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Abstract: Short fiber-reinforced polymers have recently been introduced to large-scale additive
manufacturing to improve the mechanical performances of printed-parts. As the short fiber polymer
composite is extruded and deposited on a moving platform, velocity gradients within the melt
orientate the suspended fibers, and the final orientation directly affects material properties in the
solidified extrudate. This paper numerically evaluates melt rheology effects on predicted fiber
orientation and elastic properties of printed-composites in three steps. First, the steady-state
isothermal axisymmetric nozzle melt flow is computed, which includes the prediction of die swell
just outside the nozzle exit. Simulations are performed with ANSYS-Polyflow, where we consider
the effect of various rheology models on the computed outcomes. Here, we include Newtonian,
generalized Newtonian, and viscoelastic rheology models to represent the melt flow. Fiber orientation
is computed using Advani–Tucker fiber orientation tensors. Finally, elastic properties in the extrudate
are evaluated based from predicted fiber orientation distributions. Calculations show that the
Phan–Thien–Tanner (PTT) model yields the lowest fiber principal alignment among considered
rheology models. Furthermore, the cross section averaged elastic properties indicate a strong
transversely isotropic behavior in these composites, where generalized Newtonian models yield
higher principal Young’s modulus, while the viscoelastic fluid models result in higher shear moduli.

Keywords: short fiber-reinforced polymer; large-scale additive manufacturing; rheology effect;
die swell; fiber orientation; elastic properties

1. Introduction

Recently, extrusion-based Additive Manufacturing (AM) (otherwise known as fused filament
fabrication or fused deposition modeling) has moved rapidly from small scale rapid prototyping
to the manufacture of large-scale parts and tooling such as the Big Area Additive Manufacturing
(BAAM) system developed by Oak Ridge National Laboratories (ORNL) (Oak Ridge, TN, USA) [1].
Typical thermoplastic polymer extrusion-based AM is a process where polymer feedstock materials are
melted and deposited on a heated platform, layer-by-layer, to form three-dimensional (3D) objects [2].
To achieve a relatively high dimensional accuracy and superior mechanical performances in large-scale
parts, carbon fiber filled polymers are employed. Duty et al. show that adding short carbon fibers
into the neat Acrylonitrile Butadiene Styrene (ABS) polymer yields a composite with improved elastic
properties, especially along the printing direction, and less distortion in the printed part following the
bead deposition process of the BAAM system [3,4].

A key factor in the polymer composite deposition AM process is the flow-induced fiber orientation
within the printed composite (cf. Figure 1) since material properties of solidified parts depend on the
fiber alignment within the printed bead [5]. Therefore, the prediction of fiber orientation during the
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polymer extrusion process, and the subsequent evaluation of mechanical properties in the short fiber
polymer composite extrudate is of great importance.

Evans et al. [6] and Lipscomb et al. [7] considered a fully coupled approach where the motion
of suspended fibers depend on the flow field, and the fiber orientation influences flow kinematics,
typically through the suspension melt viscosity. A computationally more efficient approach that is
often employed is a one-way weakly coupled formation that ignores the effect of the fiber suspension
on viscosity. This approach has been effective in applications having shear dominant narrow gap
flows such as injection and compression modelling simulations [8–10], and is the approach we use in
this study.
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Fiber orientation studies in polymer composite AM applications have recently become of interest.
Nixon et al. [11] simulated fiber orientation in three Fused Deposition Modeling (FDM) nozzle
geometries (convergent, straight and divergent) using Moldflow (Moldflow Corporation, Framingham,
MA, USA) and the Folgar–Tucker Isotropic Rotary Diffusion (IRD) model [12]. Their work, which
ignored die swell, showed that a converging geometry yielded the highest principal fiber alignment
and the divergent geometry resulted in the lowest. Additionally, at the exit of the straight and the
converging nozzle, a higher alignment was predicted near the center than at the edge, unlike the
experimental result reported by Kunc [13]. Heller et al. [14] computed the fiber orientation tensors in a
conventional small scale FDM nozzle and extruded filament. In their work, die swell was computed by
minimizing the integrated normal stress on the free surface using COMSOL Multiphysics (Comsol, Inc.,
Burlington, MA, USA). Their approach modeled the molten polymer as an isothermal Newtonian fluid
in a creeping flow, and assumed an axisymmetric velocity field. Orientation tensors (cf. e.g., Advani
and Tucker [15]) were computed along streamlines within the flow domain from velocity and velocity
gradient information. Their results showed that fiber alignment reached its peak at the outer edge of
the nozzle, and then decreased towards the center of the flow.

Extrudate swell occurs in many extrusion-based polymer processing applications and is
known to be highly influenced by the non-Newtonian behavior of the melt. Crochet et al. [16]
theoretically analyzed the die swell of an upper-convected Maxwell fluid based on the mixed finite
element method for fluids with implicit constitutive equations. Luo and Tanner [17] applied the
Streamline Finite Element Method (SFEM) to the die swell problem, which avoided the numerical
instability in high Weissenberg number problems. Luo and Mitsoulis [18] extended the SFEM
by adding in a particle-tracking scheme along the streamlines with a Picard iterative scheme.
Béraudo et al. [19] applied a finite-element-based method to investigate the extrudate swell of Linear
Low-Density Polyethylene (LLDPE) and Low-Density Polyethylene (LDPE) melts using a multi-mode
Phan–Thien–Tanner (PTT) model [20]. Their approach provided an accurate die swell prediction for
die geometries of a 2D slit die and a 2D axisymmetric capillary die in low and intermediate shear
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conditions. Ganvir et al. [21] applied an Arbitrary Lagrangian Eulerian (ALE) algorithm to calculate
the extrudate free surface, which enabled the die swell simulations to be performed in both steady
state and transient problems. Alternatively, Limtrakarn et al. [22] employed the Simplified Viscoelastic
(SV) model implemented in ANSYS-Polyflow (ANSYS, Inc., Canonsburg, PA, USA) to predict die
swell of a 3D circular die flow of LDPE. A good agreement between the numerical results and the
experimental data was achieved. Clemeur et al. [23] found that the SV model was a cost-effective
approach for evaluating the flow-viscoelasticity as compared to conventional viscoelastic fluid flow
models including the Oldroyd-B and the Phan–Thien–Tanner models.

This paper presents a numerical approach to study the effect of assumed polymer melt rheology
on predicting fiber orientation and elastic properties of short fiber polymer composites extruded in
large-scale AM. The weakly coupled formation is used to compute the fiber orientation within the
polymer melt flow where we first obtain the flow kinematic in an isothermal axisymmetric large-scale
AM nozzle. Our flow model is created in two dimensions and solved with the finite element suite
ANSYS-Polyflow (version 17.1, ANSYS, Inc.) [24], and includes melt flow within the nozzle in addition
to a short section of post-nozzle extrudate, which enables the prediction of die swell at the nozzle exit.
We consider a Newtonian fluid model, a Power law model, a Carreau–Yasuda model, a multi-mode
Phan–Thien–Tanner (PTT) model, and a Simplified Viscoelastic (SV) model in separate flow simulations.
Secondly, the fiber orientation along streamlines within the flow domain is computed from the velocity
field computed within the melt flow domain. The Advani–Tucker fiber orientation tensor evaluation
equation [15] and the Folgar–Tucker Isotropic Rotary Diffusion (IRD) model [12] are employed to
solve the fiber orientation problem. In addition, the Orthotropic Closure (ORT) [5] is used to address
the closure problem encountered in the fiber orientation computation. Finally, elastic properties are
computed from fiber orientation predictions for each melt rheology using the Tandon–Wang approach
with fiber orientation averaging [25,26]. This paper uses computational methods alone to gain useful
insight into the effect of assumed rheology on properties of an extruded composite bead. It does not
include the difficult, if not impossible, experimental procedures that would be required to validate
these results.

2. Materials

In this study, we consider the material rheology of Acrylonitrile Butadiene Styrene (ABS)
fabricated by the PolyOne Corporation (Avon Lake, OH, USA). The rheological properties, including
the complex shear viscosity η, storage shear modulus G′ and loss shear modulus G′′, are measured
using a HAAKE MARS 40 rheometer (Thermo Fisher Scientific, Waltham, MA, USA) at 210 ◦C.
Once the experimental data is obtained, curve-fitting for the various rheology models is performed
using ANSYS-Polymat (version 17.1, ANSYS, Inc.) [27].

The experimental data appears in Figure 2, which shows apparent shear shinning behavior as
expected for ABS. The shear thinning behavior of polymer melts can be expressed through various
Generalized Newtonian Fluid (GNF) models. Here, we consider the Power law model written as [28]

η(
.
γ) = K(

.
γ)

n−1, (1)

and Carreau–Yasuda model given as [28]

η(
.
γ) = η∞ + (η0 − η∞)(1 + (κ

.
γ)

a
)

n−1
a . (2)

In the above, K is the consistency index, n is the power-law index, η∞ is the infinite-shear-rate
viscosity, η0 is the zero-shear-rate viscosity, and κ is the natural time. In Equation (2), the constant a
controls the transition from the Newtonian plateau to the Power-law region in the Carreau–Yasuda
model. For measured data appearing in Figure 2, the fitted rheology model data for the Power
law model is K = 16761 Pa·sn and n = 0.4503. For the Carreau–Yasuda model, we obtained
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η0 = 204064 Pa·s n−1
a , η∞ = 0, µ = 0.3333 s−1, n = 0.000001455, and a = 0.2398. For comparison, we

also consider the Newtonian fluid model, also appearing in Figure 2, having a viscosity µ = 3200 Pa·s,
which corresponds to a shear rate of ~30 s−1 from our measured rheology. This shear rate was
used to determine a Newtonian viscosity value based on a typical shear rate of 30~40 s−1 given by
Duty et al. [29] for Big Area Additive Manufacturing (BAAM) systems.

We also consider a multi-mode PTT rheology model, which is a differential-type viscoelastic fluid
model. The exponential form of the PTT model is expressed as [20]

exp
[
ελ

η1
tr(T1)

]
T1 + λ

[(
1 +

ξ

2

)
T1
∇ +

ξ

2
T1

∆
]
= 2η1D, (3)

with
T1

∆ =
DT1

Dt
+ T1·(∇v)T +∇v·T1, (4)

and
T1
∇ =

DT1

Dt
− T1·∇v− (∇v)T·T1, (5)

and
D =

1
2

[
(∇v) + (∇v)T

]
. (6)

Here, T1 and η1 are the stress tensor and the viscosity component associated with the
viscoelasticity, D is the strain rate tensor, v is the velocity tensor, λ is the mode relaxation time,
η is the mode viscosity, ξ controls the shear viscosity behavior, and ε controls the elongational behavior.
The fitting results in Figure 3 are in good agreement with the experimental rheology data. The fitted
parameters of the PTT model appear in Table 1.

Alternatively, ANSYS-Polyflow includes the Simplified Viscoelastic (SV) model that reduces
computational expense when predicting die swell in viscoelastic flows. In the SV formulation,
it is understood that extrudate swell in polymer extrusion is associated with the first normal stress
difference in the fluid. Hence, the SV model extends the Generalized Newtonian Fluid (GNF) model,
where the total stress tensor is given as [24]

T1 =

 Ψµ(
.
χ)

.
χ η(

.
χ)

.
χ 0

η(
.
χ)

.
χ 0 0

0 0 0

, (7)

where the off-diagonal terms given as η(
.
γ)

.
γ are the shear stress components. In this form, η(

.
γ) is

expressed by a typical generalized Newtonian model, and
.
γ is the magnitude of the strain rate tensor

D (cf. Equation (6)). In the above, Ψµ(
.
χ)

.
χ represents the first normal stress component, in which µ(

.
χ)

is described in a similar fashion as is done for the shear strain rate. In Equation (7),
.
χ is the specialized

viscoelastic variable, which is evaluated with the transport equation

θ(
.
γ)

D
.
χ

Dt
+

.
χ =

.
γ, (8)

where θ
( .
γ
)

is the relaxation time of the melt which controls the development of the extrudate swell
diameter once the melt flow exits the nozzle. In addition, Ψ appearing in Equation (7) is an artificial
weighting factor, which controls the swelling enhancement versus the input flow rate [24]. To use
Equation (7), a description of the shear viscosity is required. Since the Power law model exhibits an
unbounded viscosity at a near-zero shear rate, it is not realistic, especially when free surface prediction
is of primary interest. Hence, we employ the Carreau–Yasuda law to represent the behavior of shear
viscosity. It has been shown that defining an independent law for the normal stress viscosity increases
computational cost, but does not greatly enhance the accuracy of die swell calculation. Therefore,
the same Carreau–Yasuda model form is used to describe the first normal stress viscosity term.
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The SV model is an empirical construction defined in terms of θ and Ψ, each of which is typically
defined to obtain a known flow domain property such as die swell. In our simulation, different sets of
parameters θ and Ψ are attempted and values are selected to provide a predicted die swell profile that
is in good agreement with results obtained using the PTT viscoelastic fluid model. In this study, θ and
Ψ are thus defined as 0.26 and 0.47, respectively.
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3. Methods

3.1. Flow Kinematics and Die Swell Evaluation

We use ANSYS-Polyflow [24] to evaluate the flow kinematics in the polymer melt flow domain
based on conservation of momentum

−∇p +∇·T + f = ρa, (9)

and conservation of mass
∇·v = 0, (10)

where we have assumed an isothermal incompressible fluid represents the polymer melt as often
appeared in extrusion die flow numerical studies [19,21,30]. In the above, p is the pressure, T is the
total stress tensor, f is the body force, ρ is the density of the fluid and a is acceleration. Note that
non-isothermal effects such as the temperature gradients within the free extrudate or viscous heating
in the melt flow may result in nonuniform melt rheology properties such as K in Equation (1), which is
often addressed with an Arrhenius-type temperature dependency (e.g., the Williams–Landel–Ferry
equation) [28]. Consequently, we understand that our isothermal assumption may yield some
inaccuracy in the predicted numerical data. However, it is expected, as suggested by others [19,21,30],
that any temperature-related variation in the rheology properties would not significantly alter the
trends that appear in our result section.

Moreover, for a Generalized Newtonian Fluid (GNF) model, the total stress tensor may be
written as

T = T2 = 2η2D, (11)

and for a viscoelastic fluid model
T = T1 + T2, (12)

with
η = η1 + η2, (13)

where T1 and η1 are the non-viscous contributions, and T2 and η2 are related to the viscous effect of
the flow and η is the total viscosity.

The geometry of the flow domain in our study is based on the large-scale Additive Manufacturing
Strangpresse Model-19 extruder nozzle appearing in Figure 4. In addition, we include a 1-inch section
of free extrudate beyond the nozzle exit in the simulation to capture die swell. Due to the axisymmetry
of the nozzle geometry and assumed flow, we are able to simplify the flow domain as a 2D axisymmetric
model, which saves significant computational expense. Furthermore, our axisymmetric assumption
ignores any swirling motion in the flow that may result from the extruder screw. Since creeping flow
is assumed, the inertia contribution “ρa” in Equation (9) is ignored in our simulations. In addition,
since only a short section of the free extrudate material is considered, gravitational effects are ignored,
which results in the body force f in Equation (9) being zero as well.
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The boundary conditions of the flow domain appear in Figure 5, in which

• Γ1: Flow domain inlet, where the prescribed volumetric flow rate Q is specified. In addition,
a fully developed velocity profile is computed and imposed at the inlet by ANSYS-Polyflow based
on Q and the selected rheology model.

• Γ2: No slip wall boundary, where vs = vn = 0.
• Γ3: Axis of symmetry, where Fs = vn = 0.
• Γ4: No slip wall boundary, where vs = vn = 0.
• Γ5: Free surface, where v·n = 0.
• Γ6: Flow domain exit, where Fn = vs = 0.

In the above, Fs is the tangential force, Fn is the normal force, vs is the tangential velocity, vn

is the normal velocity, v is the velocity vector at the free surface, and n is a unit vector normal to
the free surface [24]. The die swell of the free surface is predicted using the methods of spines in
ANSYS-Polyflow, which is an efficient remeshing rule often applied to 2D free surface problem [31].
The finite element domain is discretized into 704 nodes and 630 elements using 4-node quadrilateral
elements as shown in Figure 5. The mesh size is reduced near the flow boundary as well as the nozzle
exit to avoid potential singularity issues. Additionally, results obtained using a coarse mesh (448 nodes,
378 elements) and a fine mesh (960 nodes, 882 elements) were compared with those obtained with the
model in Figure 5. Elastic moduli predictions appearing in the results section below were obtained
using the model in Figure 5 and are within 1% absolute relative difference to the fine mesh model
output. We therefore use the model in Figure 5 in the remainder of the paper to avoid the extra
computational expense that would be required for a model having a finer mesh.
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3.2. Fiber Orientation Distribution Prediction

The direction of a single rigid fiber within a polymer matrix is commonly described by a unit
vector p(ϕ,φ), as shown in Figure 6, with coordinates [15]

p(ϕ,φ) =


sinϕ cosφ
sinϕ sinφ

cosϕ

. (14)
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Advani and Tucker [15] considered the statistical behavior of the fibers using the computationally
efficient orientation tensor approach where the orientation tensor evolution equation is written as

DA
Dt

= (A·W−W·A) + β(D·A + A·D− 2A : D) + 2CI
.
γ(I− 3A), (15)

which assumes isotropic rotary diffusion first proposed by Folgar and Tucker [12]. Here, A and A are
the second and fourth order orientation tensors, respectively, written as

A = Aij =
∮
S

pipjδ(ϕ,φ)dS, (16)

and
A = Aijkl =

∮
S

pipjpkplδ(ϕ,φ)dS, (17)

where δ(ϕ,φ) is a probability distribution function and S is unit sphere surface. Note that, due to the
normalization condition, the integral of δ(ϕ,φ) over the surface S equates to unity, making the trace of
A equal to 1 (see e.g., [25,26]). It can also be shown that A is symmetric, yielding just five independent
components in Equation (15).

In additional, the vorticity tensor W appearing in Equation (15) is given as

W =
1
2

[
(∇v)− (∇v)T

]
, (18)

and the rate of deformation tensor D is evaluated by Equation (6). We evaluate the tensors W and D,
from the velocity vector v computed along streamlines within the polymer melt flow field obtained
from our ANSYS-Polyflow simulation result. The constant β in Equation (15) depends on the fiber
aspect ratio as

β =
α2 − 1
α2 + 1

, (19)

where α is the fiber aspect ratio. The interaction coefficient CI is used to capture the effect of fiber–fiber
interaction, and

.
γ represents the scalar magnitude of the rate of deformation tensor D. The last term in

Equation (15) written as 2 CI
.
γ(I− 3A) results from the the Folgar–Tucker Isotropic Rotary Diffusion

(IRD) model [12]. Fu et al. [32] experimentally observed that molten short fiber polymer composite
exhibited an asymmetric profile of fiber length distribution with a peak skewed toward small values
of fiber length. In addition, we experimentally measured the fiber aspect ratio of the sample prepared
by performing a burn-off test on the 13 wt % carbon fiber filled ABS (manufactured by Polyone, Avon
Lake, OH, USA) and found that the values of the fiber aspect ratio are in a range of 10 to 60. Following
Fu et al., we define β = 0.9802 (corresponding to α = 10 in Equation (19)). Bay and Tucker [9] defined
an empirical formula for evaluating CI, which depends on the values of the fiber volume fraction and
aspect ratio as

CI = 0.0184 exp(−0.7148vfα), (20)
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where vf is the fiber volume fraction. Equation (20) has been effective in concentrated suspensions
flows, which are typical for short fiber polymer composites in large-scale deposition processes. We also
assume a fiber volume fraction of 13% following that used by ORNL in prior study during the
development of the Big Area Additive Manufacturing (BAAM) [3]. Therefore, we use CI = 0.0073,
which is computed with Equation (20) for vf = 0.13 and α = 10.

The fourth order fiber orientation tensor, A, is typically computed with a closure approximation
in fiber orientation simulations. Prior studies have focused on the natural–type closure [33,34] and the
orthotropic-type closure [35,36]. In this paper, we employ the Orthotropic Closure (ORT) to compute
for A from A as defined in [5].

Note that the second order orientation tensor A has seen widespread use for statistically describing
the orientation of suspended fibers in narrow gap shear dominant applications [8–10,13]. In this study,
flow within the nozzle has a significant shear component; however, there is considerable extensional
flows within the converging section of the nozzle, and also just outside the nozzle exit where die
swell begins to form. Here, we have chosen to demonstrate the use of this common orientation tensor
formulation in large-scale AM flows realizing that the limitations of the model in these flows is still to be
determined. It is important to note that the orientation tensor approach does not track each individual
fiber, but instead provides an indication of the degree of alignment through the nine components of
tensor A. The second order orientation tensor A is the second moment of the orientation distribution
function δ(ϕ,φ). Specifically, Figure 7 gives two important examples of A, in which a diagonal
component of A having a value of one represents full alignment in the corresponding direction,
and three diagonal components all equal to 1/3 represents the case of a uniformly random orientation.

In addition, the assumption of the initial fiber orientation state at the nozzle inlet directly
influences the fiber orientation throughout the flow domain. We assume that the fiber orientation
state prior to entering the nozzle has attained a fully developed steady state as the flow reaches the
nozzle inlet. It is important to note that the initial condition of the fiber orientation has been found
to have an influence on predicted fiber orientation in injection molding processes by Baird et al. [37].
We note that the complexity in the melt flow during the extrusion process before the flow reaches
the nozzle will indeed influence the fiber orientation state as the melt enters the nozzle. To better
understand the effect of inlet fiber orientation on computed outputs, we performed other simulations
using a uniformly random fiber orientation at the nozzle inlet. In this case, we found that using the
alternate inlet fiber orientation condition had little effect on the trends in predicted extrudate fiber
orientation and mechanical properties shown below. In addition, the steady state fiber orientation
tensor is obtained by setting the left-hand side of Equation (15) to zero and then solving for components
of A.
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3.3. Printed Bead Elastic Properties

Advani and Tucker [15] first computed the volume-averaged stiffness tensor C (Cijkl) using the
fiber orientation tensors A (Aij) and A (Aijkl), where components of C (Cijkl) are given as

Cijkl = M1Aijkl + M2
(
Aijδkl + Aklδij

)
+ M3

(
Aikδjl + Ailδjk + Ajlδik + Ajkδil

)
+

M4Aijδkl + M5

(
Aikδjl + Ailδjk

)
,

(21)

where the constants Mi is computed from the five independent components of the related unidirectional
composite stiffness tensor C̃ijkl and δil is the Kronecker delta [38]. We follow the work of Jack et al. [25]
who used the Tandon–Wang analytical equations [39] to evaluate the unidirectional elastic moduli of
the discontinuous fiber-reinforced polymer. The elastic properties of the fiber and the matrix used
in our calculations below are given in Table 2, where we assume that the matrix and fiber are both
isotropic materials. In addition, as in Section 3.2, we use a fiber aspect ratio of 10 and the fiber
volume fraction is assumed to be 13% when calculating the unidirectional elastic moduli with the
Tandon–Wang approach (see e.g., [26]).

Table 2. Elastic properties of the fiber and the matrix of the composite.

Material Young’s Modulus, E (GPa) Shear Modulus, G (GPa) Poisson’s Ratio, ν

Carbon fiber 230 95.83 0.2
ABS matrix 2.5 0.93 0.35

4. Results and Discussions

The objective of this paper is to demonstrate how different representations of the melt rheology
properties affects the predicted fiber orientation in the polymer melt and also the elastic properties of
the resulting extrudate material. In this section, we first consider the melt flow die swell predictions
computed with ANSYS-Polyflow. Then, fiber orientation tensors are obtained along streamlines within
the polymer melt flow from the computed velocity field. Furthermore, the elastic properties within
the solidified extrudate are evaluated from the fiber orientation tensors. We also evaluate the average
elastic properties in the extrudate by numerical integration of the data points over the cross-section.

4.1. Predicted Die Swell

Ajinjeru and Duty showed that the typical wall shear rate appearing in Big Area Additive
Manufacturing (BAAM) systems is between 30 and 40 s−1, and reaches a peak value near 100 s−1 at
the nozzle exit [29]. In our simulations, the average wall shear rate using the PTT model with material
constants from Table 1 and an inlet flow rate of Q = 100 mm3/s is calculated to be 36 s−1, with a peak
value of 87 s−1 at nozzle exit, which agrees well with the literature data [29]. Here, the average wall
shear rate

.
γw is computed from the wall shear rate

.
γw on Γ4 (cf. Figure 5) as

.
γw =

1
L

∫
Γ4

.
γw dx2, (22)

where L is the length of the nozzle exit tube defined by Γ4 in the x2 direction.
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Die swell profiles for the nozzle flow problem defined in Section 2 using each of the rheology
models defined above appear in Figure 8. The die swell just downstream of the nozzle exit is assessed
using the apparent swell ratio B defined as

B =
d
d0

, (23)

where d is the steady state swell flow diameter evaluated along the free surface downstream of the
die exit (length of Γ6 appearing in Figure 5), and d0 is the nozzle exit diameter. The computed data
for B at the Γ6 surface is given in Table 3. The apparent die swell ratio B = 1.133 computed using
the Newtonian fluid model agrees with the swell ratio of 1.13 proposed by Reddy and Tanner [40].
The steady state die swell ratios calculated using the Power law and Carreau–Yasuda rheology model
are nearly identical and significantly lower than the swell ratio of B = 1.199 computed using the PTT
model. Furthermore, the die swell profile obtained using the SV model converges to that computed
with the PTT model as the profiles reach steady state. Note that simulation time using the SV model
was 75 s which is much less than the 328 s when using the PTT model with the mesh given in Figure 5.
Therefore, for a larger size of flow domain or a finer mesh quality, the SV model is a good candidate to
qualitatively solve the flow problem with less computational cost.J. Compos. Sci. 2018, 2, 10 11 of 17 
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Table 3. Apparent swell ratio values resulted by applied rheology models.

Model Name Apparent Swell Ratio

Newtonian model 1.133
Power law model 1.037

Carreau–Yasuda model 1.035
PTT model 1.199
SV model 1.197

4.2. Computed Fiber Orientation Distribution

In this work, the fiber orientation is computed as described in Section 3.2 above. Our primary
interest is in the direction of extrusion, i.e., in the direction of the positive x2 axis in Figure 5. Therefore,
our primary focus is on fiber alignment in x2, which is best represented by the A22 component of the
second order orientation tensor A.
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The solution of A22 along various streamlines shown in Figure 9 is computed based on the flow
kinematics solved using the PTT rheology model with Q = 100 mm3/s. Values of A22 computed for
each of the rheology models showed similar trends as that appearing in Figure 9, so that these other
results are omitted here for conciseness. ANSYS-CFD-Post [41] generates the 2D surface streamlines
based on the mesh quality. Due to the mesh defined in Figure 5, we consider flow velocity fields along
eight streamlines computed from the finite element results achieved by ANSYS-Polyflow. Note that
A22 values near unity indicate fibers are highly aligned along the x2 direction. It can be seen that the
fiber orientation starts from steady state at flow inlet (appearing as FI in Figure 9) as assumed. The A22

components then starts to separate as the flow approaches the nozzle convergent zone (appearing as
CZS in Figure 9). Orientation states along all streamlines increase before the flow reaches the exit of
the convergent zone (appearing as CZE in Figure 9). The peak value of the A22 component occurs
at the convergent zone exit. Then, the orientation tensors at inner region streamlines decrease while
those located at outer region increase as the flow propagating to the nozzle exit (appearing as NE
in Figure 9). Once the polymer melt passes the nozzle exit at NE, values of A22 in the outer region
increase immediately and those more central begin to increase. This change occurs due to the shear rate
limitation vanishing at the outer boundary just after nozzle exit. The velocity along the outer boundary
accelerates first, causing fibers nearby to orientate in the flow direction. In addition, the elongational
flow near the center of the nozzle accelerates so that the extrudate attains a uniform speed at some
point not far from the nozzle exit. The final state of fiber orientation is set once variation across the
bead ceases and a plug flow develops.
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Figure 9. A22 component of fiber orientation solution computed using the flow kinematics solved by
the PTT model at Q equates 100 mm3/s.

Similar to the results appearing in Figure 9, we also compute the fiber orientation tensor along
streamlines in the flow domain using other rheology models. Values of A22 at the end of the
flow domain (i.e., across Γ6, in Figure 5) for all simulations considered here appear in Figure 10.
Results indicate that fibers are highly aligned near the edge of the flow where shear rates are high.
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Fiber alignment then decreases just inside this outer band forming an intermediate slightly misaligned
region. An increase in alignment then occurs within the core region towards the center of the extrudate.
In addition, it can be seen that the PTT model yields the lowest alignment in x2 among the applied
rheology models. Alternatively, the Power law and Carreau–Yasuda law result in a similar steady state
fiber orientation, which are the highest among these results. Moreover, the orientation result obtained
using the SV model shows a good agreement with that of the PTT model in the shear dominant region
but varies at other locations within the flow. Finally, the Newtonian model yields an intermediate value
of the fiber orientation, somewhat positioned between the GNF laws and the viscoelastic model results.
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4.3. Elastic Properties across the Exrudate

Finally, we calculate the elastic properties for the fiber-reinforced polymer using the
volume-averaged stiffness tensor computed from the steady state fiber orientation tensor
(cf. Jack et al. [25]) and the Tandon–Wang analytical equation (cf. Tandon et al. [39]). Computed elastic
properties across the extrudate at boundary Γ6 (cf. Figure 5) for each rheology model considered here
appear in Figure 11. For conciseness, we omit the results obtained using the Carreau–Yasuda rheology
model since these results are very similar to that obtained in our Power law model simulations.

Our results show that the elastic properties of the composite extrudate are enhanced by the
fiber reinforcement in comparison to the properties of neat ABS (dash lines appearing in Figure 11),
particularly the E22 component, which is elastic modulus along the extrusion direction. In addition,
the elastic modulus along the extrusion direction (E22) is not quite uniform while the moduli at other
directions (E11, E33, G12, G23, G13) are in small variance across the extrudate. In comparison, the Power
law yielded relatively higher estimation in the principal modulus (E22) and the PTT model results in
the lowest prediction. In addition, the Power law model, the PTT model as well as the SV model show
a more sharp variation in the E22 component than that yielded by the Newtonian model, which shows
trends that are similar to results calculated for a small FDM nozzle in Heller et al. [14].
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Furthermore, we average the elastic properties of the extrudate by numerically integrating the
data appearing in Figure 11 as written in Equation (24) by the trapezoidal rule [42] and the results are
given in Table 4:

Xavg =
1

πr2
0

∫ 2π

0

∫ ro

0
X·r drdΘ, (24)

where X refers to any of the data points appearing in Figure 11, Xavg is the area-averaged data, and ro

is the outer radius of the extrudate. Calculated values of Xavg corresponding to the elastic properties
in Figure 11 appear in Table 4. Note that we assume that the centre of the extudate exhibits the same
orientation behavior as the data in the streamline nearest to the centre-line, so as to achieve the fiber
orientation over the entire cross-section of the extrudate (cf. Figure 11). In addition, due to the flow
domain being built as a 2D axis-symmetric model, the integration is carried out in polar axis in order
to include the effects over the entire cross-section area of the extrudate.

The data computed in Table 4 indicate that the printed composite exhibit quasi transverse isotropic
mechanical behavior. In detail, the Carreau–Yasuda law (appearing as Carreau-Y. in Table 4) yields the
highest averaged E22 value, while the PTT model results in the lowest. In contrast, the shear moduli
yielded by the PTT model is higher than the GNF models. Finally, as we consider more non-viscous
effects of the flow (see data from the Power law (as well as the Carreau–Yasuda law), the Newtonian
model, the SV model to the PTT model), it can be seen that the principal modulus (E22) decreases while



J. Compos. Sci. 2018, 2, 10 15 of 18

other moduli increase. In addition, the transverse isotropic behavior of results predicted by the PTT
model is the most obvious one, in which the E22. and G13 are unique values and E11, E33 as well as
G12, G23 show high agreement. Our material stiffness predictions agree remarkably well with test data
appearing in the literature. Duty et al. [4] measured the Young’s modulus of a 13 per cent carbon fiber
reinforced ABS printed bead, reporting a mean value of 7.24 GPa and standard deviation of 0.59 GPa.
Our predictions of the elastic modulus for the same material system shown as E22 in Table 4 are in
good agreement with these previously published experimental results. Note that all predicted values
of E22 in Table 4 are within one standard deviation of Duty’s mean experimental value, regardless
of rheology model used, except for the value of 6.57 GPa obtained using the PTT model, which is at
1.1 standard deviation from the experimental mean. In addition, Duty found the stiffness of a BAAM
printed tensile test sample to be highly anisotropic, which is also seen in our results. Furthermore,
the previously reported test sample transvers moduli show some anisotropy in the transverse plane
(i.e., Ey = 2.26 GPa and Ez = 2.56 GPa). Our results obtained using GNF fluids (i.e., power law and
Carreau–Yasuda fluids) show similar trends. While we are not able to show experimental data specific
to each rheology model, the overall favorable comparison with previously published experimental
work supports our computational approach.

Table 4. Averaged elastic properties of the printed extrudate.

Model Name E11 (GPa) E22 (GPa) E33 (GPa) G12 (GPa) G23 (GPa) G13 (GPa) ν12 ν23 ν13

PTT 3.48 6.57 3.50 1.68 1.68 1.43 0.22 0.12 0.21
Power law 3.32 7.45 3.40 1.56 1.63 1.37 0.20 0.10 0.22
Carreau-Y. 3.31 7.49 3.40 1.56 1.62 1.37 0.20 0.10 0.22
Newtonian 3.45 6.66 3.50 1.65 1.69 1.42 0.22 0.12 0.22
SV model 3.43 6.86 3.46 1.64 1.66 1.41 0.22 0.11 0.22

5. Conclusions

Polymer melt flow through a large-scale polymer deposition extrusion nozzle was simulated with
the finite element method using ANSYS-Polyflow. These simulations included flow within the nozzle
in addition to the free surface die swell flow just outside the nozzle exit. Several rheology models were
compared in this work including a Newtonian model, a Power law model, a Carreau–Yasuda model,
as well as a multi-mode PTT model and a Simplified Viscoelastic (SV) material model. Rheology data
obtained experimentally using the HAAKE MARS 40 rheometer.

It was found that characterizing the melt flow by different rheology models yielded noticeable
variation in predicted die swell, fiber orientation distribution and the ultimate elastic behavior of
the extruded composites. The predicted die swell yielded by the PTT model was higher than those
resulted by the Generalized Newtonian Fluid (GNF) models including the Newtonian model. The SV
model yielded die swell results that agreed well with those from the PTT model by careful adjustments
of the rheology model parameters.

Through the weakly couple formulation, the fiber orientation distribution within the extrudate
was calculated from the melt flow velocity field. High fiber alignment in the direction of extrusion
occurred near the high-shear flow edge region of the extrudate as well as the near-center region, which
was due to the elongational effects of the free flow. Among the applied rheology models, the PTT
model yielded the lowest principal fiber alignment while the Power law model resulted in the highest
fiber orientation in polymer extrusion direction.

The elastic properties of a printed extrudate were evaluated based on the predicted fiber
orientation distributions, in which the estimated elastic modulus along extrusion direction showed
noticeable variance across the extrudate. The numerically-integrated averaged elastic moduli showed
a good agreement with the published experimental work. The estimation indicated the composite
extrudate exhibited quasi transverse isotropic behavior. In detail, the GNF models yielded higher
Young’s modulus along the principal direction while the PTT model resulted in a lower principal
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Young’s modulus but higher values of shear moduli. This indicates that, by considering the non-viscous
rheology effects, the elastic properties of extrudate through Additive Manufacturing (AM) systems
reduced at a longitudinal direction but increased at shear directions.

In addition, the SV model yielded relatively similar data of fiber orientation distribution as
well as elastic properties in comparison with the PTT model, especially in the shear dominant flow
boundary, yet cost less computational time than the PTT model. In the future study of 3D deposition
modelling of large-scale AM, the computationally cost-effective SV model is a reasonable alternative
for conventional viscoelastic fluid models (e.g., PTT model).
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