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Abstract: This study uses machine learning methods to model different stages of the calcination
process in cement, with the goal of improving knowledge of the generation of CO2 during cement
manufacturing. Calcination is necessary to determine the clinker quality, energy needs, and CO2

emissions in a cement-producing facility. Due to the intricacy of the calcination process, it has
historically been challenging to precisely anticipate the CO2 produced. The purpose of this study is
to determine a direct association between CO2 generation from the manufacture of raw materials
and the process factors. In this paper, six machine learning techniques are investigated to explore
two output variables: (1) the apparent degree of oxidation, and (2) the apparent degree of calcination.
CO2 molecular composition (dry basis) sensitivity analysis uses over 6000 historical manufacturing
health data points as input variables, and the results are used to train the algorithms. The Root
Mean Squared Error (RMSE) of various regression models is examined, and the models are then
run to ascertain which independent variables in cement manufacturing had the largest impact on
the dependent variables. To establish which independent variable has the biggest impact on CO2

emissions, the significance of the other factors is also assessed.

Keywords: cement; manufacturing; calcination; CO2 emission; machine learning

1. Introduction

Global warming is largely acknowledged as the most serious environmental and
economic hazard of our time. According to research conducted by Mahlia [1] and Zhang [2],
global warming is produced by greenhouse gas (GHG) emissions linked to human activities,
which have catastrophic effects if not managed and mitigated. Cement manufacturing plays
a key role in modern society and civilization. Without cement, it would be challenging
to envision modern living. Cement, which is necessary for economic development, must
be used to build infrastructure and homes. Cement consumption and economic growth
are strongly related since rapid infrastructure development is a goal of many developing
economies. Cement manufacturing is, consequently, increasing quickly [3]. By generating
direct employment and other benefits for allied industries, the industry considerably
improves living conditions around the world. The cement industry must deal with the
impact on GHS and long-term sustainability notwithstanding its acceptance and success [3].
Technological advances have made it possible to make greater volumes of cement than in
the past. On the other hand, several environmental issues have typically been attributed to
higher production levels as the root cause [4]. Cement manufacturing is linked to significant
raw material extraction, which has an impact on the environment, high fossil energy usage,
and large emissions of CO2. The calcination process received increasing attention from both
the government and the public in recent years since this is the primary source of CO2 in the
cement industry [5]. Calcination is a complicated industrial phenomenon that occurs during

J. Manuf. Mater. Process. 2023, 7, 199. https://doi.org/10.3390/jmmp7060199 https://www.mdpi.com/journal/jmmp

https://doi.org/10.3390/jmmp7060199
https://doi.org/10.3390/jmmp7060199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0003-0351-0746
https://orcid.org/0000-0002-6937-1956
https://doi.org/10.3390/jmmp7060199
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp7060199?type=check_update&version=1


J. Manuf. Mater. Process. 2023, 7, 199 2 of 30

the production of cement and involves mass movement, heat transmission, and chemical
and physical interactions. The chemical and physical characteristics of materials can be
changed by heating them to high temperatures. The calcination of limestone produces
60% of the CO2 emissions, with 0.5 tons of CO2 emitted per ton of clinker produced [6].
Significant amounts of CO2 are created by the cement industry (about 0.59 tCO2 per ton of
cement produced in 2020) [7] and it is one of the industries that, in the context of current
climate policy, presents the greatest challenges for quantifying CO2 emissions and eventual
decarbonization [8]. As mentioned by Czigler et al. [9], the cement industry alone produces
the most CO2 emissions per dollar of revenue and is responsible for nearly a quarter of
all industry CO2 emissions. In addition, Benhelal et al. [5] noted that the cement industry
has traditionally been one of the biggest producers of CO2 emissions. Around 8% of the
CO2 emissions in the world come from cement factories, and each ton of cement produced
results in the release of 900 kg of CO2 into the environment. In their investigation, they
looked at global initiatives and potential remedies for lowering cement’s CO2 emissions. In
recent times, others have been looking at innovative ways to lower the CO2 footprint in the
cement industry during manufacturing.

To better manage CO2, the cement manufacturing industry must better understand
the source of the CO2 in the manufacturing process and how to quantify it. Over the years,
many different methodologies have been developed to help the cement manufacturing
industry find a way to calculate CO2 emitted due to the calcination process. A well-known
method is the one which was developed by the Intergovernmental Panel on Climate Change
(IPCC). Unfortunately, the IPCC technique adopted by the cement industry to calculate
CO2 emission depends on the accurate measurement of the tonnage of raw material, the
thermal heat for the calcination process source, and the tonnage of the type of source of
thermal energy used. The IPCC methodology also uses a very complex empirical formula
to calculate the quantity of CO2 per ton of clinker produced, making it difficult to depend
on the accuracy of values generated. In view of this, most cement plants undergo rigorous
audits many times each year to evaluate if the data reported to regulatory agencies are
accurate or not. This demands time and financial burden on the companies. As mentioned,
the empirical technique only takes into consideration the quantity of materials used for
the manufacturing. The IPCC technique does not look at other process variables like
airflow speed, material flow, speed of motor drives, fuel flow, etc., which could also
influence CO2 emissions. These variables were not considered in the IPCC technique
because of the complexity of considering all these factors in an empirical formula. Based
on this, it is important that other novel techniques be considered and developed for the
cement industry.

In recent times, complex systems have become better understood using machine
learning and AI tools. Predictive modeling can easily be adopted even for complex systems
like the cement manufacturing process. Even though machine learning and AI have been
well accepted in many areas, the cement industry has not adopted it fully. Over years
of process performance, historical data have been stored by most cement plants. This
makes it a great candidate for machine learning. This paper focuses on using machine
learning and AI, as an approach to estimating CO2 in the cement manufacturing calcination
process. This paper looks at understanding the impact of manufacturing independent
variables that influence CO2 generation in the calcination process of cement manufacturing
by conducting sensitivity analytics using machine learning and AI tools. Based on the
most impactful variables generated from sensitivity analytics, a predictive analytic training
model was generated for future possible outcomes of dependent variables. This will
allow a high degree of probability to predict the future dependent variables using various
independent input sets of variables mostly measured during the manufacturing operation.
By proving that manufacturing variables can be used for the predictive analytics relevant
to CO2 and quantify estimates, changes can be made to the critical independent input set of
variables during manufacturing to help achieve the required CO2 output to both improve
the manufacturing processes and reduce CO2 generation.
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In this paper, Section 2 outlines the various steps in the manufacturing of cement, the
chemical reactions during the calcination process, and the various methodologies used in
calculating CO2 emissions in cement manufacturing. Section 3 of this paper details the
methods of machine learning and AI adopted for this study and the mathematical equation
concepts behind it. Section 4 presents the results achieved from the analysis of historical
data on cement manufacturing used for the modeling and training of the models. Section 5
discusses the results and presents some of the trends in the cement industry contributing
to CO2 reduction. Section 6 summarizes the context of the study. It is important to note
that this study applies solely to Heidelberg Materials Inc. Irving, TX, USA cement plant at
Union Bridge, Maryland. The findings from this study can be adopted for the industry.

2. Cement Manufacturing

Cement is a crucial component of buildings and is frequently utilized in civil construc-
tion, water conservation, national security, and other endeavors. Since limestone quarries
and other sources of raw carbonate minerals are the main raw materials required in the
process, cement is produced in large, expensive plants that are often situated close to these
sources [10]. The production of cement has consistently been included as one of the major
industrial activities contributing to carbon emissions. Two sources dominate the production
of carbon dioxide throughout this process: large-scale combustion of primarily fossil fuels
and the initial chemical reaction of CaCO3 breakdown to CaO and CO2 [5]. In Section 2.3,
the specific sources of CO2 emissions in cement plants will be covered. Raw material
preparation, clinker production (pyro-processing), and clinker grinding, and mixing are the
three production processes that go into making cement. Making cement is a challenging
and energy-consuming process. Figure 1 shows the schematic layout of a cement plant
from the raw material source to the final product which is cement [11].
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Figure 1. Diagram of the general procedure at the cement plant. Adapted from P. del Strother [11].

2.1. Raw Material

Cement production begins with quarry operations. The most common method of
obtaining limestone is through open-face quarries, but underground mining is also an
alternative [10]. To save on the cost of transporting raw materials, most cement mills
are close to quarries. Limestone forms most of the raw material needed to manufacture
cement. In most cases, limestone is about 80–95% of the raw material feed for cement
manufacturing [10]. To acquire raw minerals, subsurface exploration employs drilling.
Software is used to create geological models that determine the concentration of limestone
in each area. The overburden, or useless material, that must be removed and squandered
along with the limestone, is also evaluated with the aid of the model. The mining of the
limestone is completed using large mechanical machines like loaders and haul trucks. All
additional raw material needed is mostly outsourced. The combined raw materials used
for cement manufacturing are mostly made up of iron oxide, silica, alumina, magnesium
carbonate, and limestone. The combined material is first crushed, grinded, and then
mixed as blended raw meal feed. The grain size of the powdered feed is typically 50 mm
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(Mujumdar et al. [12]) and the desired composition. The blended raw material is fed to the
preheat tower and then into the kiln for pyro-processing. The typical composition of the
feed is shown in Table 1.

Table 1. Typical composition of cement raw material.

Ref.
Composition (% wt)

CaO SiO2 Al2O3 Fe2O3 MgO K2O SO3 Na2O H2O Organics Loss Ignition

Kakali et al. [13] 43.11 13.76 3.23 2.45 0.55 0.28 0.00 0.00 0.00 0.00 35.42

Engin and Ari [14] 40.74 13.55 4.10 2.60 2.07 0.30 0.56 0.08 0.50 0.90 34.60

Galbenis and
Tsimas [15] 41.95 13.55 3.31 2.55 1.98 0.41 0.00 0.00 0.00 0.00 35.12

Kabir et al. [16] 43.61 13.29 3.83 1.95 0.50 0.79 0.23 0.06 0.20 0.00 35.45

Benhelal et al. [5] 41.51 14.03 3.39 2.54 2.59 0.57 0.30 0.24 0.00 0.00 34.83

The basic cement industry modules, lime saturation factor (LSF), silica modulus
(SM), and alumina modulus (AM) are used to calculate the raw meal recipe. LSF, which
is commonly expressed as a weight percentage, is the proportion of limestone to other
ingredients in a recipe.

LSF = 100·CaO/(2.8·SiO2 +1.18·Al2O3 + 0.65·Fe2O3) (1)

The percentage of the principal strength-giving calcium silicate alite is at its maximum
when the cement clinker has an LSF value of 100. Industrial clinker typically has LSF values
between 94 and 98 weight percent. The energy needs of the kiln and cement clinker quality
are impacted by SM and AM [11].

SM = SiO2/(Al2O3 + Fe2O3) (2)

AM = Al2O3/Fe2O3 (3)

2.2. Clinker Production (Pyro-Processing)

In a rotating kiln, clinker is produced and used for Portland cement [17]. This device
basically consists of a large cylinder that spins once every one to two minutes around its
axis. The lower end of this axis, which is inclined, is where the burner is situated. Following
precalcination, the kiln is fed with the raw material. As it rotates, the feed is fed at the top
of a preheat tower which flows slowly down as hot gases flow upward and then enter the
kiln. Figure 2 depicts a revolving kiln’s general design [18].
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Powdered feed is transported to the preheater as the first step of the pyro-processing
unit once it has reached the desired composition and size. Here, a sequence of coun-
tercurrent flue gases from the calciner are used to preheat the raw materials. When the
temperature reaches around 550 ◦C during preheating, limestone, and magnesium carbon-
ate decompose, releasing CaCO3, MgO, and CO2. This is when the precalcination process
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is initiated in the preheat tower. Limestone’s (CaCO3) chemical breakdown into lime (CaO)
and carbon dioxide (CaCO3 
 CaO + CO2) begins in the precalciner. Table 2 is a list of
the physical and chemical reactions involved in making cement. The preheat tower unit
calcines about 90% of the raw feed. The precalciner system uses solid-gas heat exchange to
produce direct combustion and spread and suspend raw grain cement in an airflow. The
already-heated materials move to raise the temperature using the calciner even further
before entering the kiln. In the revolving kiln, the precalcined meal undergoes the remain-
ing calcination. Before being completed at 960 ◦C in the kiln, these processes continue in
the calciner [19]. The kiln facilitates numerous other physical and chemical processes in
addition to generating cement. An illustration of a typical dry-based cement production
facility is shown in Figure 3. There is typically a precalciner system in place between the
rotary kiln and the preheater in modern cement-producing facilities. The final product
from the kiln is called clinker. Clinker is a term used in the cement industry to refer to the
hard, nodular material that is produced after cooling of the product generated from the
kiln. C2S, one of the clinker’s constituents produced between 900 and 1200 ◦C, and other
components including C3S, C3A, and C4AF are created between 1200 and 1280 ◦C in the
kiln during the different phases of reactions [14]. Solid clinker finally melts at temperatures
above 1280 ◦C to create a well-mixed and nodular clinker [19].

Table 2. The list of physical and chemical reactions involved in making cement [15,16].

Reaction Name Temperature Range (◦C) Reaction Heat of Reaction (∆HR) Location Take Place

Decalcination 550–960 CaCO3 → CaO + CO2 +179.4 kJ mol−1 Preheater, calciner, kiln

MgCO3 dissociation 550–960 MgCO3 →MgO + CO2 +117.61 kJ mol−1 Preheater calciner, kiln

β-C2S formation 900–1200 2CaO + SiO2 → β-C2S −127.6 kJ mol−1 kiln

C3S formation 1200–1280 β-C2S + CaO→ C3S +16 kJ mol−1 kiln

C3A formation 1200–1280 3CaO + Al2O3 → C3A +21.8 kJ mol−1 kiln

C4AF formation 1200–1280 4CaO + Al2O3 + Fe2O3 → C4AF −41.31 kJ mol−1 kiln

Liquid clinker formation >1280 Clinkersol → Clinkerliq +600 kJ kg−1 kiln

After cooling the clinker over the cooler stage with outside air from 1450 ◦C to 100 ◦C,
the clinker is then transferred to the final unit for grinding and mixing. The warm air
from the coolers is used in the calciner and the kiln, and the extra air is vented into the
atmosphere. The heated air stream provides some of the kiln’s required heat energy as
well as acting as an air source for the combustion process. The calciner is then supplied
with the hot air stream from the coolers and kiln exhaust. Both of these streams act as
a heat source for the breakdown of limestone and magnesium carbonate as well as a
source of air for the combustion process [20]. The use of calciner exhaust to preheat input
materials in the preheater step is the process’ main source of heat loss. According to [21],
the preheater, calciner, kiln, and cooler processes, generally known as the pyro-processing
unit, are considered the core of the cement manufacturing process and account for around
90% of the total energy required for cement production.

In the precalciner, the exothermic activity of fuel burning coexists with the endothermic
process of the uncooked meal’s carbonate breakdown. When the precalciner is working at
its best, energy is conserved and rotary kiln and precalciner emissions are reduced. The
temperature inside the calciner, the amount of time the raw meal is allowed to remain in
the system, solid gas separation, the impact of dust circulation, and the kinetic behavior of
the raw materials are some of the factors that affect the precalciner’s efficiency [22]. The
stability and effectiveness of the calcination process directly affect the final clinker quality,
smooth operation in the subsequent rotary kiln operation, and the energy consumption of
the pyro-processing unit.
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2.3. Clinker Grinding into Final Product

Electrical fans are used to cool the hot clinker before it is transported to the grinding
and blending mills. The last step in the process of manufacturing cement is clinker grind-
ing. In this case, the clinker is powdered and mixed with additives. Depending on the
availability of the additives, cement standards, and the cement market, specific amounts,
types, and compositions of additives are added to the powdered clinker. From a technical
and commercial perspective, the clinker factor (CF), or the proportion of clinker in cement,
is an essential element.

2.4. Calcination Process and CO2 Emission

Calcination is the heat process of driving off a volatile fraction that modifies the
chemical makeup of mineral ore. Unlike pyrolysis, this process does not require the absence
of oxygen [24]. Four sources contribute to the CO2 emissions during cement production:
Transportation of raw materials accounts for 10% of total emissions, fossil fuel combustion
during the calcination process generates 40%, CaCO3 and MgCO3 decomposition generates
50% of CO2 emissions, CaO and MgO are produced as the result of elementary chemical
reactions, and electricity generated for electrical motors and facilities is responsible for
another 10% [25]. Numerous large and minor technical and management concerns in the
plant can affect plant performance and result in an increase in fuel and energy usage in
addition to the intensive fuel utilization, power consumption, and basic chemical reactions
mentioned above. These higher consumptions may result in substantial thermal waste and,
as a result, extraordinary additional CO2 emissions. Figure 4 shows the various sources of
CO2 in the cement manufacturing plant. As shown in Figure 4, our study focuses on CO2
generated through clinker production through the calcination process.
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Carbonates decompose in a highly endothermic process [26]. A limestone particle
must go through several phases of calcination, and each stage’s rate-determining factor is
affected by the calcination circumstances. These processes involve heat transmission from
the bulk gas to the particle’s exterior surface and from the external surface to the reaction
interface, in addition to the chemical reaction that takes place at the reaction interface, and
involve the mass transfer of carbon dioxide from the reaction interface to the bulk gas [27].
However, the rate of heat and mass transmission will frequently be high if the particles
are small, and the bulk gas temperature is high. The process that determines the rate for
the conditions in cement manufacturing is the chemical reaction [26,28]. By electrifying
the calcination process, atmospheric carbon dioxide concentrations would increase from
about 25 mol% to over 100 mol%. This could have an impact on a variety of elements
as well as the process’ chemistry, heating of the raw materials, calcination, production of
clinker, and final cooling. The rate of calcination will be slower due to the increasing partial
pressure of carbon dioxide [29–33] and the increase in the required calcination temperature,
as can be seen in Figure 5. Tokheim et al. [34] investigated the viability of an electrified
calcination step and concluded that electrical heating-based calcination looks feasible and
would offer comparable process parameters with no detrimental effects on product quality.
A minor variation in the quality of the product was seen in laboratory testing on Oxyfuel
combustion that modified the gas phase’s carbon dioxide content [35].

The kinetics and chemical mechanisms relating to the calcination of carbonates have
been extensively discussed in other publications over the past few decades [37,38]; particu-
larly, the calcination of CaCO3 (Takkinen et al. [39]), due to its technological significance.
According to Garcia-Labiano et al. [40], there are several aspects of the reaction that are
unclear. Considering the lack of agreement over the process, Reactions (4) through (6) have
all been put forth.

CaCO3 (s)→ CaO (s) + CO2 (g), ∆HR = +168 kJ/mol (4)

CaCO3 (s)↔ CaO* (s) + CO2 (g)↔ CaO (s) +CO2 (g) (5)

CaCO3 (s)↔ CaO (g) + CO2 (g)↔ CaO (s) + CO2 (g) (6)

According to Hyatt et al. [38], CaO has a metastable structure. The active CaO, denoted
by CaO* in Reaction (5), is thought to serve as a bridge between the newly formed CaO
crystal and the unreacted CaCO3. Another strategy put up by L’vov et al. [41] is for CaCO3
to decompose into gaseous CaO and CO2 species while also condensing low-volatility
CaO, as seen in Reaction (6) [41]. Regardless of the underlying source, calcination may
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be broken down into three stages: heating the particle surface and transferring heat there;
chemical processes taking place at the reaction front; and the transfer of CO2 from the
reaction front to the surrounding atmosphere. According to Stanmore and Gilot [37], the
chemical makeup of the limestone, the size of its particles, the makeup of the surrounding
gas, and the ambient temperature all have an impact on the reaction. This raises the level
of uncertainty in the kinetic field.
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2.5. Literature Review of Cement CO2 Emission Calculation and Prediction for the
Cement Industry

For the sake of simplicity, a few imprecise approaches are widely recognized and
frequently used to calculate CO2 emissions. There have been numerous estimates of
CO2 emissions made in earlier studies. Calculating CO2 emissions requires several key
metrics, including the carbon footprint. The term “carbon footprint”, also called “carbon
profile”, is derived from the term “ecological footprint”, which was used to describe the
total amount of carbon dioxide and other greenhouse gas emissions related to products,
along their supply chains, and occasionally including their use, end-of-life recovery, and
disposal [42–44]. In 1996, the IPCC published its first CO2 emissions factors related to
cement manufacture, including a heat-processed lime-stone breakdown factor [45]. In
addition, IPCC [8] provided the techniques and information required to calculate stationary
combustion emissions in 2006. Three tiers of methodologies are provided for the sectoral
approach based on data on fuel combustion from national energy statistics and fault
emission factors, as well as data on fuel statistics and applied combustion technologies,
as well as technology-specific emission factors. The default value recommended by the
IPCC may either overestimate or underestimate the overall emissions of the Chinese
cement sector, so it is crucial to properly estimate the process-related emission factor for
clinker production together with accounting procedures. This emission factor can be
determined based on the stoichiometric compositions of the reaction using the principal
chemical processes in calcination, CaCO3CaO + CO2 and MgCO3MgO + CO2, as shown in
Equation (7).

EFclinker =ContentCaO × 44/56 + ContentMgO × 40 (7)

where ContentCaO and ContentMgO indicate, based on plant-level assessments, the CaO and
MgO contents of clinker that should be computed. In 2012, Shen et al. [46] examined
the 289 production lines’ raw materials, raw meals, clinker, cement, and fuel throughout
China’s 18 provinces. They calculated the process emission factors for each type of kiln,
which are 1.4–3.4% lower than the IPCC Guidelines’ default values. Based on detailed
information from 1574 cement companies in 2013, Cai et al. [47] without mentioning the
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particular amounts of CaO and MgO, estimated that the total process emission factor was
set at 0.504 t CO2/t clinker. In 1994 and 2005, the UNFCCC and NDRC estimated the
process-related emissions to be 157.8 Mt CO2 and 411.7 Mt CO2, respectively [48,49]. High
variances and uncertainty in energy consumption are other problems, as the amounts of
coal used to heat the kiln were calculated by varying stated coal intensities rather than
those immediately available in the official figures [50]. Lui et al. [50] demonstrated another
equation used to calculate CO2 emission in cement manufacturing plants. This unit-level
process and fuel-based CO2 emissions are estimated using the following Equation (1):

Ei = Pi × Rk,i × EFprocess,k + Fi × EFcombustion,k (8)

where, respectively, i and k stand for the unit and the nation; P stands for cement production
(t), R for the clinker-to-cement ratio, F for fuel consumption (kJ), EFprocess for process-
based emission factors (g/kg), and EFcombustion for combustion-based emission factors
(g/J). E stands for unit-based emissions (kg); P for cement production (t); R for clinker-
to-cement ratio; and F for fuel consumption (kJ). It should be emphasized that this study
only measures the emissions that directly result from the manufacturing of cement; indirect
emissions, such as those from the use of gasoline in power plants to generate electricity
and the fuel used by vehicles to transport materials, are not considered [50].

It is noticeable that IoT, Artificial Intelligence (AI), machine learning (ML), real-time
monitoring, and optimization techniques are considered some of the emerging practices
that are reshaping the world and how research is performed. As mentioned, most of the
methodologies mentioned herein are based on the calculation of CO2 emission quantity
by empirical methods, but Van Gio et al. [51] performed an extensive investigation on
leveraging machine learning techniques for high-precision predictive modeling of CO2
emissions. They show that predictive analytics utilizing machine learning algorithms play
a pivotal role in various domains, including the profiling of carbon dioxide (CO2) emissions
in innovating ways to understand CO2 emission. The study shows how these algorithms are
useful for quantifying emissions, evaluating energy sources, improving prediction accuracy,
and accurately estimating CO2 emissions. In particular, deep learning, artificial neural
networks (ANN), and support vector machines (SVM) demonstrate effectiveness in a range
of industries, and the Modified Regularized Fast Orthogonal-Extreme Learning Machine
(MRFO-ELM) algorithm optimizes predictions pertaining to coal chemical emissions.

Many articles have discussed the use of cutting-edge technologies, such as artificial
intelligence (AI) and machine learning (ML), to reduce carbon emissions [52,53]. Using
the ARIMA technique, Yang and O’Connell [54] provided an emission projection for the
fuel consumption in air travel over a five-year period for the Chinese aviation industry.
Niu et al. [55] provided a case study on how to use machine learning algorithms in conjunc-
tion with an algorithm combination approach to predict carbon emissions by 2030. Using
data from 2015 to 2019, Javadi et al. [56] conducted a study whereby they utilized the RBF
network model to predict the amount of greenhouse gas emissions in the Iranian vehicle
sector by 2030. Olanrewaju et al. [57] also used the ANN algorithm to predict emissions
in their study on the management of emissions in Canada’s industrial sectors, specifically
for the year 2035. Several machine learning (ML) algorithms, including RF, LSTM, SVM,
and others, were used to forecast N2O emissions in agriculture in a different study by
Hamrani et al. [58], and the results were assessed for predictive accuracy. Additionally, the
LSTM, CNN, and KNN algorithms were used both singly and in combination to predict air
pollution in order to control and lessen its adverse effects [59]. It should be mentioned that
although the research used ANN, SVM, and deep learning algorithms to estimate Flu-Gas
emission [60], five predictive accuracy criteria were used to assess the methods’ accuracy.

Even though many studies cited herein show how the adoption of machine learning
and AI is being used to successfully predict CO2, this is not the same for the cement
manufacturing industry. Boakye et al. [61] show why machine learning and AI are not well
adopted in the cement, aggregate, and concrete industries. Literature searches find only
a single study that describes using machine learning to predict CO2 based on calcination.
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Unfortunately, the study does not use manufacturing performance data but is based on
laboratory experimental data. Lei et al. [62] reported other empirical methodologies used
to estimate the amount of CO2 emission from cement in addition to these well-known
ones, but this study employs machine learning to forecast CO2 emissions using laboratory
data. The paper noted that testing the models used by selected process data that represent
extreme and typical plant operation conditions is recommended. This will lead to the
development of more realistic models based on the actual plant data. This current paper
employs machine learning and AI concepts using historical cement manufacturing real
plant performance monitoring data gathered through instrumentation to predict CO2. This
will establish the need to adopt innovative technologies in the cement manufacturing
industries to help better understand CO2 emission and prediction.

3. Materials and Methods

Examining certain circumstances or events in detail is necessary to produce reliable
projections. Even while the number of datasets available will increase as sensing capabilities
advance, offering unmatched insights into process conditions, this makes the development
of specialized big data analytics tools necessary to maximize the value from such data. The
quantity and features of input elements that manufacturing organizations transform into
output factors can be used to distinguish them from one another. When dealing with such
intricate non-linear systems, modeling is helpful. Several academics have attempted to
identify correlations between the variables in the precalciner process using the soft and hard
modeling technique. Mass and energy balance (MEB) is a key technique for determining
correlation and selecting the required process output. When the input parameters for the
MEB computation are uncertain or impossible to measure directly, an iterative procedure is
used. An alternative MEB approach is illustrated by machine learning techniques, which
omit this iterative phase. Recently, data mining and machine learning methods have been
extensively applied in predictive analytics. However, they are comparatively underutilized
in prescriptive analytics. According to our research, only one study fully utilizes machine
learning and data mining techniques to forecast CO2; however, the model’s data are
entirely derived from experimental data rather than actual process manufacturing data [63].
Because most cement production companies have very strong data protection laws that
forbid the public from processing historical data, it is necessary to rely on lab data. Since
the primary author works in the cement sector and has access to this dataset, this study is a
unique instance. The approach used for this study is described below, and it is crucial to
highlight that this work is exclusive to this cement factory. The goal is to demonstrate that
machine learning technologies may be used to anticipate the amount of CO2 emissions and
to offer recommendations for how this discovery is essential to long-term sustainability
solutions for the cement industry.

In modeling/nonlinear industrial processes that deal with noisy, constrained, and non-
integrated data, machine learning (ML) has demonstrated promising outcomes. Artificial
neural networks (ANN) and support vector machines (SVM) are two examples of machine
learning techniques that have demonstrated their efficacy in this area. For calculating the
apparent degree of calcination, Gang and Hui [64] created a model utilizing a least Squares
support vector radial basis function (RBF) kerneled machine (LSSVM). The temperature
and pressure of the furnace, the calciner’s outlet temperature and pressure, the temperature
of the tertiary air, and the quantity of cement raw that was laid off were all inputs into
the model. To stabilize the precalcination process while achieving the necessary amount
of precalcination of the raw food, low carbon monoxide, and considering the precalciner
system’s multivariable dependency Griparis et al. [65] developed adaptive, resilient, and
fuzzy control. Using five factor, coal flow to the kiln, coal flow to the precalciner, raw meal
flow, the kiln’s rotating speed, and the negative pressure at the preheater exit, we may
estimate the kiln’s temperature and oxygen content. Yang et al. [66] developed a back-
propagation neural network (BPNN) and radial basis function neural network (RBFNN).
The effectiveness of the machine-learning algorithms is strongly influenced by the quality
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of the input data. Gathering and preparing the training dataset is, therefore, an essential
step in the modeling process. Simulated data, data from actual processes, and data from
tailored experiments are all acceptable forms of training data. Simulated data is produced
by theoretical models, including statistical models and computer simulations. Many indus-
trial organizations have historical data in their systems, and the real process data are raw
process data that were randomly selected. This study looks at using industrial historical
data. A Taguchi or Design of Experiment (DOE) approach can be used to obtain designed
experimental data. This study aims to improve the understanding of the generation of
CO2 during cement manufacturing by dissection of the manufacturing processes using
thousands of plant health data points from various installed measurement instrumenta-
tions. Modeling the calcination process in cement using machine learning algorithms with
historical manufacturing process data will be new. This will be a novel attempt to find
commonality in these large datasets with separately calculated CO2 emissions.

The step-by-step system structure for the research work of machine learning (ML)
predictive analytics of the calcination CO2 generation is shown in the process flow model
(Figure 6). Sensitivity analysis uses historical manufacturing health data from over ten
thousand input variables, and the results are used to train the algorithms.
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Like linear regression models, the method of maximum likelihood or the least squares
approach is widely used to calculate a nonlinear regression model’s parameter. The param-
eter estimates from both estimating procedures are equivalent when the error components
have a normal distribution and a constant variance. Nonlinear regression models usually
never offer mathematical formulations for the maximum likelihood and least squares es-
timators, in contrast to linear regression models. These calculations are frequently only
accessible through linear regression. Both estimation methodologies, however, necessitate
the use of time-consuming numerical search techniques. Therefore, it is usual practice to
evaluate nonlinear regression models using standard computer software tools. The utilized
nonlinear regression model is shown in Equation (9).

FCt = α1 exp
(

b1
NPc

C

)
+ α2 exp

(
b2

SF
C

)
+ α1 exp

(
b3

NPs

C

)
(9)

Various regression models are analyzed and based on these findings; the models
are used to identify which cement manufacturing independent variables had the biggest
impact on the dependent variables; that is, which will yield the lowest root mean squared
error (RMSE). The suggested models’ accuracy was assessed using the following metrics:
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something which determines coefficient (R2) (Equation (10)), RMSE, Equation (11), the
Durbin–Watson test (Equation (12)), the F-test, and the t-test.

R2 = 1− ∑(residuals)2

∑(Predicted−Values)2 (10)

RMSE =

√
1
m ∑m

i=1(yi − ŷi)
2 (11)

N is the number of datasets, and y and y are the laboratory measurements and their
corresponding estimated values using the suggested model. A model with a lower RMSE
would, if applied, have a lower overall error rate and more predictive power. To determine
whether multi-collinearity is present, the Durbin-Watson statistic is utilized. The Durbin-
Watson distribution’s magnitude values range from 0 to 4, and the number 2 in the middle
denotes the absence of any correlation between the variables entered [67]. A number
between 1.5 and 2.5 is sufficient to produce multicollinearity-free models. The Durbin-
Watson, or DW, statistics (Dahish et al. [68]) are calculated using Equation (12) herein after.

DW =
∑T

t=2(et − et−1)

∑T
t=1 e2

t
(12)

Users of mathematical and simulation models can analyze how each model input
affects the outcome using sensitivity analysis to understand how the model output is
dependent on the input. Python coding analysis was selected for this work. To identify
which independent variable has the biggest impact on CO2 emissions, the significance of
the independent variables will also be assessed. The Artificial Neural Network (ANN)
model’s hidden layers and number of neurons were chosen at random. The design of an
ANN network representing inputs and outputs is shown in Figure 6. An artificial neural
network makes up the neural network. These skills are made possible by the circuit’s
inclusion of elements that take cues from the biological similarities of the neurons to enable
the learned neurons’ ability to detect solutions, formulate predictions, characterize data,
and even foresee future events. As a result, numerous applications were found in the
modeling of numerous forecasts for concrete strength blends as well as the simulation of
extremely complicated interactions. A network of this type, however, typically consists
of several layers with different sequential ordering, each of which includes a group of
neurons connected to the neurons in the layer(s) above it in a similar way. We use actual
input and output data for the first and last layers, which are the input and output variables.
The hidden layers are typically thought of as multi-layered structures that use the input
data to modify the hidden data. Using learning principles and neural networks, neuron
weights can be adjusted to improve network emulation or task performance until a system
satisfies the requirements for emulation or accomplishes its objectives. The input-to-output
transformation of each neuron is applied to the data in the case of neuron transfer functions,
which are now referred to as mathematical functions. The back-propagation method is
particularly useful when using the log-sigmoid transfer function, which is extensively used
in hidden layer neurons. In order to translate inputs into their corresponding outputs, the
hidden (transitional) and output layers must go through two separate phases. A constant
factor is multiplied by the sum of a neuron’s input and weight to determine its net input.
Creating the product from the net input is the second step. The new multi-layer feedforward
neural network design shown in Figure 7 consists of one output neuron, eight input neurons,
six hidden neurons in the first layer, and four hidden neurons in the second layer. A
fundamental type of neural network called the multi-layered perceptron (MLP) comprises
three layers of neurons: input, hidden, and output, as well as forward information flows
(Figure 7). Feedforward backpropagation (FFBP), the resulting network, involves applying
the steepest or gradient descent approach to reduce the error value between realized and
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desired outputs. In other words, the weight correction (W) is proportional to the rate of
global error change (E) with respect to that weight, according to Equation (13).

∆wa
∂E
∂w

(13)
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After examining various network topologies, FFBP will advise the number of hid-
den layers and the overall number of nodes in the input and hidden layers. There are
several ways to prevent overfitting in ANNs. Giustolisi and Laucelli [69] summarize
these strategies.

Source of Data in Cement Manufacturing

Understanding the performance of all assets and processes at a cement plant requires
that digitization is adopted. Sensors and instrumentation should ideally be installed along
assets to measure performance by converting analog to digital. These digital data can then
be stored to track real-time performance trends that decisions can be based on. Figure 8
shows a typical digitization workflow process for cement manufacturing plants including
Programmable Logic Controllers (PLC).
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Figure 8. Typical instrumentation data system and data collection setup for Heidelberg Material
Union Bridge Cement Plant [10,61].
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The data were chosen for 3 years of measurements from various sensors placed
throughout the manufacturing facility. These sensors were chosen based upon their likeli-
hood to contribute more significantly to CO2 generation than others. Days that produced
null measurements where measurements were expected were removed from the dataset.
The dataset was then normalized for better comparison.

4. Results

Feature correlation heat maps were first used to narrow the scope of our research by
establishing potential correlation and eliminating those variables with little to no relevance
in terms of CO2 generation (dimensionality reduction). Predictive models were then
generated using the string potential correlation input variables. Presented herein are the
results obtained for the different sections of the production line as mentioned in Section 2
of this paper. In addition, predictive model results are also presented herein. More than
60 independent input variables containing over 50,000 data points were used for sensitivity
analysis. The dataset was divided 80/20 to train and test the quality of the model used. One
limitation to the model was that key manufacturing sensors were used and compared to
CO2 calculations for each day. The model is only comparing manufacturing processes that
had sensors, so it is possible that other non-measured sources could contribute to the CO2
generation. Additionally, while largely reliable, sensor readings could also introduce some
level of error in measurements. But in general, they result in a high level of reliability of the
dataset. The independent variables in cement manufacturing were selected because they are
all the performance tracking instrumentation sensors associated with the calcination process
phases with the preheat tower and kiln that most likely contributed to CO2 generation.
Figure 9 shows the workflow of proposed ML techniques used for analysis.
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4.1. Preheat Tower Data Analysis

To better understand how the process variables impact the emission of the CO2,
predictive tools were adopted. Results for the Python analysis are reported herein. Thirty-
one independent preheating input variables containing over 31,465 data points were used
for sensitivity analysis against CO2. The data for this analysis covers the operations from
1 January 2020, through 23 October 2022. Table 3 shows the statistical analysis of the dataset
analysis. Figure 10 shows a typical Python code used for the heat map model.
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Table 3. The statistical breakdown of the primary correlated value and corresponding CO2 value for
the sensitivity and predictive modeling.

Statistics V2: Stage 3 Cyclone Gas Outlet Temp CO2 Generation

Mean µ 625.709 3271.366

Mean µ (normalized) 0.847 0.823

St. Dev. δ (normalized) 0.264 0.292

Variance δ2 (normalized) 0.070 0.085
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Figure 10. The Python code used for the heat map.

Feature correlation heat maps were first used to narrow the scope of our research by
establishing potential correlation and eliminating those variables with little to no relevance
in terms of CO2 generation. The datasets run showed the strongest correlations among
the two cement manufacturing processes. Figure 11 shows the heat map of the sensitivity
analysis performed. Similar Python coding was used for the analysis. The heat map is
the local sensitivity analysis results for the final model using manufacturing real-time
instrumentation process historic data of the preheat tower system as input variables against
output data of CO2. It presents the sensitivity indices of cement manufacturing process
metrics for the most sensitive parameters across the preheater system. Sensitivity indices
represent the relative change in the metric that results from changing parameter values.
The intensity of the color in each panel correlates with the magnitude of the parameter
sensitivity, with deep blue representing a positive correlation between the parameter and
lighter blue representing a negative correlation. Table 4 shows the variables’ description of
the heat map.

Examine quantitative survey data to find significant patterns, trends, or linkages
between the variables. The correlation is shown in Figure 12. Figure 12 shows the PRE-
HEAT.STG.3 CYCLONE GAS OUTLET TEMP. [0–900 [◦C]] as the variable which has the
highest correlation R2 with the CO2.
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Figure 11. The heat map of the sensitivity analysis using input variables against CO2 as
output variable.

Table 4. The heat map of the sensitivity analysis using input variables against CO2 as output variable.

Variable Description

v1 Preheat.stg.2 cyclone gas outlet temp. [0–800 [◦C]]

v2 Preheat.stg.3 cyclone gas outlet temp. [0–900 [◦C]]

v3 Preheat cyclone 1a meal temp.to stage 3 [0–600 [◦C]]

v4 Preheat cyclone 1b meal temp.to stage 3 [0–600 [◦C]]

v5 Preheat.stg.4 cyclone cone pressure [−50–5 [mbar]]

v6 Preheat.stg.4 cyclone gas outlet temp. [0–1000 [◦C]]

v7 Preheat cyclone 2 meal temp.to stage 4 [0–800 [◦C]]

v8 Preheat.stg.5 cyclone cone pressure [−50–5 [mbar]]

v9 Calciner burner liner temp. east [0–1370 [◦C]]

v10 Preheat. south loop duct level 170 temp [0–1370 [◦C]]

The dataset was used to train five categories of regression models. The model with
the lowest RMSE for each category was chosen to forecast the three outcome variables of
apparent calcination degree and CO2 molar fraction. Also displayed are the ANNmodel
outcomes. To demonstrate how the conventional linear regression method differs from other
approaches, it also displays the results of the linear regression classical model. Figure 13
below shows the predictive modeling of the dataset using multiple regression analysis. The
results are represented herein.
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Root mean square error (RMSE), commonly referred to as root mean square deviation,
is one of the most widely used techniques for evaluating the precision of forecasts. It
demonstrates the Euclidean separation between forecasts and observed true values. The
RMSE indicator shows how closely the obtained data are clustered around the predicted
values, indicating how dispersed these residuals are. The RMSE decreases as the data
points get nearer to the regression line because the model has less error. The RMSE for the
linear, ridge, decision, and random regression are all equal to or below 0.05. The Lasso
regression analysis is 0.24. Predictions made by a model with lower error are more accurate.
RMSE values use the same units as the dependent (outcome) variable and have a range
of zero to positive infinity. Figure 14 shows the RMSE with different algorithms for the
predictive modeling.
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4.2. Kiln Data Analysis

As mentioned in the context of this paper, the final stage of the calcination process
happens in the kiln. The kiln dataset used for this analysis covers the kiln inlet through
the kiln and the kiln outlet. The dataset comprises the rotary kiln inlet O2 of about 6.39%
with oxygen 3106 PPMsw. The temperature ranges from 1100 ◦C at the kiln inlet to 1600 ◦C
at the burning zone of the kiln. The gas flow rate inside the kiln determines how quickly
fuel burns and how long solids stay there. In calciner systems with tertiary air flow,
the calculated gas duration ranges from 1.4 to 1.7 s to 4 to 5 s in total or hybrid flow
systems, depending on the size of the kiln. The kiln system has multiple instrumentations
installed for monitoring the processes and controlling the processes which allow this
dataset to be collected. These monitoring instruments measure variables such as gas
temperatures, pressure drops, material temperatures, fuel flow, heat inputs, kiln feed rate,
clinker production rate, drivers’ power, oxygen flow, etc., which are compiled as a dataset.
This dataset is stored in the historical database and was extracted for this analysis. Note
that the manufacturing process is managed using multiple control loops. A multivariable
process called a kiln has intricate interactions between its various factors. It is more coupled,
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exhibits strong nonlinearities, and experiences frequent disturbances. The dataset of all the
complex variables is extracted into Excel format and used for this analysis.

Note that this dataset does not include the cooler since there is no calcination process
that takes place during the cooling. Twenty-one independent kiln input variables containing
over 21,315 data points were used for sensitivity analysis against CO2. The data for this
analysis covers the operations from 1 January 2020, through 23 October 2022. Results
for the Python analysis are reported herein. Table 5 shows the statistical analysis of the
dataset analysis.

Table 5. The statistic breakdown of the primary correlated value and corresponding CO2 value for
the sensitivity and predictive model.

Statistics V15: Kiln Main Drive Speed Control CO2 Generation

Mean µ 3.930 3271.366

µ (normalized) 0.862 0.823

δ (normalized) 0.305 0.292

δ2 (normalized) 0.093 0.085

The datasets run showed the strongest correlations among the cement manufacturing
process. Figure 15 shows the heat map of the sensitivity analysis performed, providing
data visualization of the correlation of these manufacturing processes to the calculated
generation of CO2 for the process. Heat map of the local sensitivity analysis results for
the final model using manufacturing real-time instrumentation process historic data of
the kiln entire system as input variables against output data of CO2. As depicted by the
feature correlation heat map below, V15 (Kiln Main Drive Control Speed) had the highest
correlation with the amount of CO2 generated during the final stage of the calcination
process. Table 6 shows the variables’ description of the heat map.

Examine the quantitative survey data to find notable patterns, trends, or linkages
between the variables as shown in Figure 16. The KILN MAIN DRIVE SPEED CONTROL
[0–100%] is the variable which has the highest correlation R2 with the CO2. The kiln main
drive speed is normally about 4.50 RPM. This means that the kiln speed has influence on
the calcination degree and can be used as a predictor of the amount of calcination degree
through the cement manufacturing process.

Table 6. The kiln process descriptions for each variable.

Variable Description

v11 Kiln main drive current [0–217 [a]]

v12 Kiln main drive torque [0–150 [knm]]

v13 Kiln inlet temperature #1 [700–1600 [◦C]]

v14 secondary air temp [0–1370 [◦C]]

v15 Kiln main drive speed control [0–100%]

v16 Kiln main drive current [0–217 [a]]

v17 Kiln main drive torque [0–150 [knm]]

v18 Kiln inlet temperature #1 [700–1600 [◦C]]

v19 Secondary air temp [0–1370 [◦C]]

v20 Tertiary air to preheater temp [0–1200 [◦C]]
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The dataset was used to train five different regression model types. The model that
provided the lowest RMSE for each category was chosen to forecast the output variables of
apparent calcination degree and CO2 molar fraction. Figure 17 below shows the predictive
modeling of the dataset using multiple regression analysis.

The RMSE for the linear, ridge, decision, and random regression are all equal to or
below 0.05. The Lasso regression analysis is 0.24. Predictions made by a model with lower
error are more accurate. RMSE values use the same units as the dependent (outcome)
variable and have a range of zero to positive infinity. Figure 18 shows the RMSE with
different algorithms for the predictive modeling.
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4.3. Preheat Tower and Kiln Systems

The combined system which included the preheat tower and the kiln dataset was
considered. Results for the Python analysis are reported herein. Table 7 shows the sta-
tistical analysis of the dataset analysis of the correlation coefficient between the two
highest systems.

Table 7. Correlation coefficient comparisons between the two highest correlated system values from
the preheat and kiln.

Correlation Value

Preheat.stg.3 cyclone 3a gas outlet pressure 0.940095

Kiln main drive speed control 0.985176

Feature correlation heat maps were first used to narrow the scope of our research by
establishing potential correlation and eliminating those variables with little to no relevance
in terms of CO2 generation. The datasets run showed the highest correlations among
the cement manufacturing process. Heat map of the local sensitivity analysis results for
the final model using manufacturing real-time instrumentation process historic data of
the kiln entire system as input variables against output data of CO2 (Figure 19). Upon
narrowing the results of both the preheat tower and the kiln systems, a Pearson correlation
was performed to evaluate the linear relationships between each measurement and the
corresponding CO2 calculated over the same time frames (Equation (14)).

r =
∑
(
xi − xaverage

)(
yi − yaverage

)√
∑
(
xi − xaverage

)2 ∗∑
(
yi − yaverage

)2
(14)
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Figure 19. The heat map of the preheat and kiln process data sensitivity analysis.

The highest yielding outputs from both the previous kiln and preheat analyses were
then compared to produce the highest overall correlation of the dimensionality-reduced set
of features using multivariate regression. Figure 20 shows the KILN MAIN DRIVE SPEED
CONTROL as the variable which has the highest correlation R2 with the CO2. The pressure
daft at stage 5 is −19 mBar and at stage 1 are draft −81 mBar. In consideration of all the
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system data, the correlation shows that the draft pressure in the preheat tower at stage 1 is
the most critical to the predictability of the calcination process and emission of the CO2.
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Figure 20 below shows the feature of importance of the dataset using multiple regres-
sion analysis. V2 and V15 can be referenced to Tables 4 and 6.

5. Discussion

One of the most significant environmental challenges that our civilization is currently
facing is the threat posed by climate change. One of the main greenhouse gases is carbon
dioxide (CO2). The objective of the current study is to identify the variables that have a
greater overall impact on CO2 emissions during the cement production process. The two
primary chemical processes in a Portland cement manufacturing facility are calcination
and clinker reactions, which ordinarily take place in the cement calciner and rotary kiln,
respectively. The most energy-consuming step in the cement manufacturing process,
calcination, produces CO2 as a byproduct. An explanation of the analysis output follows.

5.1. Current Trend of Dealing with CO2 Emission in the Cement Industry

As stated in the article, around 8% of global carbon dioxide emission, is caused by the
cement sector. The cement industry is now examining a wide range of options to lower the
CO2 emissions footprint of cement production and help the global cement industry achieve
the roadmap vision pathway. As mentioned in the International Energy Agency (2018)
study, the cement manufacturing industry is adopting several strategies to help achieve
NetZero CO2 emissions by the year 2050. It is significant to highlight that the paper’s
findings play a crucial role in identifying these routes and suggest strategies for utilizing
machine learning to advance this objective. Artificial intelligence and machine learning are
now essential components of modern life, and they have helped to demonstrate the presence
of humanity in several ways. Unfortunately, machine learning and artificial intelligence
have not been fully utilized in the cement manufacturing industry to understand how
things might be improved. Here are some of the ways the cement industry is attempting to
reduce CO2 emissions and how this study’s innovative findings contribute to achieving
the goal:

• By incorporating cutting-edge technology into brand-new cement plants and upgrad-
ing existing facilities to achieve higher energy performance levels where practical
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from an economic standpoint, we can increase energy efficiency. According to the
International Energy Agency, increasing energy efficiency in cement production will
result in 0.26 GtCO2 or 3% less CO2 emissions globally in the 2DS compared to the
RTS by 2050. This equates to 12% of the worldwide cement industry’s current direct
CO2 emissions. The energy required to burn cement clinker (about 1700–1800 MJ/t)
and the heat required for drying and preheating raw materials together makes up the
potential amount of thermal energy required to generate cement clinker;

• Coal is the fuel that is most frequently used, accounting for 70% of the thermal energy
used globally to manufacture cement. Together, oil and natural gas make up 24% of
the thermal energy required to produce cement globally, while biomass and waste
(alternative fuels) make up a little over 5%. To balance the use of carbon-intensive
fossil fuels by using biomass and waste materials as fuels in cement kilns in place
of conventional fuels to reduce carbon emission biogenic and non-biogenic waste
streams that would otherwise be inappropriately disposed of, burned, or transferred
to landfills are referred to as “wastes” in this context and can be used as alternative
fuels. By using alternative fuels instead of conventional fuels, we can reduce our
carbon footprint; the world’s CO2 emissions will be reduced by 0.9 GtCO2, or 12%, by
2050 as compared to the RTS. This equates to 42% of the direct CO2 emissions that the
worldwide cement sector now produces;

• Increasing the use of blended ingredients substitutes and expands the market for
blended cements, and will help to lower the quantity of clinker needed per ton of
cement or every cubic meter of concrete produced. By 2050, lowering the clinker to
cement ratio will cut world CO2 emissions by 2.9 GtCO2, or 37%. This is equivalent
to 128% of current direct CO2 emissions of global cement production. Fly ash (Type
C and Type F), slag cement, and to a lesser extent silica fume are the SCMs most
frequently employed in concrete formulations. These materials are leftovers from
several industries: Power stations burn coal with fly ash; iron ore is smelted with slag
cement; and silicon or ferrosilicon is alloyed with silica fume. Recent years have seen
a lot of research on alternative materials, like biochar, that can be utilized as SCM for
carbon capture and sequestration in concrete;

• Using emerging and innovative technologies that:

◦ By using energy storage and distribution systems like EHR technology to gener-
ate electricity from thermal energy that would otherwise be wasted, the cement
industry may assist in the adoption of renewable-based power generation
technologies like solar thermal power and contribute to the decarbonization
of electricity generation. As a clean energy source, hydrogen has also been
investigated. Carbon Capture systems in the cement-making process for long-
term sequestration or storage are currently being explored. A new method
called carbon capture, utilization, and storage (CCUS) has the potential to lower
greenhouse gas emissions from the manufacture of cement. A reasonably pure
stream of carbon dioxide from industrial sources is isolated, processed, and
then delivered to a place for long-term storage as part of the carbon capture
and storage process. The carbon dioxide stream that needs to be caught, for
instance, may be produced by burning biomass or fossil fuels. Over the next ten
years, advances in technology and legislation are expected to raise the quantity
of CO2 gathered by 800 MT. Through 2050, 70–100 projects will be required
annually to handle this scale-up. Rapid adoption of the ready-now technology
will be required to get there.

The creation of low-energy cement with a smaller carbon footprint is another cre-
ative discovery to aid in the reduction of CO2 generation in the cement manufacturing
process. Izadifar et al. [70] showed in their study that using cement clinkers predominantly
constituted of belite (β-C2S as a model crystal), which replaces alite, is an environmen-
tally beneficial strategy to minimize the high level of CO2 emissions in Portland cement
production. Their research demonstrates that variations exist in the previously stated
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dissolution timeframes for both perfect and imperfect crystals, which are caused by the
statistical properties of the KMC algorithm as determined by executing ten numerical
realizations. The study finds that it is feasible to analyze the various dissolution behaviors
of the individual facets of belite crystals by upscaling atomistic models, and that this could
eventually result in the manufacturing of more reactive belites that could be used to make
Portland cement clinker. Cement manufacturing efficiency can be crucial in understanding
CO2 in production and in assisting with CO2 reduction efforts. To produce consistently
high-quality products, which is the purpose of clinker manufacturing, several variables
must be under control. Understanding the impact of these factors’ variation on the chemical
reactions occurring during the process is necessary. The control of these variables can aid in
reducing emissions if the amount of CO2 from the manufacturing stream can be predicted.
The bulk of estimations for CO2 for cement plants, according to the literature analysis for
this paper, are based on the quantity of clinker produced and the type of thermal energy
source multiplied by a factor. Our study makes use of machine learning to identify the
process variable that has the greatest impact on CO2 emission and to forecast CO2 emission
utilizing these factors. This study’s results section demonstrates that two variables are
essential to the pyro-system of the manufacturing process. The investigation took historical
manufacturing data into account. First, PRE-HEAT.STG.3 CYCLONE GAS OUTLET TEMP.
[0–900 [◦C]] is one of the two variables, along (2) CONTROL FOR KILN MAIN DRIVE
SPEED. These two factors are thoroughly explored here.

5.2. Preheat.STG.3 Cyclone Gas Outlet Temp. [0–900 [◦C]]

The calcination of the limestone blend begins in the preheater cyclone stages, as was
already described. This section justifies the reason why the preheat temperature makes
sense with the correlation. In many situations, temperature can significantly affect CO2
emissions. Increased CO2 emissions may occur from more complete burning of fossil fuels
at higher temperatures. These processes can proceed more quickly at higher temperatures,
increasing emissions. At normal pressure, limestone decomposes at a temperature of
898 ◦C, and once the temperature exceeds 925 ◦C, it breaks down quickly. Only when
the temperature rises above the temperature at which the carbonates in limestone disso-
ciate, which is normally between 780 and 1340 degrees Celsius, does the reaction start.
Agglomeration and shrinking increase with temperature.

The CO2 that is evolved during the process must be eliminated, and the temperature
must be kept above the dissociation point. The CaCO3 eventually dissociates from the
particle’s outer surface inward, leaving behind the desired CaO layer. As a result, the
procedure is dependent on a sufficient fire temperature of at least 800 degrees Celsius to
enable decomposition and a decent residence time or holding the lime or limestone at
temperatures of 1000 to 1200 degrees Celsius for an acceptable amount of time to manage
its reactivity. The elements that affect calcination are the limestone’s crystalline structure,
internal strength, and the size of the crystals that form following calcination. Smaller
crystals unite to form larger crystals during calcination, which causes the larger crystals to
contract and lose volume.

Higher agglomeration and more shrinkage result from calcination at higher tempera-
tures. In addition, the crystal structure of limestone is connected to its density. The void
space between crystals is determined by the crystal form, which also affects the density of
the limestone. Volume is reduced during calcination because larger voids make it easier
for CO2 gases to pass through. Some limestones dissolve during the calcination process
because of their crystalline structure. Limestone of this kind is not suitable for calcining.
Another limestone exhibits the exact opposite behavior. This sort of limestone is calcined
until it becomes so dense that CO2 cannot escape, and it becomes nonporous.

The substance’s reactivity is used to gauge how quickly lime responds in the presence
of water. To find out how reactive ground lime is, a test process involves slaking it in
water. Numerous procedures and factors relating to the raw materials have an impact
on the reactivity of lime. These factors include (i) the burning temperature and duration,
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(ii) the crystal structure of the limestone, (iii) impurities, and (iv) the type of fuel and kiln.
According to how reactive it is, lime is typically divided into four categories: (i) dead
burned, (ii) hard, (iii) medium, and (iv) soft. Fewer reactions of lime is frequently described
as being medium, hard, or dead burned. The limestone used as fuel and feedstock has
an impact on the properties of lime as well. For instance, coke-fired shaft kilns often
produce lime with a medium to low reactivity, but gas-fired parallel flow regenerative kilns
frequently produce a high-reactivity lime. The primary factors influencing lime’s utilization
are its chemistry and reactivity. In the instance of the Union Bridge Plant, the process raises
the temperature in the preheat tower using coal as a thermal fuel source. The coal also has
carbonate compounds, which are burned to produce the high temperature in the preheat
tower and emit carbon dioxide (CO2).

Dolomite and dolomitic limestone deterioration is considerably more difficult. One, two,
or even more distinct stages, as well as transitional ones, might be involved in decomposition.
The reactions involved in these phases are CaCO3.MgCO3 + heat = CaCO3.MgO + CO2,
CaCO3.MgO + heat = CaO.MgO + CO2, and CaCO3.MgCO3 + heat = CaO.MgO + 2CO2.
Dolomite and dolomitic limestone require temperatures between 500 and 750 degrees
Celsius to decompose. Technologies for reducing CO2 emissions from industrial processes,
such as carbon capture and storage, can perform better or worse depending on the tempera-
ture. Overall, warmer temperatures have the potential to worsen the issue of CO2 emissions
and contribute to global warming, which has a variety of effects on the environment and
society. As explained here and shown in the results, the degree of temperature in the
preheat tower is directly correlated with the degree of calcination resulting in the amount
of CO2 emission (Figure 11). The degree of temperature is correlated with the amount of
total heat consumption. This clearly supports the results obtained by conducting sensitivity
analysis and predictive analytics using machine learning tools. This, therefore, shows why
there is a strong correlation depicted in the result section of temperature on stage 3 with
CO2 emission.

5.3. Kiln Main Drive Speed Control

The kiln main drive speed control variable has the highest correlation with CO2 based
on the sensitivity analysis. A kiln’s main drive speed, which is frequently linked to the
drum or shell’s spinning speed, can have a direct impact on CO2 emissions. However, the
link is intricate and is reliant on circumstances and processes. Why is the kiln main speed
control having such an impact on the calcination process? The following outlined reasons
explain the impact. An electric motor with a frequency converter, a gearbox, couplings, and
an auxiliary drive make up the drive. Diesel engines can be used as auxiliary drives. The
continuous process of raising materials to a high temperature (calcination) is carried out in a
rotary kiln, which typically rotates at a speed of 1 to 3 rpm but can occasionally reach 5 rpm.
The amount of calcination and reaction that takes place depends on how long materials
remain within the kiln, which is affected by the main drive speed. Shorter residence times
brought on by higher main drive speeds may have an impact on kiln fuel economy and
clinker quality. The main driving speed can affect energy use and, consequently, CO2
emissions. The efficiency of calcination, which in turn influences the amount of energy
used and emissions produced by these processes, is also affected by the main drive speed.
The firing process may be impacted by the main drive speed, which could have an impact
on emissions and energy use. The link is not linear, though, and important roles are also
played by other variables such kiln design, fuel type, feed material composition, and
process optimization. Some contemporary kilns have cutting-edge energy-saving and
emission-reduction technology, which can lessen the effect of main drive speed on CO2
emissions. In actuality, the calcining zone and the maximum temperature in the traveling
bed must be positioned in such a way that the coal has a reasonably long travel time as it
completes calcination to achieve the desired provision of stable kiln operation. Effective
calcination can be accomplished with the least amount of feed and, ideally, without the use
of any additional fuel (more than 75%, or perhaps 85% or more of the heat requirements are
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met by burning volatiles in any case). Of course, the maximum temperature value which
is chosen or altered to fit the qualities of the coal is a key process variable. As the kiln’s
rotation speed increases, the calcining zone and the position of maximum temperature go
down toward the discharge end; conversely, as it slows, the opposite occurs.

As explained herein, we can clearly see the impact of the kiln main drive speed control
on the calcination process. Therefore, the finding of the clear correlation of the kiln main
drive speed control with CO2 confirms our analysis. This variable is extremely important
in the understanding of CO2 emission in the cement manufacturing process and can be
used to predict the CO2 emitted from cement plants.

6. Conclusions

Research efforts are being directed toward creating commercially feasible technology to
reduce greenhouse gas emissions as people’s understanding of the necessity of preventing
climate change grows. Examining the environmental and economic aspects of process
improvements to produce cement is important due to the high energy consumption and
carbon-intensive nature of cement manufacturing. Over the years, the understanding of the
CO2 emission tonnage from the cement manufacturing process has always been determined
by using empirical equations with some empirical numerical factors. Even though there
are advancements in predicting CO2 with machine learning and AI tools in many areas,
this is not common in the cement manufacturing world. The main objective of this study,
conducted at the Heidelberg Material cement plant at Union Bridge, was to use a different
approach with a machine learning technique to predict CO2 emission, therefore adding
to the novelty of this research for the industry. Historical process data for the preheat
tower and the kiln where calcination takes place resulting in CO2 emission were used to
perform a sensitive analysis with multiple input variables against CO2 emission tonnage
to see the correlation with the total emitted CO2. Predictive analytics models were also
conducted using the data. Even though AI and machine learning are new to the cement
industry, there is a clear indication that this method can be used by the cement industry to
understand the total emitted CO2. The results show that the PRE-HEAT.STG 3 CYCLONE
GAS OUTLET TEMP. [0–900 [◦C]] is one of the two variables that correlated well with CO2
and (2) CONTROL FOR KILN MAIN DRIVE SPEED is the second which has the highest
correlation with CO2. What are the advantages of using this new study methodology?

• By proving that this methodology can be adopted, it can help eliminate the laborious
method currently used in calculating the amount of CO2 emitted during cement
production. It is important to note that the existing mythology requires multiple
calibrations of belt scales which measure the amount of raw material used for the
clinker manufacturing, calibration of scales that measure the clinker production, and
the calibration of scales that measure the different tonnage of fuel source used. In
addition, the thermal heat content of each fuel source must be well documented. All
these sets of information are required for the manual input into a large spreadsheet
calculator for CO2 emission calculation. The many steps required in the empirical
method for calculating CO2 result in possible errors and, therefore, there is always a
need for step audits to make sure the values calculated are accurate. Knowing that
the two variables needed to achieve the same objectives can be determined using
machine learning techniques, existing historical data can be easily utilized to achieve
the same results as the empirical technique that requires a lot of manpower. This will
help avoid costs that can be allocated somewhere else. The new method also helps us
to predict the CO2 ahead of time because the model can interlock with the data source
for continuous feed;

• In addition, this study has well established that the two key operational variables
with the highest degree of impact on the CO2 emission in cement manufacturing are
PRE-HEAT.STG.3 CYCLONE GAS OUTLET TEMP. [0–900 [◦C]] and (2) CONTROL
FOR KILN MAIN DRIVE SPEED. With this knowledge, the two variables can be
experimented in a lab setting to see their impact in real-time to help reduce CO2
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emissions and production output. This will require that such a setup will have
critical monitoring instrumentations simulating real clinker production seniors. It
is important to note that optimizing kiln operations involves a holistic approach,
considering multiple parameters to achieve the desired product quality and minimize
environmental impacts. Therefore, such experimentation cannot be conducted on the
manufacturing plant in real-time since the adverse consequences could be impactful
because of the complex reactions that take place.

It is clear in this study that the adoption of digitization, AI, and machine learning
will play a key role in the cement industry over time. The industry has a lot of historical
data that can be used to help understand how the process can be improved to reduce CO2
emissions. It is, therefore, important for the industry to quickly adopt the machine learning
and AI tools to improve manufacturing performance and environmental impact.
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