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Abstract: This study investigates the relationship between the intelligibility and quality of modified
speech in noise and in quiet. Speech signals were processed by seven algorithms designed to increase
speech intelligibility in noise without altering speech intensity. In three noise maskers, including both
stationary and fluctuating noise at two signal-to-noise ratios (SNR), listeners identified keywords
from unmodified or modified sentences. The intelligibility performance of each type of speech was
measured as the listeners’ word recognition rate in each condition, while the quality was rated as
a mean opinion score. In quiet, only the perceptual quality of each type of speech was assessed.
The results suggest that when listening in noise, modification performance on improving intelligibility
is more important than its potential negative impact on speech quality. However, when listening in
quiet or at SNRs in which intelligibility is no longer an issue to listeners, the impact to speech quality
due to modification becomes a concern.
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1. Introduction

During the last decade, a considerable number of speech modification algorithms have been
proposed in order to boost speech intelligibility in adverse listening environments while maintaining a
constant input-output speech intensity. Unlike traditional speech enhancement techniques (e.g., [1–5]),
which focus on dealing with the noise-corrupted speech signal (i.e., speech-plus-noise mixture) and on
removing background noise from the signal to achieve better listening experiences for listeners, these
speech modification algorithms aim to alter the original clean speech signal so that the intelligibility
may be preserved even when listened to in non-ideal listening conditions, in which background
masking sources may exist. While the majority of modification algorithms operate in the frequency
domain, such as enhancing frequency components which are important to speech intelligibility
in noise [6–8] and boosting certain spectral regions based on optimising objective intelligibility
metrics [9–12], other algorithms make changes in the time domain, including introducing pauses
into speech and speeding up or slowing down part of the speech to avoid a temporal clash between
the speech and masker [10,13]. Approaches combining both spectral and temporal modifications
have achieved better performance than either of the approaches alone [14–16]. With a constant
energy constraint, these modification algorithms essentially reallocate the energy of speech across time
and frequency.

The performance of speech enhancement and speech modification techniques is usually evaluated
using different subjective approaches. For enhanced speech as the output of the former technique,
perceptual quality ratings are often used. The artefacts due to the under-removal of the noise signal
and the over-removal of the speech signal largely affect listener’s preferences. In contrast, listeners’
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word recognition performance for modified speech in noise is measured as intelligibility to reflect the
effectiveness of speech modification algorithm. Although many studies pay great attention to the
extent to which modifications can improve speech intelligibility in noise, how the perceptual quality of
speech or listener preference to modified speech is affected by modifications is much less researched.

Twenty-six speech modification algorithms were evaluated in the Hurricane Challenges [17,18].
The results suggested that the most efficient modification algorithm can boost intelligibility in noise
to the equivalent of increasing the intensity of unmodified speech by 5 dB. However, the perceptual
quality of the modified speech was not assessed. In [10,19], the intelligibility of speech modified by the
proposed algorithms in noise were evaluated both objectively and subjectively, but the quality of the
modified speech in quiet (i.e., SNR = +∞) was only inspected using an objective quality measure—the
perceptual evaluation of speech quality (PESQ, [20]). Comparing the intelligibility performance of four
algorithms, Taal et al. observed the objective quality of the modified speech in noise using PESQ [12].
They also conducted a listening test to study listeners’ preference for different types of modified speech
with respect to quality at a SNR level which led to maximal intelligibility, but the perceptual quality
in quiet was not reported. Thus, it is worth asking whether listeners have the same preference when
listening to modified speech in both noise and quiet.

In this study, the relationship between the intelligibility and quality of speech modified by a range
of modification algorithms that boost speech intelligibility is investigated. Two listening experiments
were conducted to measure listener’s word recognition performance as the perceptual intelligibility
and the mean opinion score (MOS) as the quality in both stationary and fluctuating noise maskers,
and its MOS in quiet. The results and further implications to the design of modification algorithms in
practice are further discussed.

2. Speech Modification Algorithms

Two speech modification algorithms, SpecShaping+DRC and SelBoost, which best improved
intelligibility in noise in the Hurricane Challenge I [17] were chosen. The third modification,
ConstBoost was drawn from [21].

• SpecShaping+DRC consists of two separate stages: spectral shaping in the frequency domain
followed by dynamic range compression (DRC) in the time domain [14]. Spectral shaping
adaptively enhances the formant information and applies a pre-emphasis filter to the voicing
segments. A non-adaptive process is then implemented to avoid loss of high frequency
components of the speech signal due to low-pass operations at the stage of signal reconstruction.
The DRC stage subsequently applies a time-varying gain to the output of the spectral shaper,
in order to increase the perceptual loudness of the output signal (e.g., [22,23]). The DRC used
in [14] looks up the gain for each temporal window of 6.7 ms from an input/output envelope
characteristic curve. The DRC has a release time of 2 ms and an almost instantaneous attack
time for an initial dynamic stage. Its peak threshold is then set to be 30% of the max input
speech envelope during the further static stage. Finally, the intensity of the output from the
compressor is re-adjusted to that of the original unmodified speech signal. The combination of the
two components led to a remarkable performance—SpecShaping+DRC outperformed the other
modifications in most of the conditions in the Hurricane Challenge I [17]. Online, modification of
this system requires no noise information.

In this study, this modification is treated as two separate systems: SpecShaping only and the
original SpecShaping+DRC. The aim is to examine the impact of DRC, as a temporal modification,
to speech intelligibility and quality, as well as the combination effect with spectral modifications.
Previous objective evaluation using PESQ suggested that temporal modifications appear to
negatively affect quality more than spectral modifications [10]. Consequently, the DRC will be
imposed on the following two modifications to further form another two modifications.
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• SelBoost modifies the speech signal by injecting energy to some time-frequency (T-F) regions
between the frequency bands 1800 and 7500 Hz, parts of which are known to be important to
speech intelligibility in noise. The spare energy may come from places where the local SNR is
sufficiently high or is less important to speech intelligibility. Two separate optimisation processes
were performed in [10], in order to select the T-F regions which are to be boosted. The results
of the first optimisation decides the frequency range (1800–7500 Hz) and the boosting amount
of 20 dB. The second optimisation, jointly maximising both objective intelligibility and quality,
determines the T-F regions within which the local SNR range should be allocated extra energy.
It suggests that boosting those regions where local SNR is under or barely above the threshold of
audibility (i.e., less than 5 dB) is the effective strategy. As the local SNR of T-F regions needs to
be computed as the criterion for boosting, SelBoost requires access to the noise power spectral
density. Along with SpecShaping+DRC, SelBoost also demonstrated above-average performance
in the stationary masker in the Hurricane Challenge [17].

• ConstBoost is inspired by the optimal spectral weightings found by maximising objective
intelligibility metrics [11,21]. In [11], the spectral weightings were derived using a genetic
algorithm with the glimpse proportion [24] as the objective function for a range of noise
maskers/SNR conditions. It was found that, regardless of the masker type, the suggested
weightings always tend to sparsely boost some of the frequencies above 1000 Hz by approximately
10 dB, although the patterns vary in details across maskers. Another attempt was made using
a different optimisation algorithm and objective metric in [21]. A similar boosting pattern
was observed, but with a boosting amount of 30 dB. Based on these findings, ConstBoost
independently imposes a 30 dB gain to all frequency bands above 1000 Hz on the speech, as if
applying a high-pass filter to the speech signal. In this way, ConstBoost no longer requires
any noise information to operate. After energy renormalisation, the speech energy is effectively
transferred to the boosted regions from elsewhere. Further evaluation confirmed that ConstBoost
can be as or almost as effective as the noise- and level-dependent spectral weighting in the tested
conditions [21].

Figure 1 shows examples of long term average spectra of speech uttered by a male talker,
unmodified and spectrally-modified (no DRC applied) by the algorithms introduced above. Figure 2
further illustrates the impact of the modifications to the speech signal in the time domain. Therefore,
together with unmodified speech plain as the baseline as well as plain+DRC, the subjective
intelligibility and quality of eight types of speech were examined.
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Figure 1. Long term average spectrum of unmodified and modified speech of a male talker.
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plain DRC

SpecShaping SelBoost ConstBoost

Figure 2. Waveforms of unmodified and modified utterance of ‘The overweight charmer could slip poison
into anyone’s tea’.

3. Speech Intelligibility and Quality in Noise

3.1. Experiment Design and Procedure

Subjective intelligibility was measured as the word recognition rate in noise. Ten native British
English speakers with normal hearing identified keywords from the Harvard sentences [25], which were
uttered by a British male talker. Speech-shaped noise (SSN), babble noise recorded at a cafeteria (BAB)
and competing speech (CS) of a female talker were used as the noise maskers. Speech was mixed with
each type of noise at two SNR levels (SSN: −9 and −3 dB, BAB: −7 and −1 dB, CS: −18 and −12 dB),
forming a low and a high intelligibility condition. The chosen low and high SNR led to subjective
recognition rates of approximately 25% and 50% respectively for each noise masker in a pilot test.
This setting led to 48 conditions (8 modification × 3 maskers × 2 SNRs). Each condition was presented
four times, resulting in 192 different sentences being heard by each listener in total. Sentences were
divided into six masker/SNR blocks. The presentation order of blocks, and the sentences in each block,
were randomised for all listeners.

The playback of the stimuli was controlled by a MATLAB graphic programme. Stimuli were
presented to listeners monaurally over a pair of Sennheiser (Wedemark, Germany) HD650 headphones
after being pre-amplified by a Focusrite (High Wycombe, UK) Scarlett 2i4 USB audio interface. Listeners
were allowed to listen to each sentence only once. The experiment took place in a semi-anechoic room
with a background noise level lower than 15 dBA. The presentation level of speech was calibrated and
fixed to 72 dBA; the noise level was then adjusted to the required SNRs.

After responding to each stimulus by typing what they heard using a physical keyboard, listeners
also rated the quality of the sentence. Listeners were only told to give their ‘total impression’ of the
speech they heard without being provided with any specific definition of quality, nor any examples
of ‘good or bad quality’ as a reference. Because speech quality involves aspects such as intelligibility,
pleasantness or naturalness [26], loudness and even listening effort [27], quality rating is rather
subjective and very much up to the individual’s judgment. Therefore, we decided to let listeners
make a free judgement on how the signal sounded to them according to their listening experience,
rather than to guide them to listen for specific aspects of speech quality. The quality rating was
performed on the scale of MOS, which falls into the range from 1 to 5. Listeners could choose any
number between 1 and 5 using a continuous slider.

3.2. Results

The mean subjective intelligibility score across listeners is presented in the upper row of Figure 3.
All the three modifications alone (without DRC) improved intelligibility over the unmodified speech
plain between 6.6 and 22.6 percentage points in SSN, and between 6.9 and 33.0 percentage points
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in BAB across SNR levels. SelBoost and ConstBoost appeared less beneficial in CS than in the other
two maskers. Nevertheless, an improvement of between 2.7 and 15.5 percentage points was received
across all modifications and SNR levels. Except in the low SNR condition of SSN, DRC alone was more
beneficial than harmful to plain. Furthermore, DRC seemed to always yield extra gain in addition
to SpecShaping and ConstBoost, especially in SSN and BAB. It boosted the two noise-independent
modifications up to 2.9 to 25.7 percentage points over that achieved on their own. SelBoost did not
benefit from DRC in BAB and the high SNR condition of SSN. Inclusion of DRC however did not
largely compromise the performance of SelBoost in these cases.
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Figure 3. Subjective speech intelligibility (upper row) and quality (lower row) in noise. Scores are
grouped by SNR level. Error bars indicate ±1 standard error. SS, SB and CB denote SpecShaping,
SelBoost and ConstBoost, respectively.

A three-way repeated measures ANOVA with within-subjects factors of masker type, SNR
level and modification on rationalised arcsine units [28] converted from the keyword scores
supported visual impressions: modifications significantly altered the intelligibility of modified speech
[F(7, 63)=27.58, p < 0.001, η2 = 0.33]. As one of the dominant factors for speech intelligibility in noise,
the SNR effect is also significant [F(1, 9) = 272.42, p < 0.001, η2 = 0.55]. All significant bi-factor and
three-way interactions suggested that the performance of the modifications varies with masker type
and SNR level [all p < 0.001].

The mean subjective quality in noise across listeners is shown in the lower row of Figure 3. Despite
large variation in intelligibility among speech modified by different algorithms, listeners seemed to
perceive the quality very similarly at the same SNR condition (low or high) across maskers. The mean
quality ratings across modifications for each masker/SNR combination are listed in Table 1.

Table 1. Mean mean opinion score (MOS) across modifications at each signal-to-noise ratio (SNR) level,
witch 95% confidence interval in the parentheses.

SSN BAB CS

SNR: high 3.0 (±0.13) 2.9 (±0.14) 2.7 (±0.11)
SNR: low 2.3 (±0.08) 2.3 (±0.11) 2.4 (±0.09)

A separate ANOVA with the same three main factors was performed on the MOS. The results
confirmed that there was no significant main effect of modification type nor noise type, except that
of SNR level [F(1, 9) = 17.19, p < 0.01, η2 = 0.23]. The bi-factor interactions between masker type
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and SNR level [F(2, 18) = 4.14, p < 0.05, η2 = 0.02], and between masker type and modification
[F(14, 126) = 2.23, p < 0.05, η2 = 0.03] were significant, but that between SNR level and modification
was not. There was no three-way interaction either.

Post-hoc analyses using Fisher’s least significant difference (FLSD) were further conducted on
the quality ratings separately for masker/SNR combination with the single factor of modification.
The results in Table 2 confirmed that listeners provided similar quality ratings to all speech types at
the low SNR level in SSN and CS. Speech modified by ConstBoost with or without DRC was rated as
being lower quality than some of the others in the remaining conditions, except at the low SNR level
in BAB, in which both ConstBoost with and without DRC led to better quality than plain with and
without DRC.

Table 2. Fisher’s least significant difference (FLSD) on MOS in each masker/SNR condition.

SSN BAB CS

SNR: high 0.42 0.46 0.40
SNR: low 0.41 0.39 0.40

4. Speech Quality in Quiet

4.1. Experiment Design and Procedure

The same 10 participants from the first experiment also rated the speech quality in quiet.
As SelBoost is noise-dependent, when noise masker varies the algorithm may affect the speech
quality differently according to the objective evaluations using PESQ [10]. Therefore, the quality
of speech modified by SelBoost in the three maskers were evaluated separately. In each masker,
the modification was performed at ‘high’ SNR only, in which case the objective quality appears to be
somewhat lower than when SNR is low [10]. With plain, SpecShaping and ConstBoost, 12 types of
speech were evaluated including the 6 DRC-compressed versions.

The 12 conditions formed 6 groups, each of which consisted of an unmodified sentence and
two modified sentences by the same modification with and without DRC. An identical utterance was
used within a group so that the listeners would be able make a relatively fair judgement on the three
conditions. Within a group, the participant could choose in which order to play the recordings and
repeat them if necessary. Listeners listened to each group three times with different sentences each
time (i.e., 18 groups); All the groups were presented to listeners in a random manner.

4.2. Results

Figure 4 displays the MOS scores of each modified speech rated by listeners in quiet. Unlike in
noise, listeners tended to rate the quality of the modified speech rather differently across modifications,
and across the noise maskers in the presence of which the modification was performed for Selboost.
Overall, listeners rated plain speech with the highest scores in conditions both with (MOS = 3.9)
and without (MOS = 3.5) DRC, followed by SpecShaping and SelBoost. For SelBoost, the quality
was expected to decrease from stationary (SSN) to fluctuating (CS) masker, according to the PESQ
predictions in [10]. However, listeners rated the quality without DRC in CS (MOS = 3.8) almost as high
as the original unmodified speech.

A one-way ANOVA analysis revealed a strong effect of modification type [F(11, 99) = 10.82,
p < 0.001, η2 = 0.38]. Further FLSD [FLSD = 0.4] analysis confirmed that the quality of unmodified
speech and speech modified by Selboost in CS is significantly better than that of others. While
SpecShaping and SelBoost in SSN and BAB resulted in similar speech quality, ConstBoost led to
the poorest speech quality according to listeners’ preference. Except for SelBoost in CS, where DRC
drastically deteriorated the quality, DRC did not further decrease quality over the modifications.
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Figure 4. Subjective speech quality rating in quiet. Error bars indicate ±1 standard error.

5. Discussion

This study sought to explore the relationship between the intelligibility and quality of speech
processed by intelligibility-boosting modification algorithms. In noise, the chosen modifications led to
different level of intelligibility. The perceptual quality, however, varied little across most modifications
at the same SNR, but did vary significantly when the SNR changed. The results therefore suggest that
the noise effect determines speech quality more than do other factors. Another possibility could be
that at certain SNR, listeners may not perceive the changes to the speech signal that would lead to
a degradation in speech quality. This is likely because when the noise masker masks the audibility
of speech, it could simultaneously disguise the artefacts or distortions on the speech due to the
modifications, as argued in [12].

Figure 5 further plots the intelligibility scores against the quality rating. It demonstrates a strong
positive linear relationship [R2 = 0.75, p < 0.001] between speech intelligibility and quality in noise.
We interpret this relationship as suggesting that despite the similar quality of the modified speech in
noise, speech signals with better intelligibility tend to be rated as higher in speech quality by listeners
compared to signals with poorer intelligibility. This may further imply that intelligibility is one of the
important factors that listeners use to make a judgement on speech quality in noise. This is consistent
with findings in [29] for hearing listeners with normal speech: when intelligibility varies greatly,
the quality rating as the total impression of loudness and listening effort can be reflected in listeners’
intelligibility performance.
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represent low and high SNR, respectively. The overall R2 and p value are provided.
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When rating speech quality in quiet, where intelligibility is the greatest it can be, listeners mostly
preferred plain over modified speech, implying that modifications indeed harm perceptual quality
to different degrees. Interestingly, the listeners rated unmodified speech the best in terms of quality
even though they were not given any direct reference for quality rating in this study. They seem to
have learned from their experiences and have formed a consistent ‘standard’ of quality. However, it is
surprising to see that speech processed by SelBoost only in CS (SB: CS) was rated as being as high
quality as plain. As the modification needs to adapt to the large fluctuation of CS, a poorer quality
would be expected compared to that of SSN and BAB. Thus, the reason behind the listener’s rating
in this conditions is unclear here and needs further investigation. Compared to the other conditions,
the larger error bar in Figure 4 indicates a larger variation in listeners’ opinions in this condition.

In [12] the quality of the unmodified speech and the speech modified by two independent
algorithms was compared, when intelligibility converged in a noisy condition (SSN, 5 dB SNR). It was
found that listeners mostly preferred one of the modified speech signals to the unmodified speech
signals, which was rated better than the other modified signals. In this case, listeners’ judgement was
probably still affected by the noise although intelligibility was no longer an issue at the chosen SNR.
In addition, some modifications may introduce greater artefacts or distortions to the speech signal
than others. When the SNR is high, the traces left by the modification start to stand out, resulting in
low perceived quality—the same may apply to ConstBoost here—despite its significant intelligibility
gain in noise. As shown in Figure 1, ConstBoost boosts the mid-high frequencies by sacrificing energy
from 1000 Hz below where the pitch and harmonic information exists. Speech signals in which this
frequency range is largely attenuated tend to have poor perceptual quality [26].

6. Conclusions

By comparing the impact of the speech modifications to speech quality in quiet and intelligibility
performance in noise, we revealed that speech with good quality (e.g., plain) in quiet does not
necessarily ensure high intelligibility in noise, and vice versa (e.g., ConstBoost). When the SNR is low,
speech intelligibility appears to be the dominant factor to the overall perceptual quality, suggesting
that speech modification algorithms should be primarily designed for achieving large intelligibility
gain in this case. However, when the SNR is high or speech is presented in quiet, there is a tradeoff
to make between the intelligibility and quality of the modified speech. This further implies that for
the deployment of speech modification techniques in practice, it may be essential to perform instant
SNR estimation online, in order to determine the threshold for modification (de)activation in respect
to speech quality.
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