
Citation: Aneesh, T.; Mohanty, C.P.;

Tripathy, A.K.; Chauhan, A.S.; Gupta,

M.; Annamalai, A.R. A Thermo-

Structural Analysis of Die-Sinking

Electrical Discharge Machining

(EDM) of a Haynes-25 Super Alloy

Using Deep-Learning-Based

Methodologies. J. Manuf. Mater.

Process. 2023, 7, 225. https://

doi.org/10.3390/jmmp7060225

Academic Editors: Cristina

M. Fernandes, Georgina Miranda

and Joao Paulo Davim

Received: 16 October 2023

Revised: 4 December 2023

Accepted: 6 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Manufacturing and
Materials Processing

Journal of

Article

A Thermo-Structural Analysis of Die-Sinking Electrical
Discharge Machining (EDM) of a Haynes-25 Super Alloy Using
Deep-Learning-Based Methodologies
T. Aneesh 1,† , Chinmaya Prasad Mohanty 1,†, Asis Kumar Tripathy 2, Alok Singh Chauhan 3 , Manoj Gupta 4

and A. Raja Annamalai 5,*

1 School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
taryan.saianeesh2018@vitalum.ac.in (T.A.); cprasad.mohanty@vit.ac.in (C.P.M.)

2 School of Computer Science Engineering and Information System, Vellore Institute of Technology,
Vellore 632014, India

3 Defence Metallurgical Research Laboratory, Defence Research and Development Organisation,
Hyderabad 500058, India; aloksinghchauhan@gmail.com

4 Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore;
mpegm@nus.edu.sg

5 Centre for Innovative Manufacturing Research, Vellore Institute of Technology, Vellore 632014, India
* Correspondence: raja.annamalai@vit.ac.in
† These authors contributed equally to this work.

Abstract: The most effective and cutting-edge method for achieving a 0.004 mm precision on a typical
material is to employ die-sinking electrical discharge machining (EDM). The material removal rate
(MRR), tool wear rate (TWR), residual stresses, and crater depth were analyzed in the current study
in an effort to increase the productivity and comprehension of the die-sinking EDM process. A
parametric design was employed to construct a two-dimensional model, and the accuracy of the
findings was verified by comparing them to prior research. Experiments were conducted utilizing
the EDM machine, and the outcomes were assessed in relation to numerical simulations of the MRR
and TWR. A significant temperature disparity that arises among different sections of the workpiece
may result in the formation of residual strains throughout. As a consequence, a structural model was
developed in order to examine the impacts of various stress responses. The primary innovations of
this paper are its parametric investigation of residual stresses and its use of Haynes 25, a workpiece
material that has received limited attention despite its numerous benefits and variety of applications.
In order to accurately forecast the output parameters, a deep neural network model, more precisely,
a multilayer perceptron (MLP) regressor, was utilized. In order to improve the precision of the
outcomes and guarantee stability during convergence, the L-BFGS solver, an adaptive learning rate,
and the Rectified Linear Unit (ReLU) activation function were integrated. Extensive parametric
studies allowed us to determine the connection between key inputs, including the discharge current,
voltage, and spark-on time, and the output parameters, namely, the MRR, TWR, and crater depth.

Keywords: crater depth; electrical discharge machining; Haynes 25; material removal rate; tool wear
rate; finite element method

1. Introduction

Potential drop spark machining has emerged as a highly advanced and effective al-
ternative technique for the removal of materials. The principal application of electrical
discharge machining in the automotive, aerospace, and medical sectors [1–3] is the pro-
duction of intricate dies, molds, and other sensitive and exacting components. Regardless
of the hardness of the material or workpiece, it can be machined using this technique by
utilizing thermal energy generated by an electrical discharge. In relation to the chemical
underpinnings of the operational procedure, the instrument and the workpiece function as
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the terminal anode and cathode, respectively. Material degradation occurs more rapidly
at the anode compared to the cathode; therefore, the anode suffers the consequences. By
means of this program, it is possible to optimize the MRR while minimizing the TWR.
Consequently, the overall productivity of the process might experience an upward trend.
Furthermore, a continuous-flowing dielectric medium is employed to enhance the efficacy
of the charge transfer. Machining a rigid material to near-perfect tolerance levels using
conventional machining processes is exceedingly difficult; therefore, this stands as the
principal advantage of the EDM process.

However, the EDM method is associated with drawbacks such as poor material evacu-
ation and greater erosion of the electrodes. In some cases, the surface integrity and residual
stress developed on the machined surface are big concerns for tool engineers [1,3–5]. A
multitude of inquiries conducted in previous studies have endeavored to identify solutions
to these challenges. However, when involving the behavior of spark discharges, it is really
difficult to observe the process experimentally and quantify the responses. Therefore, it is
vital to predict the responses numerically by using a simulation approach for the proper
identification of EDM responses and the minimization of non-beneficial parameters, such
as the greater erosion of tools and higher residual stresses.

2. Literature Review

The process of electrical discharge machining has been studied meticulously since the
early 1970s. By comparing a simulator and experimental data obtained with a variety of
instruments, the optimal combination of parameters for cutting was ascertained. A thermal
model devised by Tiwari et al. [6] utilized M2 tool steel for the workpiece in order to was
to examine the impact of the discharge current, duty factor, and discharge duration on
the MRR. In their study, Patel and Powar [7] conducted a numerical comparison between
the crater volume simulated by EDM on AISI 1040 steel and measurements obtained from
actual EDM operations. An investigation was conducted by Kumar et al. [8] into the
reliability of the spark radius in relation to the discharge current and duty cycle. In addition
to conducting a finite element analysis of the powder mixed EDM process (PMEDM),
Desai and Kavade [9] investigated several critical factors, including heat distribution and
material ejection efficacy. In order to examine the influence of input variables, such as the
discharge current and discharge voltage, on crucial output process parameters, including
the tool attrition rate and material removal rate, CP Mohanty et al. [10] constructed a
2D axisymmetric model. In order to predict the dimensions of craters, an experimental
investigation was conducted by Jilani ST and PC Pandey [11] regarding the depth-to-
diameter ratio of craters generated via EDM, and the results revealed that the material
removal process was not substantially impacted by the pulse form. Experimental research
was conducted by Halkaci HS and Arden A [12] to determine the sources of surface
roughness and the effect of all process parameters on the same.

The effectiveness of the EDM process in performing secondary finishing operations has
also been investigated by previous researchers. The feasibility of using EDM for roughening
and finishing operations was investigated by Amorim et al. [13] using AISI P20 steel and a
copper electrode. In their EDM investigation of Inconel 825, A. Mohanty et al. [14] examined
the surface finish and the rate of material elimination in relation to the peak current and
pulse duration. In an effort to increase process efficiency, Joshi S. et al. [15] investigated
the application of a pulsating magnetic field as a component of a hybrid optimization
strategy. In order to investigate the effects of the discharge voltage and pulse duration on
the crater depth, radius, and MRR, Dastagiri M. and Kumar AH. [16] developed a thermal
simulation model. Oßwald, K. et al. [17] investigated the energy distribution in EDM
experiments by utilizing the measured temperature curves. Akshay Dwivedi et al. [18]
optimized the process parameters and examined the effects of the pulse current, gap control
setting, and flushing pressure on the Al 6063 metal matrix composite using Taguchi’s
method. An experimental study conducted by Prasad AR et al. [19] examined the material
removal rate and surface roughness during the wire EDM procedure. Additionally, the
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analysis of variance method was utilized to optimize the process configuration. To examine
the effects of various process variables on aluminum matrix composites, D. Palanisamy
et al. [20] conducted an investigation. Ramakrishnan and R. Karunamoorthy [21] used
DOE for multi objective optimization of EDM.A numerical investigation was conducted
by Somashekar KP et al. [22] using a two-dimensional heat equation. They concluded
that correlations between temperature, surface convection, and spark ratio timings in the
context of multispark discharges can be calculated using the finite volume method.

From analyzing studies dealing with the application of deep-learning methods to
general research studies, Yann LeCun et al. [23] reached the conclusion that research, object
identification, and genomics have been significantly enhanced via deep-learning computa-
tions and models. In their work, Du-Ming Tsai and Yi-Hsiang Chou [24] introduced a deep
neural network regression model that aims to enhance the precision and efficiency of image
alignment. Ikai T and Hashigushi K [25] developed heat flux equations and studied the
process of crater formation in detail. Wuyi Ming et al. [26] utilized optimization methods,
including the adaptive-network-based fuzzy interference system (ANFIS), to achieve opti-
mal exhaust emission characteristics and efficiency per volume. The desirability function
was employed by Rafał R, wiercz et al. [27] to optimize surface irregularity, white layer thick-
ness, and MRR. Kuwar Mausam et al. [28] improved the MRR and TWR by optimizing the
peak current, duty factor, and gap voltage using gray relational analysis (GRA). Therefore,
it is indisputable that the methods of deep learning have been extraordinarily beneficial
and efficient in attaining a more comprehensive and precise understanding of the subject
under investigation. C.P Mohanty et al. [29] optimized the machining process of EDM
using a particle swarm approach.

Regarding the implementation of EDM in machining unconventional materials,
Jain A et al. [30] reviewed the feasibility of using several machining processes in the
secondary activities of fiber refinement polymer composites (FRPCs) and concluded that un-
conventional methods are both convenient and well established. R. Kirubagharan et al. [31]
studied the effect of electrode sizes on parameters such as the MRR and surface roughness
of Inconel X750, along with the implementation of a Taguchi design for experimental work.
W. Ming et al. [32] reviewed the advantages of EDM in machining advanced ceramics
when compared to traditional machining methods, along with using workpiece electrical
conductivity and surface topography to increase the process efficiency. S. Boopathi [33]
conducted a review on the near-dry EDM process, which is an upcoming technique in
which the liquid dielectric fluid is replaced with a gas or gas mist in order to make the
overall process more ecofriendly. Grigoriev S.N. et al. [34] conducted an extensive study
on the process of EDM of a ceramic nanocomposite using water as well as mineral oil
with discharge factors, wire tool behavior, tool material evaluation, and medium influ-
ence. Papazoglou EL et al. [35] conducted an experimental study on the machining of
titanium grade 2 with EDM using the MRR, TWR, and average white layer thickness as
performance indexes. V. Prakash et al. [36] studied the usability of EDM and micro-EDM
on unconventional hard-to-machine materials, such as nickel alloys, titanium alloys, stain-
less steel, and advanced ceramics. Abu Qudeiri J.E. et al. [37] reviewed the capability of
EDM in machining different grades of stainless steel along with various attempts made at
process improvement by optimizing the MRR and surface quality. R. Chaudhari et al. [38]
investigated the effectiveness of wire EDM in preserving the surface integrity during the
machining of nitinol shape memory alloy (SMA) through various microscopy imaging
techniques. R. Singh et al. [39] conducted an extensive literature study and reported that the
proper selection of the process variables, tool electrode, and dielectric can play an important
role in improving EDM process efficiency. Bui V.D et al. [40] studied the feasibility of EDM
in manufacturing medical grade equipment. Pramanik. A et al. [41] optimized the aspect
of dimensional accuracy in wire EDM.
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Identified Research Gaps

From the exhaustive literature study, it is evident that a substantial amount of effort
has been devoted to the study and investigation of this subject. However, it is also evident
that the majority of previous research has been conducted on workpieces made of common
materials such as steel alloys and aluminum [1–4,7,13,14,37]. Aeronautical materials, which
are among the most critical applications of the EDM process, have received almost no re-
search attention. Based on the literature review presented above, it is apparent that there is a
scarcity of research examining the residual stresses that develop in the workpiece through-
out the machining process, as well as the various parameters that may influence their
extent [3,8,10]. Furthermore, it is worth noting that the implementation of deep-learning
methods, such as neural networks and other novel multi-response optimization techniques,
to predict response parameters with greater accuracy, efficiency, and computation speed is
limited to a small number of papers [21,23,26].

An inherent benefit of the EDM process is its capability to machine difficult materials
that cannot be machined with other methods currently in use. Consequently, an important
contribution of this study is its examination of the feasibility and efficacy of die-sinking
EDM in the machining of Haynes 25, an unconventionally tough material. Relatively few
researchers have conducted parametric studies [2,3,10], wherein the influence of each input
process parameter is meticulously monitored. This type of research is essential because it
provides a comprehensive understanding of the effects of a single input parameter. The
majority of research has been carried out in overly idealized conditions, including a constant
heat flux and a fixed flame radius [25]. Any reliance on this premise could potentially
compromise the accuracy of the simulation outcomes. In determining the practical heat
capacitance of the tool specimens and the workpiece, the latent heat of melting was not
introduced. The majority of the material was eliminated during the machining process via
a phase transition from solid to liquid, as opposed to from solid to gas. While it is possible
for multiple discharges to transpire during the machining process, the majority of them
transpire in close proximity to one another, with minimal distance between electrodes.
Consequently, it is possible to consider them all as a singular spark. The present research
study was conducted to simulate a single spark; the findings derived from this study were
subsequently extrapolated to multispark operations. Comparable findings have also been
reported by prior scholars [1,4].

Drawing from the aforementioned observations, it is apparent that experimental in-
vestigations utilizing sophisticated deep-learning regression methods to assess the EDM
process parameters for an unprecedented Haynes-25 superalloy have been scarce. Regres-
sion models are highly advantageous when it comes to forecasting multiple outputs from a
variety of inputs. Utilizing a deep-learning model, this research endeavored to create an
intelligent system capable of forecasting output parameters, thus substantially augmenting
the efficiency of machining operations. In this study, critical parameters such as the material
removal rate (MRR), tool wear rate (TWR), and crater depth were analyzed in relation to
process variables, including the discharge current, voltage, and spark-on time. To achieve
this, an advanced deep-learning approach was utilized, specifically a deep neural network,
namely, the MLP regressor. In addition, kernel density estimates (KDEs) were produced
in order to graphically depict the density of data points across a range of values, with a
specific focus on the MRR, TWR, and crater depth.

3. Methodology and Technical Specifications
3.1. Procedure Overview

First, a 2D axisymmetric model was developed, and then the workpiece material’s
temperature-dependent properties were included in it. After that, the requisite values
were computed and incorporated into the model, in conjunction with the initial condi-
tions, boundary conditions, and varying heat flux values. Following that, a temperature
distribution contour that was deemed valid was acquired through the implementation of
all requisite solution and analysis controls in the simulation segment. Subsequently, the
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node numbers of the elements whose temperature readings were significantly greater than
the Haynes 25 melting point temperature were determined. Subsequently, the material
removal rate (MRR) was computed by employing the EKILL function of Ansys APDL to
eliminate elements whose temperature readings exceeded the melting point of Haynes
25 material. The measured dimensions of the formed crater were incorporated into the
MRR calculations accordingly. The method outlined earlier was replicated in order to
compute the tool wear rate (TWR), albeit with distinct boundary conditions and copper
material properties. Following the determination of the MRR and TWR, a structural model
incorporating diverse element types was constructed to compute the residual stresses
that may arise in the workpiece. This was accomplished by implementing appropriate
displacement constraints and utilizing the temperature distribution acquired from prior
thermal simulations. Following the conclusion of all simulations, experiments were car-
ried out utilizing a Haynes 25 workpiece and copper electrode to compute the MRR and
TWR through the implementation of the weight reduction experimental technique. Subse-
quently, the established simulation model was verified through a comparison between the
numerical outcomes and the experimental data. In order to determine the impact of the
input variables, including the discharge current, voltage, and spark discharge duration, on
output process parameters, including the MRR, TWR, residual stresses, and crater depth, a
comprehensive parametric study was conducted.

3.2. Experimental Methodology

The investigations were conducted using the EDM machine model PSR 35 C425,
which is accessible from the Vellore Institute of Technology (VIT), Vellore. The discharge
current was adjusted within the range of 10 A to 20 A, whereas the spark-on and spark-off
times were varied between 100 and 300 µs and 28 and 48 µs, respectively. In addition, the
discharge voltage was varied between 30 V and 50 V across all experimental combinations.
A comprehensive analysis was conducted on every conceivable combination resulting from
these variations. The resulting data were then extensively examined in order to ascertain
the impact that each input parameter had on the final response parameters. As a dielectric,
a particular hydrocarbon oil was utilized in the experimental procedure.

3.3. Workpiece Material Properties

The Haynes 25 alloy is an unorthodox material composed primarily of cobalt and a
number of additional alloying elements. Strong resistance to corrosion caused by both hot
and chemical oxidations, high-temperature properties, and excellent formability are among
its most notable attributes. Owing to these characteristics, it finds predominant application
in the fabrication of high-temperature furnaces, turbine rings, combustion chambers, and
afterburner components. Tables 1 and 2 detail the physical and temperature-dependent
characteristics of the Haynes 25 alloy.

Table 1. Haynes 25 physical properties [42].

Properties Values

Composition 58% Co, 14% W, 9% Ni, 19% Cr
Density 9070 kg/m3

Melting point temperature 1603 K (Solidus), 1683 K (Liquidus)
Modulus of elasticity 225 GPa
Modulus of plasticity 140 GPa

Poisson’s ratio 0.148
Thermal expansion coefficient 1.92 × 10−5 K−1

Latent heat of fusion 266.67 J/Kg
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Table 2. Temperature-dependent properties of Haynes 25 alloy [42].

Temperature (◦C) Thermal Conductivity (W/m◦C) Specific Heat (J/kg◦C)

25 10.5 403
100 12 424
200 14 445
300 15.9 455
400 17.7 462
500 19.5 495
600 21.2 508
700 22.9 582
800 24.5 592
900 26 596
1000 27.5 598

3.4. Tool Material Properties

Copper (Cu) is a highly ductile, flexible, and malleable substance with tremendous
thermal and electrical conductivity [5]. Copper is utilized in a multitude of electrical
and structural applications, including the fabrication of electrodes, electric motors, wires,
cables, and more; in situations where a high surface finish is required, the EDM process
is enhanced by employing copper electrodes. Using a copper electrode as the instrument
has one disadvantage, which is the increased complexity and simplicity of detail. The
properties of the copper instrument are detailed in Table 3.

Table 3. Copper tool material properties [5].

Properties Values

Density 8960 kg/m3

Melting point 1380 K
Thermal conductivity 401 W/(m K)

Specific heat 389 J/Kg K

3.5. Governing Equations

In order to simulate the EDM process, the Fourier heat conduction equation is utilized,
as illustrated in Equation (1). In this equation, the following variables are considered: the
temperature (T), specific heat capacity (Cp), density (ρ), and thermal conductivity (Kt) of
the workpiece material. Analogous analyses have been documented in prior scientific
investigations [2,3].

1
r

∂

∂r

(
Ktr

∂T
∂r

)
+

∂

∂z

(
Kt

∂T
∂z

)
= ρCp

∂T
∂t

(1)

Regarding the boundary conditions, it is initially postulated that a uniform temper-
ature of 300 K exists throughout the elements of the workpiece while it is submerged in
the dielectric. A portion of the workpiece surface (Rpc) that is approximately one-tenth of
the model dimensions is subjected to a varying equational heat flux [3]. In contrast, the
remaining boundaries are governed by a conventional boundary condition, as illustrated
in Figure 1. All remaining surfaces of the workpiece are insulated, and corresponding
boundary conditions are established for these surfaces as well.

The heat input plays a critical role in determining the material removal rate and cavity
dimensions during the machining process. Nevertheless, numerous prior investigations
have been conducted with the supposition of a uniform heat flux. The derived simulation
results are compromised in terms of accuracy and precision due to the oversimplification of
these assumptions. Diverse methodologies have been employed by numerous researchers
in the development of spark radius equations. Ikai and Hashiguchi [25] have formulated
a semi-empirical equation for the spark radius that is well regarded by numerous prior
researchers [1–3,6,10] on account of its high degree of predictive accuracy among the
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existing literature. Therefore, as stated in Equation (2), the spark radius at the work surface
(Rpc) is considered to be a function of the discharge current (I) and pulse-on time (Ton) in
this study.

Rpc =
(

2.04× 10−3
)
× I0.43 × T0.44

on (2)
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Equation (3) represents the assumption that the heat emitted by the EDM discharge
into the workpiece follows a Gaussian distribution [1].

qw(r) =
4.45× P×V × I

π × Rpc
2 exp{−4.5

(
r

Rpc

)2
} (3)

Therefore, through additional simplification and the substitution of Equation (2) for
Equation (3), the final heat flux equation (qw(t)) is derived, as specified in Equation (4).
This equation shall be utilized in subsequent analyses for the remainder of the present
manuscript.

qw(t) =
3.4878× 105FcVI0.14

T0.88
on

exp

{
−4.5

(
t

Ton

)0.88
}

(4)

where FC is the fraction of total power going to the cathode, V is the discharge voltage, and
I is the discharge current.

3.6. Design Approach Details

As illustrated in Figure 2, a 2D axisymmetric square model measuring 0.5 × 0.5 mm
was constructed utilizing the ANSYS APDL 2022 R1 software in order to conduct the
FEA simulation. The simulation utilized these specific dimensions due to the requirement
that the model dimensions be ten times the spark radius obtained [3]. A 5 µm lattice
was implemented across the entire workpiece utilizing a mesh tool. By optimizing the
region encompassing the heat flux, we were able to enhance the precision of the acquired
outcomes while minimizing the computational burden. Four thermal solid elements per
node were incorporated into the model’s design (PLANE 55). The foundation of the object
is illustrated in Figure 2.
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3.7. Assumptions in the Proposed Model

The following are the assumptions taken into account in the present study:

• Both the tool and substrate materials demonstrate isotropy and homogeneity in
their microstructures.

• The predominant mode of heat transfer from the plasma to the electrodes during
the EDM process is conduction. Simultaneously, radiation and convection contribute
significantly to the heat transfer from the plasma to the dielectric. In the present
inquiry, it is postulated that conduction serves as the predominant means of heat
transfer from the plasma to the electrodes.

• It is assumed that the radius of the spark produced during EDM is a function of the
spark duration and discharge current.

• A Gaussian distribution is applied to the heat flux, and it is supposed that the area
where the spark is applied possesses axisymmetric properties.

• The workpiece is effectively exposed to only a small portion of the applied spark
energy, with the remainder being lost due to dielectric convection and radiation.

It is presumed that the flushing efficiency of the dielectric is one hundred percent and
that there is no recast deposition on the surface of the workpiece.

4. Results and Discussion
4.1. Simulation Results

The initial development of a two-dimensional continuous figure measuring
0.5 × 0.5 mm was performed utilizing the ANSYS Parametric Design Language. The
necessary boundary conditions and the governing heat flux equation were implemented.
Following the application of the properties that are dependent on temperature, the temper-
ature distribution for a specific set of input parameters was computed. Figure 3 illustrates
a sectional view of the temperature distribution subsequent to the application of a spark
with a heat flux of 100 µs, a current of 10 A, a spark-on time of 100 µs, and a discharge
voltage of 40 V. Following this computation, the APDL-implemented EKILL technique
was utilized to identify and eliminate from the workpiece any nodes with a temperature
reading exceeding its melting point. As a consequence, a bowl-shaped crater developed
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in the vicinity of the discharge source. Figure 4 illustrates the crater composed of input
parameters that are comparable to those described above. The dimensions of the resulting
crater are 40 µm in depth and 56 µm in radius.
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A simulation model resembling the aforementioned model was developed, incorpo-
rating temperature-dependent material properties obtained from reference [5] and the
boundary conditions illustrated in Figure 1. This model was utilized in the FEM analysis to
calculate the tool attrition rate of the copper tool. Figures 5 and 6 depict the temperature
distribution and crater cavity that result from the elimination of elements whose melting
point temperature is greater than that of the tool specimen, respectively. The cavity that
was generated possessed a crater depth of 16 µm and a radius of 25 µm.



J. Manuf. Mater. Process. 2023, 7, 225 10 of 31J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 10 of 31 
 

 

 
Figure 5. Temperature distribution of tool specimen. 

 
Figure 6. Predicted crater cavity on tool specimen using FEM analysis. 

4.2. Residual Stresses Occurring in the Workpiece 
Due to the formation of a significantly elevated temperature gradient within the 

workpiece, stresses will accumulate, potentially leading to surface integrity degradation 
and the prolonged operational lifespan of the machined body. In order to generate resid-
ual stresses via simulation, APDL was utilized to construct a two-dimensional structural 
model, which was subsequently modified with PLANE 182 to facilitate the structural anal-
ysis. Following the application of structural properties such as Poisson’s ratio and the 
modulus of elasticity, the requisite boundary conditions were established by imposing 
displacement constraints. By transferring the temperature distributions from prior ther-
mal simulations to the present structural environment, the residual stresses were subse-
quently estimated. Figure 7 illustrates the resolution of Von Mises stresses that arise in the 
workpiece subsequent to the removal of material. Based on the findings, it can be deduced 
that the machining process will induce a composite of compressive (negative) and tensile 
(positive) stresses in the workpiece, as shown in the figure. The considerable magnitudes 

Figure 5. Temperature distribution of tool specimen.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 10 of 31 
 

 

 
Figure 5. Temperature distribution of tool specimen. 

 
Figure 6. Predicted crater cavity on tool specimen using FEM analysis. 

4.2. Residual Stresses Occurring in the Workpiece 
Due to the formation of a significantly elevated temperature gradient within the 

workpiece, stresses will accumulate, potentially leading to surface integrity degradation 
and the prolonged operational lifespan of the machined body. In order to generate resid-
ual stresses via simulation, APDL was utilized to construct a two-dimensional structural 
model, which was subsequently modified with PLANE 182 to facilitate the structural anal-
ysis. Following the application of structural properties such as Poisson’s ratio and the 
modulus of elasticity, the requisite boundary conditions were established by imposing 
displacement constraints. By transferring the temperature distributions from prior ther-
mal simulations to the present structural environment, the residual stresses were subse-
quently estimated. Figure 7 illustrates the resolution of Von Mises stresses that arise in the 
workpiece subsequent to the removal of material. Based on the findings, it can be deduced 
that the machining process will induce a composite of compressive (negative) and tensile 
(positive) stresses in the workpiece, as shown in the figure. The considerable magnitudes 

Figure 6. Predicted crater cavity on tool specimen using FEM analysis.

4.2. Residual Stresses Occurring in the Workpiece

Due to the formation of a significantly elevated temperature gradient within the
workpiece, stresses will accumulate, potentially leading to surface integrity degradation
and the prolonged operational lifespan of the machined body. In order to generate residual
stresses via simulation, APDL was utilized to construct a two-dimensional structural
model, which was subsequently modified with PLANE 182 to facilitate the structural
analysis. Following the application of structural properties such as Poisson’s ratio and
the modulus of elasticity, the requisite boundary conditions were established by imposing
displacement constraints. By transferring the temperature distributions from prior thermal
simulations to the present structural environment, the residual stresses were subsequently
estimated. Figure 7 illustrates the resolution of Von Mises stresses that arise in the workpiece
subsequent to the removal of material. Based on the findings, it can be deduced that the
machining process will induce a composite of compressive (negative) and tensile (positive)
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stresses in the workpiece, as shown in the figure. The considerable magnitudes of these
stressors have the potential to induce a multitude of structural integrity issues, including
but not limited to diminished fatigue life, dimensional instability, distortion, warping,
stress corrosion cracking, compromised machinability, and machining strength.
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4.3. Experimentation

A total of 29 experimental trials were performed with an average machining time
of 340 s in order to ascertain the impact that different levels of input parameters would
have on the levels of the response parameters. Before initiating the EDM process, thorough
cleansing was conducted for both specimens in order to eliminate any superfluous inclu-
sions. The specimens employed as the materials for the workpiece and tools, respectively,
are copper and Haynes 25. These materials are visually represented in Figure 8. Following
each experiment, a comparison was made between the weights of the two experimental
specimens to ascertain the amount of material that was removed during each phase of the
investigation. After obtaining all the required values, the experimental material removal
rate and tool attrition rate were calculated using Equation (5), in which ρ represents the
density of the workpiece and tm signifies the duration of the machining process.

Material removal rate =
Initial weight− f inal weight

ρ× tm
(5)

4.4. Model Validation with Experimentation

An assumption underlying the simulation model presented in the present study is that
a single discharge occurs. However, in practice, the EDM process is governed by a multitude
of factors that affect its dynamics. These include a minor delay in ignition, flushing
efficiencies below 100%, irregular melting of the electrode and workpiece, impurities in
the dielectric oil, and the randomized motion of machined particles during the machining
procedure. It is nearly impossible to incorporate all of these variables into simulation
process models. Therefore, the simulation was conducted under process conditions where
each spark exhibited exceptional and uniform efficiency. Following the completion of the
experimentation, as described in the preceding sections, simulations were executed utilizing
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input parameters that mirrored the experimental inputs. The subsequent experimental
results as well as the simulation results, illustrate the effects of 5% energy reaching the
workpiece and 6% energy reaching the tool. In order to determine the experimental
residual stresses, the X-ray diffraction technique was implemented (Bruker D8 Advance).
The purpose of precisely homogenizing the material in this XRD method is to ascertain its
bulk composition. By suspending the material in the air and permitting a monochromatic
beam to traverse it, an examination of all possible reflections is conducted. This analysis
provides valuable information regarding the crystalline aberrations that developed as a
consequence of residual stresses and their magnitudes.
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Through a comparison of the experimental and simulation results presented in Table 4,
it is possible to discern that the error percentage falls below the acceptable threshold, and
the two sets of results exhibit a high degree of concordance. After this, another set of
experiments was carried out in similar conditions but with a shorter machining time of
5 s, and the results are shown in Table 5. The aim behind the application of a shorter
machining time was to reduce the number of discharges on the workpiece as much as
possible for better accuracy while comparing the crater dimensions [3]. Table 5 compares
the crater depths obtained during experimental and simulation runs conducted under
identical conditions in an effort to establish a stronger correlation between the two sets of
results. Figure 9 shows the comparison between the predicted crater bowl cavity and the
experimental results of run no. 19 whereas Figure 10 depicts the actual image of a crater
formed during the procedure.

The crater depth and crater radius, shown in Table 5, were measured using a Mitutoyo
TM 500 measuring microscope that has a dimensional accuracy of 0.005 mm and can reach
an effective magnification of 30× using the combination of the eyepiece and objective lens.
Initially, the workpiece was mounted onto the stage glass using a holder with a clamp.
After selecting an appropriate mode of illumination and positioning, the crater diameter
was measured using a micrometer head, through which the radius was further calculated.
In order to measure the crater depth, a combination of a Z-axis micrometer head, height
measurement attachment, and a dial indicator was used. The microscope was initially
calibrated using a standard material with known dimensions, and the measurements were
repeated multiple times to ensure accuracy and account for variations.
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Table 4. Design of experiment for the RSM Box–Behnken design along with comparison between
numerical and experimental results.

Run
No.

Current
(A)

Voltage
(V)

Spark
on Time

(µs)

Duty
Factor

(%)

Numerical
MRR

(mm3/min)

Experimental
MRR

(mm3/min)

Numerical
TWR

(mm3/min)

Experimental
TWR

(mm3/min)

Numerical
Residual
Stresses
(MPa)

Experimental
Residual
Stresses
(MPa)

1 10 30 200 80 65.170 60.646 2.4 0.149 7.54 7.14
2 20 30 200 80 103.833 98.453 0.32 0.109 8.86 7.65
3 10 50 200 80 104.726 102.826 0.648 0.982 8.98 8.15
4 20 50 200 80 150.221 145.824 18.340 15.975 10.69 9.92
5 15 40 100 70 122.760 119.905 13.312 10.149 8.65 7.53
6 15 40 300 70 99.640 94.745 1.235 0.797 9.95 8.77
7 15 40 100 90 122.760 119.904 13.312 11.075 8.65 7.63
8 15 40 300 90 99.640 95.148 1.254 0.031 10.89 9.54
9 10 40 200 70 89.767 85.181 2.324 0.609 8.25 7.76
10 20 40 200 70 130.146 127.232 1.599 0.803 9.79 8.28
11 10 40 200 90 84.531 80.234 1.952 0.325 8.25 7.32
12 20 40 200 90 130.507 123.574 1.599 1.023 9.78 8.45
13 15 30 100 80 104.150 102.24 0.283 0.114 7.92 6.96
14 15 50 100 80 144.021 138.542 44.908 39.512 9.48 8.23
15 15 50 300 80 119.873 114.36 1.259 0.214 10.89 9.58
16 15 50 300 80 119.873 110.54 1.227 0.154 10.89 9.58
17 10 40 100 80 94.897 91.696 1.964 0.478 8.07 7.23
18 20 40 100 80 146.524 142.365 32.204 30.258 9.12 8.21
19 10 40 300 80 79.938 75.357 3.988 0.211 9.16 8.56
20 20 40 300 80 110.980 108.678 0.228 0.136 10.56 9.87
21 15 30 200 70 91.527 86.21 4.311 0.211 8.28 7.23
22 15 50 200 70 132.556 127.53 7.686 5.369 9.96 8.87
23 15 30 200 90 92.058 88.57 2.223 0.114 8.28 7.52
24 15 50 200 90 137.974 132.477 7.686 4.389 9.96 8.47
25 15 40 200 80 114.131 112.69 1.984 0.425 8.95 7.85
26 15 40 200 80 114.131 114.84 1.984 0.645 8.95 7.52
27 15 40 200 80 114.131 110.69 1.984 0.411 8.95 7.82
28 15 40 200 80 114.131 108.84 1.984 0.398 8.95 7.99
29 15 40 200 80 114.131 110.19 1.984 0.469 8.95 8.05

Table 5. Comparison between numerical and experimental crater depths.

Run No.
Experimental
Crater Depth

(mm)

Numerical
Crater Depth

(mm)

Experimental
Crater Radius

(mm)

Numerical
Crater Radius

(mm)

1 0.021 0.023 0.030 0.028

2 0.035 0.037 0.049 0.045

3 0.036 0.037 0.051 0.046

4 0.051 0.053 0.073 0.065

5 0.042 0.043 0.060 0.053

6 0.033 0.035 0.047 0.043

7 0.043 0.044 0.060 0.053

8 0.034 0.035 0.048 0.043

9 0.030 0.032 0.043 0.039

10 0.045 0.046 0.064 0.057

11 0.028 0.030 0.040 0.037

12 0.044 0.046 0.062 0.057

13 0.036 0.037 0.051 0.045

14 0.049 0.051 0.069 0.063

15 0.041 0.043 0.057 0.052

16 0.039 0.043 0.055 0.052

17 0.033 0.034 0.037 0.041

18 0.051 0.052 0.057 0.064
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Table 5. Cont.

Run No.
Experimental
Crater Depth

(mm)

Numerical
Crater Depth

(mm)

Experimental
Crater Radius

(mm)

Numerical
Crater Radius

(mm)

19 0.020 0.035 0.042 0.035

20 0.039 0.039 0.043 0.048

21 0.031 0.032 0.034 0.040

22 0.045 0.047 0.051 0.058

23 0.031 0.033 0.035 0.040

24 0.047 0.049 0.053 0.060

25 0.040 0.041 0.045 0.050

26 0.041 0.041 0.046 0.050

27 0.037 0.041 0.045 0.050

28 0.039 0.041 0.044 0.050

29 0.038 0.041 0.043 0.050
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4.5. Model Validation with Prior Reputed Research Works

In order to ascertain the reliability and precision of the current simulation model,
a simulation study was conducted utilizing input parameter levels comparable to those
utilized by Joshi and Pande [3]. In addition to the other parameter levels taken into account
in the current analysis, the machining conditions were identical to those of their simulation
model. The MRRs of the anticipated outputs from both simulation models are illustrated in
Table 6. In a similar fashion, an evaluation of the TWR was conducted. Figure 11 illustrates
a graphical comparison of the MRR and TWR outcomes of our model with those of the
model proposed by Joshi and Pande [3]. The copper instrument and the steel workpiece are
two of the most important model parameters; the discharge voltage is 25 volts. Through
observation and a comparison of the outcomes produced by the two models, it is possible to
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deduce that they are substantially congruent, thereby providing validation for our present
simulation model.
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Table 6. Comparison of computed results.

S. No. Current (A) Ton (µs) Toff (µs) Discharge
Energy (mJ)

MRR
(mm3/min)

1 2.34 5.6 1 0.327 30.822
2 2.83 7.5 1.3 0.53 31.145
3 3.67 13 2.4 1.192 38.467
4 5.3 18 2.4 2.385 44.049
5 8.5 24 2.4 5.1 77.436
6 10 32 2.4 8 87.688
7 12.8 42 3.2 13.44 102.79
8 10 100 4.2 25 151.71
9 20 56 3.2 28 163.87
10 25 100 4.2 62.5 191.78
11 36 180 4.2 162 224.01
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5. Parametric Studies on the Proposed Thermo-Structural Model

A multitude of parametric investigations were carried out across a wide range of input
parameter levels utilizing the validated simulation model. The principal objective of the
present investigation is to ascertain the correlation between the discharge voltage, current,
and discharge current as input parameters and the resulting characteristics, including the
crater depth, radius, and MRR. Table 1 presents the material properties of the Haynes 25
alloy. The input parameters listed below were obtained from the machining manual and
reference [10]:

• Discharge current: 5 A, 15 A, 25 A, 35 A, 45 A;
• Spark on time (ton): 50 µs, 100 µs, 300 µs, 500 µs, 700 µs;
• Discharge voltage: 20 V, 30 V, 40 V, 50 V, 60 V;
• Duty factor: 65%, 80%, 95%.

5.1. Effect of Discharge Current

In the EDM process, the discharge current is a critical input parameter that must be
taken into account due to its correlation with the energy of the sparks that are produced.
Figure 12 illustrates that the MRR increases linearly with the discharge current at various
discharge voltage levels. The trends identified in this parametric study correspond well to
those documented by prior researchers [2,6,10]. As a result, it is advisable to utilize higher
discharge current levels when performing heavy-duty machining, while post-processing
and finishing operations require lower current levels. The correlation between the current
and crater depth is illustrated in Figure 13. It increases monotonically at lower discharge
current levels, and after a certain extent, the depth increases dramatically. Lower discharge
current levels are therefore advised in order to achieve a more consistent and seamless
surface finish. It is apparent from Figure 14 that the initial stages of the current increase
result in a marginal rise in the TWR. However, as the discharge level escalates, a significant
increase in the TWR becomes apparent, leading to a reduction in both process efficiency
and cost-effectiveness [13]. As the discharge current increases, the variation in residual
stresses increases dramatically, as illustrated in Figure 15. The elevated stresses will result
in the deterioration of the surface integrity and fatigue life of the workpiece [10]. Therefore,
selecting the optimal level of the discharge current is critical.
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5.2. Effect of Spark-on Time

The spark-on-time effect on the MRR at different discharge current levels is illustrated
in Figure 16. An initial maximum is observed in the MRR, followed by a subsequent
decrease as the duration of the discharge is prolonged. This is the result of the duty factor
remaining constant while the flux density decreases. This initial MRR peak has been
documented in prior experimental investigations as well [4]. It increases with the passage
of time, as depicted in Figure 17, but ultimately reaches a constant value. An additional
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observation that can be made pertains to the correlation between the discharge duration
and crater cavity expansion and depth; however, this relationship is accompanied by a
reduction in the material removal rate. Consequently, each spark discharge eliminates
a greater quantity of material. An abrupt surge in the TWR is evident during the initial
time periods, followed by a gradual decline as the spark time increases. This trend occurs
due to the fact that maintaining a constant duty factor throughout the experimentation
process leads to a reduction in the overall flux density and, consequently, a decline in the
TWR. A decrease in residual stresses is evident as the duration of the discharge is extended,
as illustrated in Figure 18. This is the case because maintaining a constant duty factor
throughout the investigation causes a gradual decrease in the flux density as the study
progresses, ultimately culminating in a reduction in residual stresses. Prior studies have
also documented comparable patterns [10] to those illustrated in Figures 17–19.
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5.3. Effect of Discharge Voltage

Figure 20 illustrates the correlations that exist between the discharge voltage and
material removal rate across various levels of the duty factor. The MRR increases in a linear
fashion across the entire voltage range. This could be the result of increased flux density
resulting from elevated voltage levels. The crater depth exhibits a comparable pattern, char-
acterized by a marginally irregular ascent, as illustrated in Figures 21 and 22, respectively.
Significant residual stresses are generated with an increase in voltage, as illustrated in
Figure 23. These stresses have the potential to detrimentally impact the structural integrity
of the workpiece. Therefore, it can be deduced that roughening operations on workpieces
are amenable to higher discharge voltage levels [3].
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Based on the results of the aforementioned parametric studies, it can be deduced that
the aforementioned parameters are significant factors that influence the quality of the end
product and enhance the efficiency of the process. Achieving an optimal equilibrium among
these four parameter levels significantly enhances the overall efficacy of the EDM process.
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6. Prediction of EDM Simulation Responses Using Deep Neural Network

By employing deep-learning methodologies [23], this article forecasts a range of output
characteristics, such as residual stresses, the MRR, and the TWR. The input characteristics,
including the current, voltage, pulse duration, and duty factor, inform these forecasts.
The developed deep-learning models are capable of comprehending the intricacies of the
input features and can then predict the intended outcomes. Although the initial training
phase for these deep-learning models may require a significant amount of computational
time, they have the potential to generate output features with exceptional efficiency once
the regression model has been successfully trained. As a result, the practicality and
efficiency of applying the trained regression model to real-time manufacturing scenarios
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are significantly enhanced. The deep-learning approach is founded upon end-to-end neural
network frameworks. In contrast to conventional approaches, it does not rely on the
manual training of distinguishing features by domain experts. In contrast, it acquires
knowledge from a significant quantity of annotated data samples in order to effectively
train the model. Out of the variety of deep-learning models available, the neural network
(NN) is identified as the most suitable architecture to tackle our issue. The neural network
architecture utilized to address the regression problem is illustrated in Figure 24.
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6.1. Model Selection and Training

A category of regressors known as multilayer perceptrons (MLPs) is fundamental
to feedforward artificial neural networks [24]. By virtue of its input, concealed, and
output layers, the architecture guarantees absolute interconnectivity among nodes spanning
multiple layers. The MLP achieves nonlinear discrimination through the implementation
of backpropagation in supervised learning. This is made possible through the utilization of
multiple layers and nonlinear activation functions.

In this context, the MLP regressor is being employed to effectively forecast the output
features pertaining to the provided problem. It is constructed from interconnected layers of
neurons and undergoes training in order to forecast continuous numeric values. ‘RELU’ is
the abbreviation for the Rectified Linear Unit activation function. It is frequently imple-
mented in neural networks to accelerate training and mitigate the disappearing gradient
problem. The value is returned by the “RELU” activation function if the input is positive;
otherwise, it is set to zero. The phrase “adaptive learning rate” generally denotes methods
in which the learning rate, which governs the size of the steps in gradient descent opti-
mization, is modified throughout the training process in order to enhance convergence and
stability. Utilizing adaptive optimization algorithms, such as RMSprop or Adam, which
modify the learning rate automatically in response to previous gradients, is a common
method. Particularly in neural networks, the L-BFGS (Limited-memory Broyden–Fletcher–
Goldfarb–Shanno) solver is a prevalent optimization algorithm utilized in the training
of machine learning models. The L-BFGS solver is employed in the context of an MLP
regressor to optimize the neural network’s weights and biases throughout the training
procedure. By incorporating the L-BFGS solver into an MLP regressor, we utilize this
optimization algorithm to adjust the weights and biases of the neural network, with the
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objective of minimizing the loss function. Here, an MLP regressor model is constructed in
which the neurons are activated using the “RELU” function. For more effective training, it
employs an adaptive learning rate optimization algorithm and an L-BFGS solver. A total of
80% of the computed simulation results were designated for training objectives, while the
remaining 20% were intended for testing.

6.2. Results and Comparisons

The variables or attributes utilized as inputs in a DL model to generate predictions
are referred to as input features. The model employs these data elements as inputs in
order to discover patterns and establish connections within the given data. Conversely,
output metrics represent the criteria by which the effectiveness of a machine-learning or
deep-learning model is assessed. As inputs, the current, voltage, duty factor, and pulse-on
time are utilized, while as outputs, the MRR, TWR, and residual stresses are considered. A
comparison between the features input and the features output is illustrated in Figure 25
for the purpose of evaluating the ML/DL model’s applicability. The figure is utilized to
conduct a comprehensive analysis of the experimental data in order to determine the effect
of each input feature on the output metrics. It is noted that none of the values, when
evaluated against the input features, produce a linear output. The variation in all three
output metrics is substantial, contingent upon the four input features. In the figure, the
impacts of the input features “current”, “voltage”, “pulse on time”, and “duty factor” on
the output metrics are analyzed in the first, second, third, and fourth rows, respectively.
We decided to apply the MLP regressor, a deep-learning model, to this issue based on this
observation. These metrics quantify how well the model’s predictions match the actual
outcomes. Here, the output metric mean squared error is used to verify the outcome of the
problem. In essence, input features are the data provided to the model, while output metrics
are the measures used to assess how well the model performs based on its predictions.
During the model computations, it was observed in the analysis that the linear model is
not suitable for this particular problem statement. Therefore, the MLP regressor model was
employed in the aforementioned investigation.

In the realm of deep learning, the term “density plot” frequently denotes a visual
depiction that illustrates the estimated probability density function of a continuous variable.
It can provide insight into the concentration and distribution of data elements in particular
regions. Density diagrams can be utilized to visualize various aspects of data and model
outputs in deep learning. Kernel density estimates (KDEs) are produced in order to visually
represent the density of data points across the entire range of variables. The kernel function
is commonly represented by a Gaussian distribution, and the degree of dispersion observed
in the kernel graph is a crucial factor in assessing the estimation’s regularity. The KDEs
of the response parameters, namely, the MRR, TWR, and residual stresses, are depicted in
Figure 26.

Table 7 displays the results, along with the results of validation through confirmative
tests. The simulation results are used to train a deep neural network model, which then
predicts future results based on the simulation results. Based on the ideal parameter
settings, which are a current value of 10 A, voltage value of 50 V, pulse-on-time value
of 200 s, and duty factor value of 90%, the MRR, TWR, and residual stress values are
anticipated to be 95.54, 0.24, and 9.12, respectively. It is clear from this that the predicted
values are very close to the actual ones in most cases.
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Table 7. Confirmative test results for optimal parameter settings.

Optimal Parameter Settings Actual (Values Achieved
through Simulation)

Predicted (Value
Achieved through Deep

Neural Network
Approach)

Experimental Results

Current Voltage Pulse-on time Duty factor MRR
95.45

MRR
95.54

MRR
93.9610 A 50 V 200 µs 90%

TWR
0.24

TWR
0.24

TWR
0.25

Residual stresses
9.13

Residual stresses
9.12

Residual stresses
9.79

Figure 27 displays the expected values with the actual values. Based on the actual
and anticipated values, our deep-learning algorithm picks the three best sample values
to use in this graph. To find the anticipated values, the model iterates 10,000 times. The
model’s anticipated MRR is higher than the observed value, but the expected TWR and
residual stresses are either the same as or lower than the observed values. Furthermore, the
regressor uses a regression approach to try to determine which input qualities best predict
which output values. The output layer becomes linearly dependent on the input layer if
we use an identity activation function there and nonlinear Rectified Linear Unit (ReLU)
activation functions in the hidden layers.
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7. Conclusions

A two-dimensional axisymmetric model was developed to simulate the die-sinking
EDM process using ANSYS software on a Haynes 25 workpiece. The proposed model was
validated through experimental approaches. Parametric studies were conducted on the
proposed model to analyze the effects of vital EDM process parameters on responses. The
ideal machining parameters were identified using a deep-learning-based MLP regressor
equipped with “ReLU” activation and an “adaptive” learning rate, followed by validation
through confirmative tests. The proposed work is useful in enhancing the EDM perfor-
mance by enhancing the material evacuation ability and reducing the erosion of the tool, as
well as residual stress developed on the workpiece during machining. The current in-depth
analysis found the following primary findings:

1. The discrepancy between the experimental and simulation results was reduced by
expressing the spark radius as a function and adding features like latent heat and
Gaussian heat flow distribution.

2. Due to the large disparity in cooling rates, the workpiece experiences both tensile and
compressive residual stresses during machining.

3. Haynes 25 alloy workpieces should have an energy distribution factor of 5% when
calculating the final heat flux in the numerical calculations to obtain the best results.

4. As the discharge time increased, the MRR started falling after a certain period due to
the decline in the flux density, although the crater depth and crater radius started in-
creasing. As a result, regulating the amount of material removed with every discharge
relies heavily on selecting the appropriate spark at the appropriate time.

5. After a discharge time of 300 µs, the residual tension in the workpiece is found to have
decreased considerably. Hence, it is recommended to have a spark-on time greater
than 300 µs.

6. Since the discharge voltage is directly proportional to the heat flux intensity, higher
voltages can be used in surface-roughening procedures.

7. By developing a deep neural network model, one can successfully predict responses
and optimize outcomes in the specified setting. Its high accuracy and integration of
optimization algorithms offer an efficient alternative to time-consuming and repetitive
simulations.

It is possible to considerably boost both a process’s efficiency and its output by putting
the observations and inferences obtained from the preceding discussion into actual business
practice. Additionally, the currently presented simulation model can be utilized in order to
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determine the optimal values of input parameters in order to enhance the finishing capacity
of the electrical discharge machining process.
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Nomenclature

List of Symbols
Cvt Crater volume (µm3)
Fc Fraction of power reaching the cathode
I Discharge current (A)
Kt Thermal conductivity (W/m · K)
q Heat flux at cathode surface (W/m2)
Rpc Spark radius at cathode surface (µm)
T Temperature variable (K)
Tm Melting temperature (K)
t Time variable (s)
ton Spark-on time (µs)
toff Discharge off-time (µs)
Machining time (min)
V Discharge voltage (V)
ρ Density (kg/m3)
Abbreviations
EDM Electrical discharge machining
FEM Finite element method
MRR Material removal rate (mm3/min)
TWR Tool wear rate (mm3/min)
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