly given below

U(x, y, z) = ux(x, y) + zβx(x, y)
V(x, y, z) = uy(x, y) + zβy(x, y)
W(x, y, z) = w(x, y)

(1)

where the three-dimensional displacements U, V, W are indicated with capital letters, whereas the
kinematic parameters ux, uy, w, βx, βy (three in-plane displacements and two rotations) with small
letters. The graphical representation of the displacement field (1) is given in Figure 1.
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Figure 1. Geometric interpretation of the FSDT kinematic model.

The present theory considers eight strain characteristics on the plate middle surface instead of
the three-dimensional strain tensor. Such quantities can be divided into three groups, the in-plane
characteristics ε0

x, ε0
y, γ0

xy, the curvatures kx, ky, kxy and the shear strains γxz, γyz. The latter by definition
are constant through the thickness, therefore, the present theory needs a shear correction factor for
a correct approximation of the shear stresses.

Equilibrium equations are of the same number as the degree of freedom of the model and they are
a function of eight stress resultants which correspond to the eight strain characteristics of the kinematic
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field. The present theory considers also the rotary inertia as indicated in the equilibrium equations
given below.

∂Nx
∂x +

∂Nxy
∂y = I0

..
ux + I1

..
βx; ∂Nxy

∂x +
∂Ny
∂y = I0

..
uy + I1

..
βy

∂Tx
∂x +

∂Ty
∂y = I0

..
w

∂Mx
∂x +

∂Mxy
∂y − Tx = I1

..
ux + I2

..
βx; ∂Mxy

∂x +
∂My
∂y − Ty = I1

..
uy + I2

..
βy

(2)

where Nx, Ny, Nxy are the in-plane forces, Mx, My, Mxy represent bending moment and torque and
Tx, Ty are the shear forces which are constant through the thickness by hypothesis. The inertia terms Ii
are defined as

Ii =
l

∑
k = 1

zk+1∫
zk

ρ(k)zidz for i = 0, 1, 2 (3)

It is recalled that, the rotary inertias are significant when the thickness of the plate is relevant
when compared to its in-plane dimensions. A graphical representation of the stress resultants is given
in Figure 2.
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The theory of laminated composite materials considers strain and stress components that vary
ply by ply according to the following general constitutive law σx

σy

τxy


(k)

=

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66


(k) εx

εy

γxy


(k)

σz
(k) = 0[
τxz

τyz

](k)
=

[
Q44 Q45
Q45 Q55

](k)[
γxz

γyz

](k)
(4)

It is remarked that, Equation (4) considers a general orientation of the orthotropic layers (indicated

by the superscript (k) within the stacking sequence. The stiffness constants Q(k)
ij are expressed by

classical relationships that can be found in [174,175].
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The constitutive equations for FSDT theory can be summarized by the following system

Nx

Ny

Nxy

Mx

My

Mxy

Tx

Ty


=



A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 κA44 κA45

0 0 0 0 0 0 κA45 κA55





ε0
x

ε0
y

γ0
xy

kx

ky

kxy

γxz

γyz


(5)

where the two vectors have the same meaning as aforementioned. Aij, Bij, Dij for i, j = 1, 2, 6 are the
membrane, coupling and bending stiffnesses. The shear correction factor is indicated as κ and it is
taken as κ = 5/6.

The present study focuses on the free vibration behavior of plates as a function of the
relationships given by Equation (5). For instance, when a plate made with a single isotropic ply
is considered Bij = 0, thus, the in-plane behavior is un-coupled with the bending part, moreover
A16 = A26 = D16 = D26 = 0. Analogously for cross-ply symmetric laminates. On the contrary,
for a general lamination scheme made of orthotropic plies all the coefficients of the constitutive law
are not null. In this regard, it is noted that, numerical issues occur when some of these combinations
are considered as it will be discussed in the sections below.

3. Numerical Implementation

The present work deals with geometries of different shape because geometric discontinuities and
distortions might be present. In particular, the authors consider a strong form finite element scheme
termed SFEM (Strong Formulation Finite Element Method [176–183]) for the following simulations.
Moreover, the present novel results are compared to the same solutions obtained through commercial
finite element codes (Abaqus and Straus7). For the sake of conciseness and also because the SFEM
implementation is not the main purpose of the present work, interested readers are invited to
read reference papers for details on this numerical technique [176–183]. In a few words, SFEM is
a domain decomposition technique in which the continuity among the elements is enforced in terms of
displacements and stresses and the solution is sought in the strong form. The advantage of the strong
formulation is that no integration is required and the solution is carried out by simply discretizing the
fundamental system of equations in terms of displacements. External boundary conditions consider
both kinematic and static conditions due to the strong form nature of the problem. In general,
domain decomposition methods consider also domains of general shape. However, functions can be
integrated or derived in regular (square) domains only, therefore, a mapping technique is introduced.
In conclusion, the SFEM is used to select basis functions and the type of grid point collocation for the
numerical approximation among each finite element. In addition, the number of domain divisions
and the number of collocation points for each element must be defined. The combination of these
four parameters changes the accuracy and reliability of the SFEM formulation. On the contrary,
classical FE considers element shape functions as element basis functions (with 4 or 8 nodes) and Gauss
integration with Gauss–Legendre points are for the evaluation of the elemental integrals. In conclusion,
the approximation at the element level is a variable in the SFEM, whereas classic FE considers low
order polynomials (linear or quadratic) for the same approximation.

As far as the SFEM is concerned, the Lagrange basis is selected as the basis function and the
Chebyshev–Gauss–Lobatto grid has been considered. Such a selection leads to good and convergent
results for any number of grid points and domain divisions [176]. Therefore, the present choice is
preferable for studying plates made of composite materials. For the element mapping, both classical
serendipity mapping and NURBS-based mapping have been considered [176–183]. All the provided
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simulations have been carried out through the Differential Quadrature for Mechanics of Anisotropic
Shells, Plates, Arches, and Beams (DiQuMASPAB) software [184], which implements the SFEM in
a user-friendly interface.

4. Applications

In the present section, some numerical applications are provided regarding both isotropic and
laminated composite plates of arbitrary shape. Since most of the references present the solution of only
rectangular (or square) plates, the authors want to point out the accuracy and stability of the present
numerical techniques for arbitrarily shaped plates only. In particular, skew, circular and elliptic plates
are studied. The solutions are provided by increasing the degrees of freedom of each model for a fixed
geometry and on the same geometry. The plate thickness is increased in order to find the validity limit
of the FSDT theory in terms of natural frequencies.

The number of grid points along the two main directions for each reference domain in the SFEM
are equal as in standard FE [172]. Thus, the SFEM considers a different number of finite elements and
of grid points inside each element. In the FE models, the number of finite elements is variable and
the number of points for the approximation for each domain considered linear or quadratic shape
functions. Both techniques consider fixed basis functions and type of point collocation. The SFEM
simulations are indicated as SFEMn-CGL, where n indicates the number of finite elements used in the
mesh, whereas the number of grid points per domain are indicated by N. The Straus7 elements are:
triangular shape as Tri3 and Tri6. The former is a triangle with four nodes and the latter is a triangle
with six nodes. The quadrilateral Straus7 elements are: Quad4, Quad8 and Quad9 with four, eight
and nine nodes, respectively. Abaqus elements are also triangular and quadrilateral as: S3, STRI65
(three and six nodes) and S4, S4R, S8R, S8R5. The first number identifies the number of nodes (four or
eight) and the R stands for reduced integration. It is noted that S8R5 is a serendipity element with eight
nodes, reduced integration and five degrees of freedom per node. It is recalled that the plate/shell
FE in commercial codes are implemented with six dofs per node even though the reference theory
is FSDT.

4.1. Isotropic Materials

4.1.1. Skew Plates with 30◦ Skew Angle

The free vibration problem will be carried out for isotropic skew plates of square shape with skew
angle 30◦. The skew angle is measured with respect to the vertical axis and the plate side is a = 1 m.
The mechanical properties are E = 210 GPa, ν = 0.3, h = 0.01 m, ρ = 7800 kg/m3.

At first, convergence analysis is performed. In terms of SFEM the geometry is modeled with
different structured meshes with 1, 2 (2 × 1), 4 (2 × 2), 8 (4 × 2) and 16 (4 × 4) elements, where the
numbers in brackets report the edge divisions. Each element has been discretized with a variable
number of grid points from 7 × 7 to a maximum number of 41 × 41 (for the single element only).
For the sake of comparison, the FE models consider similar structured meshes with 5 × 5, 10 × 10,
20 × 20, 40 × 40, 80 × 80, and 160 × 160 elements. The first three mode shapes are depicted in Figure 3
where it is immediately clear that SFEM needs a lower computational effort to reach a stable solution.
However, all the implemented elements agree with the same final result. It can also be noted that,
the FE converges always “from above” due to its low order scheme, whereas the SFEM might converge
from above and below. In the aforementioned convergence study, the thickness of the plate is thin
because a/h = 100. Elements and N = 11 for 8 and 16 SFEM elements. This selection is justified by
the fact that the minimum computational effort is considered for each mesh. Instead of considering
an analytical solution for the thick case (a/h = 10) a three-dimensional FE model is implemented
with brick elements with 20 nodes (Hexa20 for Straus7 and C3D20 for Abaqus). Thus, the 3D solutions
are taken as a reference in the present comparison.
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In the following study, the “thickness effect” is investigated for the same plate by considering
a variable side-to-thickness ratio as a/h = 10, 20, 50, 100 (Figure 4). The reference mesh for the FE is
a 40 × 40 and N = 25 grid points for 1 and 2 SFEM elements, N = 21 for 4 SFEM. By increasing the
plate thickness, some models have a lower accuracy than their correspondent thin cases as Tri3 and
Quad4, which overestimate the frequency. On the contrary, S8R5 underestimate the same frequency.
The only expected error at this stage is given by the S8R5 because such element is indicated as “thin”
in the Abaqus software, whereas no information is given on the Straus7 elements.
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4.1.2. Circular Plates

In the present section, the free vibrations of isotropic circular plates with fixed external edges
are considered. The material properties are the same as the ones taken in the previous section as
E = 210 GPa, ν = 0.3, h = 0.01 m, ρ = 7800 kg/m3 with a unitary plate radius of a = 1 m.
The plate can be considered as “thin” because a/h = 100. Convergence plots of the first three mode
shapes are depicted in Figure 5.

Unlike classical FE, the SFEM can use also a single element to describe a circular plate. In fact,
a single element mesh mapped with a Lagrangian, eight nodes and 12 nodes element are utilized.
Moreover, a single element is considered using NURBS. These single-domain meshes are studied with
different grid points from 7 × 7 to a maximum number of 41 × 41. In addition, the plate has been
divided into four (one element per quarter) and 12 elements (three elements per quarter) with eight
nodes using Lagrangian mapping. As far as the Straus7 meshes are concerned, the starting mesh is
made of 12 elements with eight nodes (three elements for each quarter). The other discretizations
are obtained by dividing each finite element regularly with the following equal number of divisions
2 × 2, 5 × 5, 10 × 10, 15 × 15, 20 × 20, 30 × 30. The mesh in Abaqus are generated by setting the
number of elements on the plate radius and one-quarter of the circumference, respectively. Therefore,
the following discretizations have been considered: (5, 1), (10, 5), (20, 15), (30, 25), (40, 35), (50, 45),
(60, 55). It is remarked that the present models consider the double symmetry of the structure by
meshing all plate four quarters in the same way. This approach improves the stability of the solution.

It is observed in Figure 5 that all of the elements converge to the same solution except for the SFEM,
which made a single element with eight nodes. This error is due to a wrong geometry approximation,
because eight nodes are not sufficient to approximate a circular geometry. Only a parabolic shape can
be modeled exactly. On the contrary, the NURBS approximation using SFEM increase its geometrical
approximation by increasing the number of grid points inside the element.

In the following, the effect of the plate thickness is shown by considering a/h = 10, 20, 50, 100.
With reference to the discretizations defined above for Straus7, the reference mesh is the one with
20 × 20 (for a global number 4800 elements) and (50, 45) is the number of elements used in Abaqus for
each circular quarter. Finally, the SFEM considers 25 × 25 grid points for each of the previous meshes,
except for the mesh with 12 elements that considers a 11 × 11 grid.

Only for the thick plate case a/h = 10, 3D FE models are prepared using Hexa20 (in Straus7)
and C3D20 (in Abaqus) that are considered as reference solutions. It can be noted that, all the first three
frequencies agree with a negligible difference for thick plates due to the influence of the shear effect.
The total number of degrees of freedom (DOFS) considered can be seen from the legends in Figure 6.
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4.1.3. Elliptic Plates

In the present section, isotropic elliptic plates of different shape are investigated. These structures
are characterized by the two semi-axes a (minor) and b (major). The plate properties are
E = 210 GPa, ν = 0.3, h = 0.01 m, ρ = 7800 kg/m3 so thin plates are studied (a/h = 100).
The following simulations consider different values of the semi-axes ratios b/a = 1.5, 2, 2.5 and the
external edges all clamped.

The SFEM meshes follow the same scheme as the previous case of circular plates. Therefore
a single element mesh with eight and 12 nodes is considered, a mesh with four and 12 elements
with eight nodes and finally a single element with NURBS. The grid distribution inside each element
considers a different number of points from 7 × 7 to 41 × 41 (only for the single element cases).
The Straus7 meshes consider a mesh of 12 elements as a starting geometry (with three elements
for each quarter) and the following discretizations occur for each element: 2 × 2 (48 elements),
5 × 5 (300 elements), 10 × 10 (1200 elements), 15 × 15 (2700 elements), 20 × 20 (4800 elements),
30 × 30 (10800 elements). Abaqus meshes are adapted according to the geometry under consideration.
In particular, the number of elements per side is selected to reduce mesh distortions. The following
triplets indicate the number of elements along a, b and the third digit stands for the number of elements
on the external edge (correspondent to one-quarter of the plate). Thus, b/a = 1.5 has (2,3,5), (4,6,8),
(8,12,14), (16,24,24), (32,48,50), (36,52,54), (40,56,58). b/a = 2 has (1,2,4), (2,4,6), (4,8,8), (8,16,16),
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(16,32,32), (24,48,48), (32,64,64). b/a = 2.5 has (1,3,6), (2,5,7), (4,10,10), (8,20,20), (12,30,30), (16,40,40),
(24,60,60). It is obvious that the present meshes take into account the plate double symmetry.

Figures 7–9 include the convergence behavior of the first three mode shapes for three different
isotropic elliptic plates with b/a = 1.5, 2, 2.5, respectively. It can be generally observed that,
all the solutions agree well except for the single SFEM element with eight nodes due to the same
geometric error that was present in the circular plate case.

The effect of the thickness a/h = 10, 20, 50, 100 is considered in the following for the same elliptic
plate geometries investigated above. For the following examples, the grid points for the GDQ meshes
are 25 × 25, except for the mesh made of 12 elements that considers a 11 × 11 grid.

The Straus7 mesh considers 20 × 20 decomposition of the starting 12 elements mesh for a total of
4800 elements and three different meshes are considered according to the shape for Abaqus: a/b = 1.5
(36,52,54), a/b = 2 (24,48,48), a/b = 2.5 (16,40,40) with the same meaning of the symbols discussed
above. References models are made using 3D FE bricks for a/h = 10 by using Hexa20 in Straus7 and
C3D20 in Abaqus. The total number of DOFS used is indicated in Figures 10–12. All the solutions
agree, apart from the Quad4 meshes that have a small deviation for thick plates.
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Figure 8. First three natural frequencies of an isotropic elliptic plate with b/a = 2: (a) First frequency;
(b) Second frequency; (c) Third frequency.
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4.2. Laminated Composite Materials

In the present section, the free vibration problem of laminated composite plates is discussed.
The structures of the present study follow the same scheme of the previous section. Therefore,
skew plates, circular plates and elliptic plates are shown. The reference material is an orthotropic
monoclinic ply with mechanical properties: E1 = 137.9 GPa, E2 = E1/40 = 3.4475 GPa,
G12 = G13 = 0.6E2 = 2.0685 GPa, G23 = 0.5E2 = 1.7238 GPa, ρ = 1450 kg/m3 and
ν = 0.25. In the following computations, two lamination schemes are considered. The first symmetric
(45/ − 45/45/ − 45/45) (for skew plates), (0/90/0) for circular and elliptic plates and the second one
generic (30/45) for skew, circular and elliptic plates. The former selection has negligible coupling
matrix, whereas the latter has all the coefficient of the stiffness matrix not null. The plates are completely
clamped on all the external edges in all the following cases. The same finite elements and domain
decomposition approaches of the previous section are considered, therefore, no further detail will
be reported in this regard. Comments will be given only on the results provided by the composite
plate configurations.

4.2.1. Skew Plates with Skew Angle of 30◦

Convergence simulations are carried out for a thickness-to-width ratio of a/h = 10. 3D FE models
are used as a reference with fine meshes (Hexa20 for Straus7 and C3D20 for Abaqus). Figure 13
reports the first three mode shapes for the symmetric lamination scheme, whereas Figure 14 for the
not-symmetric one. It is very clear that in both cases some finite elements converge to different
frequency values with respect to the other models. In particular, Figure 13 shows that Tri3 and Quad4
(from Straus7) elements are quite inaccurate and all the others, both 2D Abaqus and SFEM, do not agree
to the same values. S8R5 and STRI65 of Abaqus are adequate for the simulation of thin plates other
than thick ones. Please note that, the reference solution (made of brick finite elements) is given by
dashed lines. Such solutions are carried out by Straus7 and Abaqus 3D FE with a relatively fine
mesh. In Figure 14, lower accuracies are observed for not-symmetric lamination schemes than for the
symmetric ones shown in Figure 13. In fact, both the Straus7 and Abaqus solutions are inaccurate with
respect to the reference 3D FE solutions. On the contrary, the solution given by SFEM agrees well with
the reference curves given by 3D FE.

If the “thickness effect” is investigated as in the previous section, more evident discrepancies can
be noted. In fact, Figures 15 and 16 report the effect of the thickness by considering a/h = 10, 20, 50, 100
for symmetric and not-symmetric lamination schemes. The present accuracy error does not occur
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only for plates with a/h = 10 (which identifies thick plates) but also for the other cases wherein
the same error is a little bit smaller. However, it is clear that commercial FE codes show higher
accuracy errors than SFEM for laminated plates with symmetric (only a few cases are present)
and not-symmetric lamination schemes. By comparing the present plots with the ones corresponding to
isotropic plates, a wider dispersion of the results can be observed due to the introduction of laminated
composite materials.

4.2.2. Circular Plate

Free vibrations of clamped circular plates are described in the following. The first case has
a symmetric scheme (0/90/0) and a general one with (30/45) in the second case. The orthotropic
material properties are the same as the ones indicated in the previous sections. The first case is reported
by Figures 17–19. The convergence behavior of circular plates with symmetric lamination scheme is
depicted in Figures 17 and 18 for two different thickness ratios, a thin a/h = 100 and a thick one
a/h = 10. It can be observed that, Quad4 element from Straus7 is the less adequate element for
studying the present problem. Moreover, also Quad8 and Quad9 elements have quite large differences
when compared to the other solutions also for thin plates. The thickness effect on the first three
natural frequencies is given in Figure 19. 3D FE models are used as reference solutions for a/h = 10
(thick plates) with Hexa20 and C3D20 elements by Straus7 and Abaqus, respectively. Once again, the
less adequate element is the Quad4, that for a/h = 10 leads to a frequency value which is two times
the reference ones.
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Figure 15. Thickness effect on the first three natural frequencies of a skew plate with a symmetric
lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 16. Thickness effect on the first three natural frequencies of a skew plate with a not-symmetric
lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 17. First three natural frequencies of a circular plate with a symmetric lamination scheme and 
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Figure 17. First three natural frequencies of a circular plate with a symmetric lamination scheme and
a/h = 100: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 18. First three natural frequencies of a circular plate with a symmetric lamination scheme and
a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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The introduction of thick plates spread the frequencies’ values for each finite element used. The 
SFEM elements lead to the same accuracy as 3D FE when compared to the other 2D FE used. In fact, 
all the solutions are similar (within a small variance) for thin plates. On the contrary, the variation 
increases a lot for thick plates. In all these considerations, the single SFEM element with eight nodes 
has its own convergence due to the wrong geometric approximation, which has been observed in the 
previous sections. 
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Figure 19. Thickness effect on the first three natural frequencies of a circular plate with a symmetric
lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.

The general lamination scheme case is depicted in Figures 20–22. Convergence simulations
are performed for thin a/h = 100 and thick a/h = 10 plates and reported in Figures 20 and 21,
respectively. Smaller differences are observed here if compared to the previous cases with symmetric
lamination schemes, nevertheless, classical finite elements are less accurate when thick plates are
considered. It is curious to observe that general purpose finite elements by Abaqus give values below
the ones given by SFEM. Finally, Figure 22 shows the thickness effect for general lamination schemes.

The introduction of thick plates spread the frequencies’ values for each finite element used.
The SFEM elements lead to the same accuracy as 3D FE when compared to the other 2D FE used. In fact,
all the solutions are similar (within a small variance) for thin plates. On the contrary, the variation
increases a lot for thick plates. In all these considerations, the single SFEM element with eight nodes
has its own convergence due to the wrong geometric approximation, which has been observed in the
previous sections.
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Figure 20. First three natural frequencies of a circular plate with a not-symmetric lamination scheme 
and a/h = 100: (a) First frequency; (b) Second frequency; (c) Third frequency. 

(a)

Figure 20. First three natural frequencies of a circular plate with a not-symmetric lamination scheme
and a/h = 100: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 21. First three natural frequencies of a circular plate with a not-symmetric lamination scheme 
and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
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Figure 21. First three natural frequencies of a circular plate with a not-symmetric lamination scheme
and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 22. Thickness effect on the first three natural frequencies of a circular plate with a not-
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
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considered some deviations are observed in the numerical convergence. 

Figure 22. Thickness effect on the first three natural frequencies of a circular plate with a not-symmetric
lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.

4.2.3. Elliptic Plate

The elliptic plates have the same geometrical properties and meshes used in the previous sections.
The lamination schemes are the same as the circular plates. In addition, three width-to-height ratios
a/b = 1.5, 2, 2.5 have been considered. Figures 23–25 present the convergence analysis for symmetric
lamination scheme (0/90/0) one thickness ratio a/h = 10 (because 3D FE models are more accurate
for such ratios) and the three aforementioned a/b ratios. In the present cases, Straus7 finite elements
have larger differences with respect to the other solutions, and such discrepancies increase by stretching
the elliptic geometry. Also in the previous case of circular plates Straus7 FE did not perform very
well. This effect is more evident when the thickness effect is investigated (Figures 26–28). As a matter
of fact, Quad4, Quad8 and Quad9 finite elements follow a different convergence trend with respect
to the others, even for smaller thicknesses such as a/h = 20 and a/h = 50. The inaccuracy of
some finite elements is more evident for general lamination schemes both in the convergence analyses
(Figures 29–31) and thickness effects (Figures 32–34). In particular, general purpose Abaqus FE shows
lower frequency values than the reference 3D FEM and SFEM results. Thus, they look more flexible.

The elliptic geometry underlines very well the convergence problems of the Straus7 finite element
for such distortions. Abaqus FE performs well but only for thin plates. When thick plates are considered
some deviations are observed in the numerical convergence.
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Figure 23. First three natural frequencies of an elliptic plate with a/b = 1.5 a symmetric lamination 
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 23. First three natural frequencies of an elliptic plate with a/b = 1.5 a symmetric lamination
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 24. First three natural frequencies of an elliptic plate with a/b = 2 a symmetric lamination 
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 24. First three natural frequencies of an elliptic plate with a/b = 2 a symmetric lamination
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 25. First three natural frequencies of an elliptic plate with a/b = 2.5 a symmetric lamination 
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 25. First three natural frequencies of an elliptic plate with a/b = 2.5 a symmetric lamination
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 26. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 1.5 with a 
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 26. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 1.5 with
a symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 27. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2 with a 
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 27. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2 with
a symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.



J. Compos. Sci. 2018, 2, 16 36 of 50

J. Compos. Sci. 2018, 2, x FOR PEER REVIEW  36 of 50 

 

(a)

(b)

(c)

Figure 28. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2.5 with a 
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 28. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2.5 with
a symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 29. First three natural frequencies of an elliptic plate with a/b = 1.5 a not-symmetric lamination 
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 29. First three natural frequencies of an elliptic plate with a/b = 1.5 a not-symmetric lamination
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 30. First three natural frequencies of an elliptic plate with a/b = 2 a not-symmetric lamination 
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 30. First three natural frequencies of an elliptic plate with a/b = 2 a not-symmetric lamination
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 31. First three natural frequencies of an elliptic plate with a/b = 2.5 a not-symmetric lamination 
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 31. First three natural frequencies of an elliptic plate with a/b = 2.5 a not-symmetric lamination
scheme and a/h = 10: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 32. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 1.5 with a not-
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 32. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 1.5 with
a not-symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.



J. Compos. Sci. 2018, 2, 16 41 of 50

J. Compos. Sci. 2018, 2, x FOR PEER REVIEW  41 of 50 

 

(a)

(b)

(c)

Figure 33. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2 with a not-
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
Figure 33. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2 with
a not-symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.
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Figure 34. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2.5 with a not-
symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency. 
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This work deals with the stability and accuracy of two domain decomposition methods based 
on strong and weak formulations, respectively. The study focuses on FSDT plates of arbitrary shape 
as skew, circular, and elliptic plates made of isotropic and laminated composite materials. It has been 

Figure 34. Thickness effect on the first three natural frequencies of an elliptic plate a/b = 2.5 with
a not-symmetric lamination scheme: (a) First frequency; (b) Second frequency; (c) Third frequency.
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5. Conclusions

This work deals with the stability and accuracy of two domain decomposition methods based
on strong and weak formulations, respectively. The study focuses on FSDT plates of arbitrary
shape as skew, circular, and elliptic plates made of isotropic and laminated composite materials.
It has been discovered that, for some material configurations and plate geometry the accuracy of
classic FE is significantly different from the actual solution, which is obtained through 3D FE models.
On the contrary, SFEM shows natural frequencies that are very close to the given references. This work
wants to shed light on the stability and accuracy of classic FE models that might give inaccurate results
for peculiar plate configurations.
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