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Abstract: This work investigates the efficacy of high-pressure torsion (HPT), as a severe plastic
deformation mechanism for processing plain and silicon-carbide-reinforced AA6061, with the broader
objective of using the technique for improving the properties of lightweight materials for a range of
objectives. The interactions between input variables, such as the pressure and equivalent strain (eeq)
applied during HPT processing, and the presence of SiCp and response variables, like the relative
density, grain refinement, homogeneity of the structure, and the mechanical properties of the AA6061
aluminum matrix, were investigated. Hot compaction (HC) of the mixed powders followed by HPT
were employed to produce AA6061 discs with and without 15% SiCp. The experimental findings
were then analyzed statistically using the response surface methodology (RSM) and a machine
learning (ML) approach to predict the output variables and to optimize the input parameters. The
optimum combination of HPT process parameters was confirmed by the genetic algorithm (GA) and
ML approaches. Furthermore, the constructed ML and RSM models were validated experimentally
by HPT processing the same material under new conditions not fed into the models and comparing
the experimental results to those predicted by the model. From the ML and RSM models, it was
found that processing the AA6061/SiCp composite HPT via four revolutions at 3 GPa produced
the highest mechanical properties coupled with significant grain refinement compared to the HC
condition. ML analysis revealed that the equivalent strain induced by the number of revolutions was
the most effective parameter for grain refinement, whereas the presence of SiCp played the highest
role in improving both the hardness values and the compressive strength of the AA6061 matrices.

Keywords: high-pressure torsion; severe plastic deformation; AA6061; response surface methodology;
machine learning approach; genetic algorithm

1. Introduction

Due to their low density and good workability, aluminum alloys stand out for their
wide range of industrial applications; nonetheless, their usage is constrained by their com-
paratively low yield strength and poor wear resistance. The study of aluminum matrix
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composites (AMCs) has been prompted to obtain better mechanical behavior for specific
applications, such as defense, aerospace, automotive, and aeronautic industries [1,2]. Sig-
nificant AMC attributes, such as its superior strength-to-weight ratio, energy efficiency,
and greater wear resistance, increase its potential to outperform traditional aluminum
alloys [3]. One type of these composites—AMC reinforced with SiC particles—promises to
be more useful than other metal matrix composites (MMCs) because of its distinct qualities,
including a higher strength, elastic modulus, wear resistance, electrical conductivity, and
a lower thermal expansion coefficient than conventional alloys [4,5]. Engine pistons and
cylinder liners, brake rotors for automobiles, bearing surfaces, tank tracks, maritime winch
drums, and wear-resistant coatings are some of the most frequent places where compo-
nents are exposed to mechanical damage [6]. One of the many methods used to create
aluminum-SiC composites is the powder metallurgy (PM) approach, which has a strong
reputation in terms of regulated material behavior due to careful microstructure control [7].
Due to its excellent formability and weldability among the many AMCs, the 6xxx Al alloy
is frequently used in a variety of engineering sectors [8]. Furthermore, it has recently
come to light that by adjusting the grain refinement procedures, a better knowledge of
the strengthening and flow behavior of the Al alloys of the 6xxx family can provide more
efficient manipulation of these alloys [9].

Production of ultrafine-grained (UFG) and nanocrystalline (NC) materials is in high
demand due to their superior mechanical qualities and greater strength-to-weight ratio. As
a result, much early research has focused on various methods for producing UFG materials
with improved physical, mechanical, tribological, thermal, electrochemical, and electrical
characteristics [9,10]. Processing of materials through various techniques of severe plastic
deformation (SPD), commonly equal-channel angular pressing (ECAP) [10] and high-
pressure torsion (HPT) [11], and multi-channel spiral twist extrusion (MCSTE) [12] offered
the opportunity to achieve much finer grain sizes than those obtained by conventional
processes including rolling and extrusion. HPT is a more efficient process that is capable
of producing ultrafine grain sizes and high strength levels [13,14]. For example, AA6061
HPT-processed samples display grain sizes 22-30% finer than those processed by ECAP as
a result of the severe strain imposed during processing [15]. Moreover, HPT is used for the
recycling of monolithic metal chips and composite metal chips [16], which improves friction
and wear performance [17]. HPT is also used for powder consolidating [9] and enhances
the hydrogenation kinetics among various hydrogen storage materials [18]. During HPT
processing, a cylindrical-shaped sample is pressed in the middle of two rotating anvils
relative to one another, which subjects the disc to severe torsional stress [11]. The applied
strain fluctuates over the disc’s radius, and the shear strain and equivalent strain may be
calculated as shown in Equations (1) and (2), respectively.

2nNr
T= @
2N h
oy = m(T) +zn<;) @

where 7, €, 1, N, hy, and h are the shear strain, equivalent strain, the distance from the
center of the disc, number of revolutions, original disc thickness, and the final disc thickness,
respectively [11].

Extensive research has been conducted to develop various material design techniques,
such as the design of experiment methodologies, optimization procedures, and physical-
based models, in order to examine and produce unique materials with distinct proper-
ties [19-21]. To investigate the right links between intricate material attributes and design
concepts, these traditional approaches usually require thorough physics-based analysis. In
this sense, it was essential to first study a number of fundamental physical and chemical
laws that govern material properties. Machine learning (ML) models, which require just
a database to capture the complex relationship between material properties and design
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parameters, were another option. They are regarded as an innovative approach that has
lately gained great success in the material design sector [22].

ML models with high prediction performance aided in the discovery of material
property correlations several orders of magnitude quicker than any other conventional
material design approach. The ML area has recently experienced a rising interest in
many industrial applications, owing to the fast increase in computer performance and
capabilities as well as the availability of massive datasets and successfully implemented
complex algorithms. As a result, ML approaches are increasingly being utilized effectively
to tackle large datasets with high-dimensional inputs and accomplish various difficult
tasks such as regression, classification, data clustering, and dimensionality reduction. In
addition, ML technology has the potential to manage and expose complex material systems
quickly, including rapid functional changes, extracting information from available data, and
predicting system performance. When new datasets are fed into trained and well-tested
ML models, they can act as a data analysis tool, extracting results autonomously [23,24].

On the other hand, in modern computing database technology, the development
and expansion of applicable mathematical insights is a vital requirement. Earlier studies
adopted the response surface methodology (RSM) with the aim of optimizing severe
plastic deformation (SPD) techniques. RSM is an experimental system of mathematical
and statistical techniques that are used to simulate and improve experiments [25]. In
order to prevent local optimum solutions, the genetic algorithm (GA) is also employed
in optimization. GA is a technique that is frequently utilized in industry and science.
GA offers the best algorithms in each individual through a common convention method
that creates a single point and adopts a predetermined technique to choose the following
generation. Each generation assesses individual fitness capabilities. GA uses specific
methods to obtain a solution targeting a global minimum for a fitness function, which
ensures convergence of the findings [26,27].

In light of the above survey and with the goal of optimization of the HPT processing
parameters for the enhancement of the mechanical properties of lightweight materials for
a spectrum of applications, this work presents a detailed investigation. In particular, the
influence of addition of SiC particles on the structural evolution and mechanical properties
of AA6061 as a function of the HPT processing pressure and ¢eq induced by variable number
of revolutions was investigated and compared to the plain alloy. Additionally, prediction
of the output variables and optimization of the input parameters were developed using
ML and statistical approaches. The experimental data in this study were analyzed using
ANOVA to identify the input parameters’ most significant effects on the output responses’
relative density, grain size, compressive strength, and hardness. Furthermore, the ML, GA,
and hybrid design of experiment-GA (DOE-GA) algorithms were used to identify the HPT
optimum processing parameters. In addition, the constructed ML and RSM models were
validated experimentally by HPT processing AA6061/SiCp composite through different
parameters, and the experimental results were compared with the predicted findings.
Figure 1 demonstrates the flow diagram of the detailed work strategy of this study.
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Figure 1. Experimental procedure flow diagram.

2. Methodology
2.1. Materials and Experimental Procedures

AA6061 aluminum alloy (0.9% Mg, 0.6% Si, 0.5% Fe, 0.3% Cu, 0.25% Cr, 0.2% Zn,
0.1% Ti, 0.05% Mn, and Al balance) and a reinforced 15 vol% SiCp metal matrix composite
(MMC) variant were fabricated with powder metallurgy. The as-received AA6061 powder
was supplied by Aluminum Powders Company limited (APC), and SiC powder was
supplied by American Elements Company (AEC). AA6061 particles were characterized
by irregularity in shape, size variation from 10 to 75 um and an average particle size of
30 um. The as-received SiC powders were characterized by non-uniformity in shape with
particles size ranging from 1 to 5 um and an average size of 2 um. The two powders were
mixed in a vacuum glove box and then blended for three hours at 96 rpm in a turbula
mixer. Discs with a diameter of 10 mm and a thickness of 9.7 mm were prepared through
a single-sided uniaxial hot compaction (HC) process that lasted for 30 min at 400 °C and
525 MPa compaction pressure by means of an ARMSTRONG 100-ton hydraulic press. Each
disc was HPT processed under either 1 or 3 GPa pressure on the upper anvil and for 1,
2, or 4 revolutions on the lower anvil at room temperature. The HPT and HC dies were
manufactured from high strength tool steel (AISI-W302), hardened until 55 HRC, and
purchased and treated at Béhler, Egypt.

The microstructural evolution, density, and compressive properties were investigated
before and after HPT for both AA6061 and AA6061-SiCp. The disc was prepared by mount-
ing, grinding, appropriate polishing until a mirror-like gloss was achieved with an alumina
fluid, and lastly, treating it with “Keller” adhesive. Grain structure was investigated using
LEO field emission scanning electron microscopy (FESEM), and the average size of the
grains and sub-grains was calculated using the average grain intercept (AGI) method.
Density was measured using a Mettler Toledo XS 205 digital densitometer that uses the
Archimedean principle to determine density. The hardness of the HPT-processed discs was
measured using a Vickers hardness (HV) tester at three locations along the disc’s cross-
section: at the center, the half radius mark, and periphery. The hardness readings collected
and displayed are the average of 5 equidistant indentations. Hv tests were conducted using
a load of 1 kg applied for 15 s. A compression test was conducted at room temperature
using a Materials Testing System (MTS) machine with an applied force of 500 KN and a
strain rate of 1 x 107> S~1. Three compression specimens per condition were tested, and
the average values of the mechanical properties were recorded.
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2.2. Machine Learning (ML) Approach

There are several types of ML methodologies, including supervised learning, unsuper-
vised learning, semi-supervised learning, and reinforcement learning. The most common
form of ML technique is supervised learning, which utilizes training data to identify pat-
terns and predict future outcomes based on past results [28,29]. Many critical phases
are included in the unsupervised learning framework, such as data preprocessing, data
standardization, feature extraction, algorithm selection, model training, validation, and
testing. The model learning process starts with the training dataset being used to formulate
an initial model that is capable of matching the input data with adjusted variables. The
majority of model learning strategies are implemented by searching within the training
data for empirical correlations that may achieve best-fit relationships that properly predict
the targeted output of the model. The validation dataset is used to fine-tune the model’s
variable structure for further accuracy. The model is then trained by maximizing its per-
formance, which is frequently measured using some sort of cost function. This usually
necessitates modifying model hyperparameters that influence the training process, model
structure, and characteristics. Ideally, the validation and testing sets should both be distinct
from the training set, yet all three should share the same probability distribution.

Overfitting is an issue that may arise during model training in which the model
perfectly fits all of the points in the dataset while ignoring the regularization criterion.
In this situation, the trained model almost always fails to perform well in the testing
phase. To overcome this problem, especially with a small dataset, as in this study, the
cross-validation (CV) approach is applied. The k-fold CV method splits the dataset into
smaller subsets, which are identified as “folds” and are randomly chosen. All folds except
one are used as the training dataset the model is validated with, and the residual fold is
used as a test set to calculate and evaluate its implementation. This process is performed k
times within an iterative loop that cycles through all unique folds to validate the model.
Model performance metrics are computed using the average of the metrics acquired in
the whole loop. This method is computationally costly; however, it preserves the need
for excessive data, particularly when training is to be performed on a small set of data.
Cross-validation has the benefit of providing a more trustworthy assessment of the model’s
performance than a single train/test split. By testing the model on numerous subsets of the
data, the potential of overfitting to a specific subset or bias in the data is reduced. However,
cross-validation does not always offer improved prediction results. Rather, it estimates the
model’s performance on new, previously unseen data. This may be used to compare model
performance or to tune the hyperparameters of a single model. It is also worth mentioning
that cross-validation results might vary based on the precise subsets of data utilized in
each fold. Therefore, in this work, we optimized the number of k-folds to be five folds (i.e.,
k =5). The flow chart of a typical machine learning workflow that includes cross-validation
is summarized as follows:

1.  Data preparation: This step includes collecting the data, cleaning, feature engineering,
and normalization.

2. Data splitting: The data are split into training and testing sets. Optionally, the data
can also be split into validation sets to tune hyperparameters.

3. Model defining: This step includes choosing a machine learning algorithm and
defining the model architecture.

4. Model training: The model is trained on the training dataset using the chosen algo-
rithm and hyperparameters.

5. Model evaluation: The model is tested on the testing dataset to evaluate its perfor-
mance. Optionally, the validation set can also be used to tune hyperparameters.

6.  Cross-validation: k-fold cross-validation is performed to estimate the performance of
the model on new, unseen data. This step is repeated with different random splits of
the data, and the results are averaged to increase the reliability of the estimate.
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7. Hyperparameter tuning: The results of cross-validation are used to tune the hyperpa-
rameters of the model, such as the learning rate, regularization strength, or number
of layers.

8. Evaluation of the final model: after training the final model on the entire dataset using
the optimized hyperparameters, it is important to test the final model on a holdout
dataset to evaluate its performance on new, unseen data.

9.  Model deployment: The final model is deployed in production, and its performance
over time is monitored.

To evaluate prediction performance of ML, the most commonly used performance
metrics are the root mean square error (RMSE) and the coefficient of determination (R?2-
score). RMSE measures the average deviation of the predicted values from the actual values,
expressed in the same units as the target variable. RMSE is a popular metric because it
penalizes large errors more heavily than small errors and is sensitive to outliers. A lower
RMSE value indicates better model performance, as it means the model’s predictions are
closer to the actual values. The coefficient of determination measures the proportion of the
variance in the target variable that is explained by the model. R2-score produces values
between 0 and 1, with higher values indicating better model performance.

In this study, multiple ML algorithms were used, including multivariable linear
regression (LR), Gaussian process regression (GPR), and support vector machine (SVM)
regression (SVR). The adopted approaches are briefly introduced in the following section.

2.2.1. Multivariable Linear Regression

Linear regression models are commonly used to characterize the connection between
a set of predictive input variables and an outcome response variable. The linear regression
approach employs supervised ML to determine the most appropriate linear connection
between the predictor(s) and the outcome response. It is valuable for explaining and
foreseeing the response of intricate systems, in addition to interpreting data resulting from
experiments and from fields like biology, finance, and chemistry. When there are several
independent variables (X), linear regression (Equation (3)) yields an answer vector (Y) in

the form of:
N

Y:ﬁ0+2,3nxn+€n (3)
n=1
where B, signifies the estimated linear parameters, By signifies the constant, and €, indicates
the error terms.

2.2.2. Regression Gaussian Process

The GPR regression technique is a nonparametric Bayesian regression methodology
that was the result of recent significant breakthroughs in ML [29,30]. The methodology
possesses many benefits, such as the capability to work adequately on a limited amount of
data and generate predictions of uncertainty.

Considering the training dataset (x;, y;);i=1,2, ..., n, where x; € R? and y; € Rare
derived from an unknown distribution, a GPR model is used to predict the value of a
response variable y* given the new input vector x* and the training data. Equation (4), a
linear regression model, has the following structure:

y=x"p+e 4)

where the B vector is the estimated coefficient that fits the model, and the error term is
denoted as ¢ ~ N(0, 02), where N( ) indicates a normal distribution of the error with a
mean of zero and a variance of 02. In general, a Gaussian process (GP) is described via its
mean function m(x) and covariance function (or kernel function) k(x, x’), where x and x’ are
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two instances in the input feature matrix x. Therefore, Equation (5) presents the predicted
values of y* reformulated as a GP:

y* ~ GP(m(x), k(x,x")) 5)

It should be noted that the covariance function must be properly chosen or created
since it is critical in deciding the performance of GPR. In reality, there are multiple common
covariance functions in the GPR; however, choosing one is a case-by-case decision. One of
the famous kernels commonly utilized with GPR is the radial basis function, Equation (6),
which is written as [31]:

xi = % Hz)
202

where Hxi — xjH represents the Euclidean distance among the two feature vectors, and o
signifies the dispersion of the kernel function’s distribution.

K(xj, xj) = exp(— (6)

2.2.3. Support Vector Machine

The SVM method is usually adopted with classification or regression cases [31]. Sup-
port vector machine regression (SVR) is based on classification procedures identical to the
SVM albeit with minor modifications [32-35]. A tolerance margin () is provided whenever
regression must be conducted. It represents a region around the predicted function where
errors within this region are considered to be acceptable and have zero loss function. In
addition, there is a more complex justification is that the algorithm is more sophisticated
and must be accounted for. The SVM method works by finding the hyperplane that best
divides data into many classes with the maximum margin. The function f(x) is imple-
mented to effectively estimate the provided training dataset (x;, v;), i=1, 2, ...... , N,
where x;, is a multivariate collection. In the most basic form, the function f(x) is written as
(Equation (7)) [31]:

f(x) =wx+b (7)

Minimizing the following formula [31], Equations (8) and (9), yields the optimum
values of the weight w and the bias term b:

min 2 [ W]+ CLY (6 + &) ®)

where ¢; and ¢ are slack variables that introduced in the SVM method to produce a
regression function with soft margin. The slack variables are non-negative variables that
allow some data points to be on the wrong side of the margin or the hyperplane. Cis a
balance between the empirically estimated error and generic term. The objective function
of the SVM is then modified to minimize the sum of the slack variables, subject to the
constraint that the classification errors are limited by a certain threshold.

Subject to:
yi—wx;—b<e+g;
wx; +b—y; <e+ 9)
Ci/ gl* >0

where is an e-insensitive tube expressing an acceptable error tolerance with negligible loss.
Using the optimal constraints along with Lagrangian multipliers, the regression function
may be expressed as follows in Equation (10) [31]:

M=

I
—_

y =) (a+a;j)K(x;,x)+b (10)

1
where K(x;, x) is referred to as the kernel function. The resulting objective function is then
optimized with respect to both the hyperplane coefficients and the Lagrange multipliers («;
and «;}). The Lagrange multipliers act as weights that determine the importance of each
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data point in defining the hyperplane. The linear, polynomial, sigmoidal, Gaussian, and
radial basis functions are some of the most well-known kernel functions that are commonly
used with SVR.

2.2.4. Analysis of ML Approach

Correlation coefficients quantify the strength of a link between two variables. Pearson’s
correlation coefficient (r) is the most commonly used to identify the linear relation between
features and the target model output in ML models utilizing linear regression computation.
It is the slope of the least-squares-estimated straight line describing the linear association
of two variables. It is a statistical measure that describes the intensity and direction of
that connection and is calculated by obtaining the covariance of the two variables and
dividing it by the multiplication product of both variables” standard deviations. It has a
range of outcomes from —1 to +1, where the positive values indicate a direct relationship
with an increasing proportional slope line and vice versa. Strong correlations are shown by
coefficient values approaching 1, regardless of the sign, while weak correlations approach
0.0. Values smaller than 0.3 are considered weak correlations, those ranging from 0.3 to
0.5 are considered to be medium correlations, and those between 0.5 and 1 reflect strong
correlations. Figure 2 shows the correlation chart for the input variables representing the
model parameters and the measured outcomes of the calculated responses. It provides a
visual and numerical display of the overall correlations among all inputs and outcomes in
pairs based on r values, as depicted in the input data matrix. Each off-diagonal subplot has
a scatterplot of a pair of variables, and each diagonal subplot reveals a histogram to give

an indication of the variables’” distribution.

-1.00 -0.75 -0.50 -0.25

0.00 0.25

050 075 100
P

N 035

SiC 000 000

Sub-Gs

Sub-Str
Hoor

- 079 098

-0.77 094 099

HI..OR

P N SiC RD G Gs Sub-Gs Sub-Str

c Hoor Hosr Hior

Figure 2. Correlation plots of all response composite properties (RD, GS, Sub-Gs, Sub-Str, oc, and
Vicker’s microhardness at Hoor, Hosr, and Hj gr versus process feature parameters (P, N, and
SiC content).

Figure 2 shows that grain size (GS), sub-grain size (Sub-Gs), and sub-structure size
(Sub-Str) strongly correlated with both HPT pressure (P) and the number of revolutions
(N). The former inputs had high negative significant correlations with P of —0.59, —0.72,
and —0.61, respectively and also high negative significant correlations with the N of —0.55,
—0.84, and —0.72, respectively. On the other hand, only GS had a high correlation of
—0.57 with SiC content, while Sub-Gs and Sub-5tr showed moderately low correlations
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of —0.10 and —0.38 with SiC content, respectively. In addition, it was noted that the SiC
content affected the relative density (RD) strongly, as it revealed a high negative significant
correlation of —0.96, while it showed an insignificant positive correlation with P and N
of 0.17 and 0.23, respectively. It was also clear that increasing P, N, and SiC content had
positively affected the compressive strength (o). SiC content showed a high and significant
positive correlation of 0.87 for o.. On the other hand, P and N showed a moderately positive
correlation as well. It is worth mentioning here that SiC content was the most significant
parameter in increasing the hardness of AA6061 alloy at the center (Hy gr), midway between
the center and edge (Hysr), and near the peripheries (Hj gr) of the AA6061 discs with high
positive significant correlations of 0.79, 0.78, and 0.78, respectively. Furthermore, P and N
showed moderately positive correlations.

2.3. Statistical Analysis

The experimental data in this study were analyzed using ANOVA to identify the input
parameters’ most significant effects on the output responses’ relative density, grain size, sub-
grain size, sub-structure size, compressive properties, and hardness. The adopted software
package used to perform the analysis was Design-Expert, version 13.0.5. The ANOVA
statistics are presented in Table 1, showing the F-value, p-value, adequate precision, R?,
adjusted R?, and predicted R? at a 95% confidence level. All the model independent input
parameters as well as the interaction terms had a substantial impact on the responses, as
indicated by the p-values of all responses being less than 0.05. These results suggested that
the predicted models were adequate. It was found that the most significant factor affecting
the microstructure characteristics and the fracture strain is the number of revolutions, while
the percentage of SiC had the most effect on the relative density, hardness, yield, and
compression strengths. The model showed that it could be capable of navigating the design
space, as the resulting response outcomes had an adequate precision of more than four,
which indicates that there is a sufficient signal.

Table 1. ANOVA results of HPT responses.

Response F-Value Model Significance (p < 0.05)  Adeq Precision (Ratio > 4) R? Rzadj Rzpred
RD 2946.48 <0.0001 114.5568 0.9997 0.9994 0.9983
GS 221.95 <0.0001 38.5169 0.9942 0.9897 0.9815
Sub-Gs 52.16 0.0002 20.3463 0.9843 0.9654 0.9255
Sub-Str 1.885 x 10°  0.0018 1609.9703 1.0000 1.0000 0.9998
Hoor 1382.99 <0.0001 103.7168 0.9996 0.9989 0.9967
Hosr 399.68 <0.0001 50.2033 0.9986 0.9961 0.9894
Higr 11,784.14 <0.0001 232.2409 1.0000 0.9999 0.9996
Oc 650.50 <0.0001 67.0922 0.9987 0.9972 0.9902

Several types of regression transformations and interactions between independent
input parameters were looked into to model the outcome responses. Second-polynomial
regression was adopted to model the relationship between the independent input parame-
ters of HPT of AA6061 and the outcome responses. The models created in an experimental
study are said to be of statistical significance and are able to be adopted to expect the
outcome responses when their coefficient of determination (R?), adjusted R?, and predicted
R? are close to 1 and the values of the adjusted R? are within or close to 0.2 of the predicted
R? [36]. All the regression models presented in this study were functions of the number of
revolutions (N), the pressure (P), the percentage of SiC, and their interactions. Moreover,
the plots of experimental values as a function of the matching expected values of outcome
responses showed that experimental and expected values agree well because the majority
of their intersection points are relatively near the median line, supporting the efficacy of
the proposed regression models.
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Process optimization is also established to figure out the best parameter combination
for the HPT process for the desired outcome responses based on a thorough examination
of each independent variable. The optimum combination of HPT independent input
parameters that led to the minimum likely GS, Sub-Gs, and Sub-Str and the maximum
possible RD, o, and hardness was determined using the response surface methodology
(RSM), genetic algorithm (GA), and hybrid DOE-GA approaches. The obtained regression
equations, which were used as the objective functions for each response, using a genetic
algorithm technique, were subjected to the HPT boundary conditions of pressure, number
of revolutions, and SiC%. The suggested objective functions could be stated as follows:

Minimize (P, N, SiC%)

They were subjected to ranges of HPT conditions:

1 <P <3(GPa), 1< N <4 (rev), 0 < SiC < 15 (%)

The performance of the fitness value and run solver view were obtained from MAT-
LAB, as were the corresponding HPT conditions for the best local solution of GS, Sub-Gs,
Sub-Str, RD, o, and hardness for the GA optimization technique. In order to improve
the results of GA, a hybrid design of experiment and GA (DOE-GA) was used. Also,
hybrid techniques were used to find the best global solution with lowest number of genera-
tions. Table A1l (Appendix A) shows the full design of experiment (14 runs) and the HPT
responses as well.

3. Results and Discussion
3.1. Relative Density (RD)

The relative densities of AA6061 and AA6061/SiCp composite HC discs were 98.5%
and 96.4%, respectively. After processing via HPT, their RD increased with the increase
in the induced strain, which is a function of the number of revolutions (N). The previous
is illustrated in more detail in Appendix A, Table Al. From Table Al, it can be seen that
the densities of the AA6061-5iC discs were lower than those of the plain AA6061 discs
due to the presence of hard SiC particles, which have low compressibility, as opposed to
the soft AA6061 matrix. Processing for four revolutions at a pressure of 1 GPa yielded an
increase in the relative densities of AA6061 and AA6061/SiCp composites discs to 99.5%
and 97.4%, respectively. HPT processing of the AA6061 samples for one revolution and
increasing the pressure to 3 GPa resulted in a 0.13% increase in their RD compared to their
1 GPa processed counterparts; increasing the revolutions to four at this elevated pressure
yielded no significant effect. On the other hand, increasing the HPT processing pressure
to 3 Gpa yielded no significant difference in the RD of AA6061/SiCp compared to the
1 GPa counterparts.

The increased relative density of the monolithic Al alloy and composite discs following
HPT processing might be caused by the induced intense shear deformation. The latter
is thought to have minimized porosity [37] and caused the breakdown of the naturally
developing oxide layers found on the edges of Al grains which had impeded efficient
binding of the Al-powder during sintering [38]. On the other hand, it is suggested that
localized diffusion between AA6061/SiCp was clearly inhibited due to the segregation of
SiCp along the boundaries of the Al particles of the matrix. Finally, as the pressure was
raised, increases in the densification processes occurred, and hence the RD was increased.

3.1.1. Machine Learning Prediction Models of Relative Density

Several ML techniques were used to describe the characteristics of the AA6061 and
AA6061/SiCp composite, including LR, GPR, and SVR. The validity of these models was
tested using RMSE and R?-score during the training and testing phases. Figure 3 depicts
the expected RD values versus the actual values, derived from experimental data. As listed
in Table 2, the three algorithms effectively captured data trends with high accuracy, for both
training and testing sets. This implies that the outcomes had a highly linear correlation
with the three input elements (P, N, and SiC content). The SiCp percentage in particular
showed a strong negative correlation value of —0.96, as illustrated in the correlation chart
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shown above. Both the training and test sets yielded similar results; the best-fit values
among all three models were an RMSE and an R2-score of 0.195 and 0.98, respectively. The
ML approach revealed that processing the AA6061/SiCp through HPT via four revolutions
at 3 GPa was the optimum condition for maximizing the composite’s RD and led to an
improved value of 97.4.
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Figure 3. Expected versus experimental relative density (RD) assessed for the training and the
testing datasets.

Table 2. Model evaluation metrics of AA6061 and AA6061/SiCp composites RD using HPT parameters.

Training Set Testing Set
Parameter ML Algorithm
RMSE R? RMSE R?
LR 0.148 0.98 0.119 0.98
RD (%) GPR 0.184 0.97 0.182 0.96
SVR 0.195 0.97 0.130 0.98

3.1.2. Regression Models and 3D Plots of Relative Density

Regression Equation (11) was used to describe the RD response. Figure 4 is the contrast
plot of the RD experimental outcomes against the model estimates where blue points are
for minimum output value and gradually changed to red points for maximum output
value. In Figure 5, the impact of HPT parameters on the regression-model-predicted RD is
illustrated. The number of revolutions and RD showed a proportionate correlation at both
SiC percentages. The relative densities at various SiC percentages were slightly affected
by the pressure level used in the experiment. Figure 5a illustrates the highest 0% SiC RD,
which was 99.5% attained at 3 GPa and four revolutions. The highest possible 15% SiC RD
was 97%, attained at 3 GPa and four revolutions, shown in Figure 5b.

RD = +98.90750 + 0.076250 x P + 0.140357 x N — 0.130167 SiC — 0.016250 P x N — 0.002667 P x SiC — 0.002214 x N x SiC (11)

3.1.3. Optimization of Relative Density

The maximum RD and its corresponding parameters were found by RSM opti-
mization. “In range” was chosen as the optimization objective, “Maximize” was se-
lected as the solution destination, and “larger-is-better” was anticipated by the desir-
ability function. The maximum RD value was 99.5027, attained with HPT parameters of
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RD (%)

B: N (Rev.)

P (A) =3 GPa, N (B) = 4 revolutions, and SiC% (C) = 0%. The maximizing of RD suggested
in Equation (11) was used as the fitting function, with the application of the HPT boundary
conditions. The greatest RD estimate by GA was 99.5027, attained at 3 GPa, four revolutions,
and 0% SiC, as demonstrated in Figure Ala, found in Appendix B. Figure A1b illustrated

the hybrid DOE-GA findings, which revealed a greatest RD value of 99.5027 at 3 GPa,
4-revolutions, and 0% SiC.
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Figure 4. The contrast of experimental versus estimated outcomes of HPT for RD (blue points are for
minimum output value and gradually changed to red points for maximum output value).
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Figure 5. 3D response plot of relative density at (a) 0% SiC and (b) 15% of SiC (b).
3.2. Microstructural Evolution

An SEM micrograph showing the grain, sub-grains, and sub-structures of AA6061
alloy processed through four revolutions at 3 GPa is displayed in Figure 6. In addition,
the microstructural evolution of the disc at the peripheral areas after HPT processing is
illustrated in Figure 7 using FESEM used on AA6061 subjected to one revolution (a,e) and
four revolutions (c,g) at a pressure of 1 GPa (a,c) and at a pressure of 3 GPa (e,g). In addition,
Figure 7 shows comparable micrographs of the composite subjected to one revolution (b,f)
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and four revolutions (d,h) at pressures of 1 GPa (b,d) and 3 GPa (f,h). The SEM micrographs
demonstrated the possibility of obtaining ultrafine sub-grains and sub-structures within
the as cast grains following HPT processing. The average GS, Sub-Gs, and Sub-Str of
as-HC AA6061/SiCp and after HPT processing through different conditions are listed in
Appendix A, Table Al. The micrographs clearly show the increased refinement in the
average size of the grains, Sub-Gs and Sub-Str, resulting from increasing the number of
revolutions from one to four. The average GS, Sub-Gs, and Sub-Str of the as-HC AA6061
discs were 35, 3.2 um, and 610 nm, respectively (Table A1). HPT processing at pressures
of 1 GPa and one revolution resulted in the refinement of the GS, Sub-Gs, and Sub-Str
to 33, 2.8 um, and 360 nm, respectively (Table A1). HPT with four revolutions under the
same pressure of 1 GPa resulted in additional refinement of the GS, Sub-Gs, and Sub-Str
to 30, 1.9 um, and 250 nm (Figure 7c). HPT processing of AA6061 discs at 3 GPa and four
revolutions led to the refinement of the GS, Sub-Gs, and Sub-Str to 28, 1.8 um, and 240 nm,
respectively (Figure 7g and Table Al).

Figure 6. SEM micrograph showing grains, sub-grains, and sub-structures of AA6061 processed via
four revolutions at 3 GPa.

For the AA6061/SiCp as-HC discs, the GS, Sub-Gs, and Sub-Str of the HC were
33, 3 um, and 420 nm, respectively, as listed in Table A1l. HPT processing through one
revolution resulted in refining the GS, Sub-Gs, and Sub-5Str of AA6061/SiCp discs to 31.5,
2.7 um, and 260 nm, respectively (Figure 7d). The increased amount of strain up to four
revolutions at 1 GPa led to a reduction in the GS, Sub-Gs, and Sub-Str to 25, 1.9 um, and 184
nm, respectively (Figure 7d). The accumulation of HPT straining up to four revolutions at
3 GPa yielded UFGs with GS, Sub-Gs, and Sub-Str of 24, 1.5 um, and 154 nm, respectively
(Figure 7h and Table A1l).

It is reasonable to assume that the process’s significant torsional straining and relatively
high applied pressure were the main causes behind the refined grain sizes produced by
HPT. Furthermore, the resulted UFG structure led to an increase in the grain boundaries
area which acted as a barrier against dislocation motion that made it more challenging
for dislocations to shift their direction of motion due to the different grain orientations.
Prior to their slide planes, these pile-ups produced stress concentrations that caused further
dislocations in neighboring grains [11,39].



J. Manuf. Mater. Process. 2023, 7, 148 14 of 32

F S NN AR RN

TSGR AN SRR '-"&
-~ I S s AN

TR SN SR T G

j_}::%_ )
e f’—“@-‘i‘.‘
LDt b SR Y

Figure 7. SEM micrographs of AA6061 (a,c,e,g) and AA6061/SiCp (b,d,f,h) discs processed at 1 GPa
(a—d) and 3 GPa (e-h) via one revolution (a,b,e,f) and four revolutions (c,d,gh).
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3.2.1. Machine Learning Prediction Models of the Microstructural Evolution

Figure 8 depicts the expected versus actual experimental microstructure evolution data
of the alloy, comprising GS, Sub-Gs, and Sub-5Str for monolithic AA6061 and AA6061/SiCp
composite. For both the training and testing phases, the predicted values were in close
agreement with those of the experimental data with high R?-scores. According to Table 3,
SVR resulted in the best possible fitting model with a lower RMSE and an R2-score of 0.99
in all cases. Furthermore, ML revealed that the optimum HPT parameters for process-
ing AA6061 and AA6061/SiCp composite was four revolutions at 3 GPa pressure. ML
findings showed that these optimum HPT processing parameters should lead to refine-
ments in the GS, Sub-Gs, and Sub-Str by 27%, 45%, and 63%, respectively, compared to the
HC counterpart.
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Figure 8. Predicted versus experimentally measured evaluated for the training and the testing
datasets for (a) GS, (b) Sub-Gs, and (c) Sub-Str.

Table 3. Model evaluation metrics of properties of AA6061-SiC composite using HPT parameters.

Training Set Testing Set
Parameter ML Algorithm
RMSE R? RMSE R?
LR 1.50 0.74 1.57 0.88
GS (um) GPR 0.59 0.96 0.61 0.98
SVR 0.05 0.99 0.05 0.99
LR 0.17 0.88 1.57 0.88
Sub-Gs (um) GPR 0.03 0.99 0.61 0.98
SVR 0.05 0.99 0.05 0.99
LR 39.38 0.73 62.76 0.84
Sub-Str (nm) GPR 11.47 0.98 14.74 0.99
SVR 0.51 0.99 8.48 0.99

3.2.2. Regression Models and 3D Plots of Microstructure Characteristics

Equations (12)—(14) represent the predicted linear models of microstructure responses
of GS, Sub-Gs, and Sub-5Str.

GS = +34.12500 + 0.520833 x P — 1.08929 x N + 0.094444 x SiC — 1.01786 P x N — 0.291667 x P x SiC + (12)
0.120238 N x SiC + 1.88532 x 10714 x N2 + 0.060714 P x N x SiC + 0.229167 x P x N2 — 0.052778 x N2 x SiC

Sub-Gs = +3.55000 — 0.475000 x P — 0.392857 x N + 0.003333 x SiC + 0.103571 x P x N + 0.003333 x P x SiC — (13)
0.006667 x N x SiC

Sub-Str = +435.25000 — 52.12500 x P — 30.07143 x N — 11.43333 x SiC + 10.28571 x P x N + 3.81667 x P x SiC + (14)
2.12619 x N x SiC — 3.75000 x N2 — 1.12143 x P x N x SiC + 0.375000 x P x N? — 0.050000 x N? x SiC

Figure 9a—c show the experimental against estimated outcome values of GS, Sub-Gs,
and Sub-Str, respectively. Figure 10 shows the 3D response plots, which illustrate how HPT
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parameters such as pressure and number of revolutions had an impact on the microstructure
characteristics as a function of HPT parameters (P and N) at various SiC percentages. For
GS, as shown in Figure 10a,b, there was an inverse relationship between HPT parameters
and GS at 0% and 15% SiC. At a constant SiCp percentage, the increase in both P and N
produced finer grains. The minimum GS of 24 pm was obtained at a pressure of 3 GPa, four
revolutions, and 15% SiC. Furthermore, Figures 8d and 10c illustrate an inverse relationship
between HPT parameters and Sub-Gs at 0% and 15% of SiCp. Increases in both P and N
produced finer sub-grains at any given SiCp%. The finest Sub-Gs, measuring 1.6 pm, was
attained at 3 GPa, four revolutions, and 15% SiC.
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Figure 9. The contrast of experimental versus estimated outcomes of HPT for (a) GS, (b) Sub-Gs, and
(c) Sub-Str.
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Figure 10. 3D response plot of (a,b) GS (c,d), Sub-Gs, and (e,f) Sub-Str for (a,c,e) AA6061, and
(b,d,f) AA6061/SiCp composite.

Finally, an inverse relation between Sub-Str and HPT parameters was also revealed
for the 0% and 15% of SiCp, as shown in Figure 10e,f. At a fixed SiCp content, an increase
in P and N led to finer Sub-Str. At 3 GPa, 4-revolutions, and 15% SiCp, the absolute finest
Sub-Str was 154 nm. This is indicative of the significant influence of SiCp reinforcement



J. Manuf. Mater. Process. 2023, 7, 148

17 of 32

on the refinement of the structure compared to the plain AA6061 alloys. In conclusion,
the optimum processing conditions for structural refinement are achieved at the highest
pressure (3 GPa) and the highest number of revolutions (four revolutions) for the AA6061
with SiCp reinforcement.

3.2.3. Optimization of Microstructure Characteristics

The refinement in microstructure and its corresponding HPT processing parameters for
the AA6061/SiC composite was determined using RSM optimization. Based on the fact that
low values of GS, Sub-Gs, and Sub-Str are better for microstructure features, “In range” was
chosen as the optimization objective, “Minimize” was selected as the solution destination,
and “smaller-is-better” was anticipated by the desirability function. The minimum GS,
Sub-Gs, and Sub-5Str were reached at 23.9 m, 1.6 m, and 154 nm, respectively, with optimal
HPT condition parameters of P (A) = 3 GPa, N (B) = 4 revolutions, and SiC% (C) = 15%.

Figure A2, Appendix B, shows the fitness function of microstructure-feature mini-
mization suggested in Equations (12)—(14), and subjected to the HPT boundary conditions.
The minimum values of GS, Sub-Gs, and Sub-Str estimated by GA were 23.9 um, 1.6 um,
and 154 nm, respectively, which were attained at 3 GPa, four revolutions, and 15% SiC, as
demonstrated in (Figure A2a,c,e). Based on the optimum HPT conditions of the DOE, the
initial population of the hybrid DOE-GA had the following parameters: P =3 GPa, N =4
revolutions, and SiC% = 15%. According to the hybrid DOE-GA, the minimum values for
GS, Sub-Gs, and Sub-5Str were 23.9 um, 1.6 um, and 154 nm, respectively, at 3 GPa, four
revolutions, and 15% SiC (Figure A2b,d,f).

3.3. Hardness Distribution

Figure 11a,b show HV values measured across different sections of processed and
as-HC AA6061 and AA6061/SiCp discs, respectively. The as-HC average Vicker’s hardness
values were 63 and 96 for monolithic AA6061 and AA6061/SiCp, respectively. After HPT
processing of the plain AA6061 alloy at 1 GPa pressure and one revolution (Figure 11a), the
average HV values measured were lowest at the core of the disc (80 HV) and increased up
to 122Hv at the peripheries of the disc. This indicates the non-uniformity of the hardness
distribution throughout the disc’s cross-section. Increasing the number of revolutions up
to four under the same pressure (Figure 11a) yielded a significant increase in the average
hardness (125 HV) coupled with a significant enhancement in hardness uniformity across
the disc’s cross section. Increasing the HPT processing pressure up to 3 GPa (Figure 11b)
resulted in a slightly higher level of homogeneity in hardness distribution in contrast to
1 GPa. Furthermore, HV values increased at the peripheries and near the core of the discs
by around 2 and 4%, respectively, compared to those of the AA6061 disc processed at 1 GPa
pressure with the same number of passes. The highest recorded HVs in monolithic AA6061
were measured at the peripheries of the discs processed for four revolutions and under a
pressure of 3 GPa and had an average of 125. The as-HC disc’s hardness doubled after four
revolutions of HPT processing, which is a considerable improvement in hardness.

For the AA6061/SiCp composite discs, the applied processing strain from HPT led to
the increase in the heterogeneity of the hardness distribution throughout the discs’ cross-
sectional area. This was demonstrated by distinct absolute minimum values of HV at the
middle part of the disc after one revolution (shown in Figure 11b). After HPT processing
for one revolution under 1 GPa pressure, the HV values were found to have increased as
the distance from the core increased. HV values recorded a maximum of about 210 at the
peripheries of the disc, which is significantly higher than that obtained at the core that
had an average of 150. When the discs were processed for four revolutions, the results
revealed a slight improvement in hardness uniformity across the disc’s cross-sections. It
should be noted that, in contrast to the AA6061 discs, the composite AA6061/SiCp discs
were not completely homogeneous after four revolutions, and the maximum HYV values
remained considerably unaltered as the strain increased. It is suggested that the addition of
SiCp to the aluminum matrices resulted in increasing friction forces at the disc peripheries
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at the die wall interface [9]. As a result, the induced strain at the peripheries was much
higher compared to the core of the disc, which resulted in excessive strain hardening at the
peripheries compared to the core.
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Figure 11. Variation of HV around the cross-sections of HPT discs for (a) AA6061 and
(b) AA6061/SiCp.

A higher processing pressure of 3.0 GPa resulted in a significant increase in the average
hardness and a slight enhancement in the hardness uniformity of the disc, compared to
the discs processed at 1 GPa pressure for the same number of revolutions (Figure 11b). By
increasing the pressure to 3 GPa, the HV values of the composite discs increased by 8.5% at
the peripheries and 8% at the core of the disc. The highest Hv values were reported at the
peripheries of the disc, with an average of 225 HV. This may be explained by the higher
strain hardening at the disc’s peripheries in comparison to its centers due to the increased
friction induced by the hard SiCp aggregates at the disc—die wall interface [9]. From the
hardness findings, it could be highlighted that the HV values of the HC discs increased
by roughly 98% for the alloy and 133% for the composite after HPT processing for four
revolutions at 3 GPa.

The variations in HV values observed throughout the cross-section of AA6061 and
AA6061/5iC discs processed by HPT were noticeably consistent with the patterns observed
by other researchers in face-centered cubic (FCC) shaped materials with low stacking-fault
energy (SFE) [40]; the disc cores had lower hardness values, whereas the peripheral regions
exhibited higher hardness values. Due to the low SFE of the AA6061 alloy, it recovered
slowly with stable growth at the pace of hardening during the preliminary processing
phases [41]. In agreement with the findings of Langdon et al., a slow recovery pace led
to elevated strain hardening in the preliminary stage, which was related to friction at the
disc—die wall juncture, in contrast to the lower hardness values in the middle area [40,41].
When the torsional strain was increased to an extremely high level of total strain, the
hardness of the discs became evenly distributed across their cross-section. Furthermore,
the observed trend of uniformity in hardness dispersal when increasing the revolutions in
HPT processing was consistent with the principles of strain gradient plasticity modeling,
the aim of which was to determine how homogeneity changes as the number of revolutions
in HPT processing increases [42].
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It has been reported that possible SPD-related strengthening processes resulted in
increasing the mechanical properties due to strain hardening, grain refinement, and solid
solution strengthening mechanisms [43—-45]. The literature shows that the addition of SiC
particles to AA6061 alloy can improve its strength by disrupting the regular arrangement
of atoms in its crystal structure, making movement harder for dislocations. It is noteworthy
that the inclusion of SiC in AA6061 led to more grain refinement in the processed material.
The SiC particles helped increase hardness values by adhering to the grain boundaries,
thus limiting the movement towards peripheral areas. The concentration of SiC particles
at the grain borders created favorable conditions for impeding dislocation mobility and
grain development. On the other hand, the significant grain refinement attained after
HPT processing (Figure 7) could be considered one of the most effective mechanisms for
strengthening the AA6061 alloy and AA6061/SiCp composite [9].

3.3.1. Machine Learning Prediction Models of Hardness Distribution

Figure 12 displays the predicted hardness values measured at Hy or, Ho sr, and Hj gr of
the alloy against the experimental data. Predicted values showed high degrees of agreement
with the experimental data in both the training and testing phases, as indicated by high
R2-scores. According to Table 4, SVR achieved the best fitting results with lower RMSE
values and an R?-score of 0.99. Moreover, ML revealed that the optimum HPT parameters
for the AA6061/SiCp composite was four revolutions at 3 GPa. ML findings showed
that processing the composite through four revolutions at 3 GPa resulted in increasing
the hardness values at Hygr, Hopsr, and Hjgr by 106%, 126%, and 133%, respectively,
compared to its as-HC counterpart.
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Figure 12. Predicted hardness versus experimentally measured hardness assessed for the training
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Table 4. Model evaluation metrics of properties of AA6061/SiCp composite using HPT parameters.

Parameter The Optimized Model Training Set Testing Set

(HV) Achieved Using RMSE R2 RMSE R?
LR 9.42 0.94 6.03 0.98

Ho or GPR 751 0.96 6.31 0.98
SVM 0.05 0.99 0.05 0.99

LR 18.45 0.82 6.23 0.99

Hosr GPR 8.60 0.96 7.34 0.98
SVR 0.05 0.99 0.05 0.99

LR 18.45 0.82 6.23 0.98

Hior GPR 8.60 0.96 7.34 0.98
SVR 3.35 0.99 5.97 0.99
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3.3.2. Regression Models and 3D Plots of Hardness Distribution

Equations (15)—(17) represent the linear hardness response model at different positions
along the specimens’ radius: Hyor, Hosr, and Hj gr, respectively. Figure 13 shows the
experimental versus estimated hardness distribution outcomes’ contrast plots along the
disc’s radius.

Hypgr = +63.333 + 0.166667 x P +18.96429 x N + 4.011 x SiC + 0.357143 x P x N + 0.3444 x P x SiC + 0.009524 x

N x SiC — 1.41667 x N2 (15)

Hysg = +83.70833 + 1.0 x P + 23.64286 x N + 3.98333 x SiC — 0.142857 x P x N + 0.45 x P x SiC + 0.219048 x N (16)
x SiC — 3.45833 x N2

Hi g = +114.625 + 2.54167 x P + 3.71429 x N + 4.8611 x SiC — 0.732143 x P x N + 0.5111 x P x SiC + 0.050 x N a7)

x SiC — 0.208333 x N?
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Figure 13. The contrast of experimental versus estimated outcomes of HPT for hardness distribution
along the radius of the specimen (a) at center Hy gr, (b) at half radius Hy sg, and (c) at radius Hj gR.

Figure 14 shows the response surfaces of hardness values at the Hg or, Ho5r, and Hj gr
positions of the specimen against their HPT input parameters as determined by regression
models. The HPT input parameters” impact on hardness for both 0% SiC and 15% SiC was
seen to be equivalent. Hardness values at various measurement locations increased as P
and N increased. Moreover, it was revealed that interaction plots and experimental findings
were consistent with each other, specifically verifying that the highest P and N produced
the greatest hardness for both 0% SiC and 15% SiC. The greatest hardness values recorded
at the Hoor, Hosr, and Hj or positions of the 0% SiC were 121 HV, 124 HV, and 125 HYV,
respectively, and were obtained at 3 GPa and four revolutions, as revealed in Figure 14a,c.e.
Additionally, at 3 GPa and four revolutions, 15% SiC yielded its greatest Hy gr (197.5 HV),
Hypsr (217 HV), and H;j or (224 HV), as depicted in Figure 14b,d,f.

3.3.3. Optimization of Hardness Distribution

The maximum hardness values were obtained by RSM optimization of outcomes
together with the conditions that correlate to them. The goal was to improve hardness
at various locations along the radius to ultimately lead to improved overall specimen
hardness; “In range” was chosen as the optimization objective, “Maximize” was selected as
the solution destination, and “larger-is-better” was anticipated by the desirability function.
The maximum predicted Hyor, Hosr, and Hj gr values were 197.55 HV, 217.38 HV, and
223.91 HV, respectively, with processing inputs of with P (A) = 3 GPa, N (B) = 4 revolutions,
and SiC% (C) = 15%. The hardness maximization formulas indicated in Equations (15)-(17)
were subjected to the HPT boundary constraint. The best hardness values predicted by
GA at Hygr, Hosr, and Hy gr were found to be 197.55 HV, 217.38 HV, and 223.91 HYV,
respectively, at three GPa, four revolutions, and 15% SiC, as demonstrated in Figure A3a,c.e.



J. Manuf. Mater. Process. 2023, 7, 148 21 of 32

The maximum Hj g of 197.55 HV was achieved at 3 GPa, four revolutions, and 15% SiC,
according to the hybrid DOE-GA data displayed in Figure A3b. Additionally, at 3 GPa,
four revolutions, and 15% SiC, the highest Hy 5g hardness value of 217.38 was recorded, as
demonstrated in Figure A3d. Finally, the highest hardness at H; gr was 223.91 HV, which
was attained at 3 GPa, four revolutions, and 15% SiC, as demonstrated in Figure A3f.

o R o ®
3 8 8 o°

HO.0R (HV)

HO.0R (HV)

HOSR (HV)
8 8

AP (GPa) A: P (GPa)

150
140
130
120
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H1.0R (HV)
H1.0R (HV)

100

4

34 25

28

22 22 .
B: N (rev.) A: P (GPa) B: N (rev.) i - A: P (GPa)

(e) ()

Figure 14. 3D response plot of hardness at (a,b) center H gr, (c,d) half radius Hy 5r, and (e,f) periph-
eries Hj gR for (a,c,e) AA6061 and (b,d,f) AA6061/SiCp composite.

3.4. Compressive Properties

The AA6061 and AA6061/SiC HC discs experienced a o of 245 and 342 MPa, re-
spectively, as listed in Table A1. In the monolithic AA6061, HPT processing at 1 GPa via
one revolution yielded a 13.5% rise in 0. compared to the AA6061 as-HC discs (Table Al).
Increasing the revolutions up to four showed a 32.6% enhancement in o, compared to the
AA6061 as-HC discs. Similar behavior was recorded for the composite; HPT processing at
1 GPa via one revolution resulted in an 18.4% increase in o, compared to the AA6061/SiCp
as-HC discs. Increasing the amount of strain by processing for four revolutions resulted in
an additional o, increase of 32.5%, compared to the as-HC AA6061/SiCp discs (Table A1).

Increasing the HPT processing pressure up to 3 GPa led to additional increases in
the o of both monolithic AA6061 alloy and AA6061/SiCp composite. HPT processing
yielded improved compressive behavior in the AA6061 discs regardless of the number of
revolutions, up until the maximum applied of four revolutions. The highest recorded o,
value for AA6061 discs was achieved by processing at 3 GPa through four revolutions,
which exhibited a 38.5% improvement in oc, when compared with AA6061 HC discs. As
for the AA6061/SiCp composite, processing for four revolutions at 3 GPa revealed a 34.8%
increase in 0. compared to AA6061/SiCp HC discs (Table A1).

The current study highlighted the possibility of attaining nanoscale UFG structures
(Figure 7) while increasing the o of both AA6061 and its SiC-reinforced composite through
HPT processing. This noticeable enhancement in strength post-HPT is primarily associated
with the development of homogeneous UFG microstructures (Figure 7), which led to
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substantial enhancements in strength as predicted by the Hall-Petch equation [43,46]. The
strength of the HPT processed discs as well as grain refinement improved with the increase
in the shear strain in both monolithic AA6061 and AA6061/SiCp composite. The structural
refinement of the GS, Sub-Gs, and Sub-Str of the alloy and the composite subsequently
resulted in an improved o.

3.4.1. Machine Learning Prediction Models of Compression Properties

Figure 15 depicts the expected versus actual experimental o data points for AA6061
and AA6061/SiCp composite. For both the training and testing phases, the predicted
values were in great agreement with those of the experimental data with high R?-scores.
According to Table 5, SVR showed the best possible fitting model with a lower RMSE and an
RZ-score of 0.99. ML findings confirmed that processing AA6061/SiCp for four revolutions
at 3 GPa was the optimum and had resulted in o. improvements of 35% compared to the
HC composite.

@ Traning dataset
450 1 | Testing dataset

425
400 A1
375 1

350 1

Predicted o.(MPa)

325 4

300 A

275 1
275 300 325 350 375 400 425 450
o.(MPa)

Figure 15. Predicted versus experimental values evaluated for the training and the testing datasets
of oc.

Table 5. Model evaluation metrics of properties of AA6061-SiC composite using HPT parameters.

Training Set Testing Set
Parameter ML Algorithm ) g
(MPa) RMSE R? RMSE R?
LR 9.48 0.98 2.58 0.99
Oc GPR 13.64 0.96 9.61 0.98
SVR 0.05 0.99 4.24 0.99

3.4.2. Regression Models and 3D Plots of Compression Properties

Equation (18) represents the linear o. model of monolithic AA6061 and its SiC com-
posite. Figure 16 shows the contrast plot of experimental versus estimated outcomes of
HPT processing on o.

Oc = +250 + 11.87500 P + 15.85714 N + 8.61667 SiC — 0.660714 P x N — 0.433333 P x SiC + 0.130952 N x SiC  (18)
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Figure 16. The contrast of experimental versus estimated outcomes of HPT o.

Figure 17 shows the response surface of o, to its HPT processing parameters in AA6061
and AA6061/SiC, as determined by regression models. HPT parameters were seen to have
had similar effects on o, for both 0% SiC and 15% SiC. The o, values increased with the
increase in P and N. Moreover, the response surface results were consistent with those of
the interaction plots and experimental findings, specifically corroborating that the highest
P and N produced the greatest o for both 0% SiC and 15% SiC. The greatest monolithic
AA6061 o, was 341 MPa, and that of AA6061/SiC was 459 MPa; both were obtained at
3 GPa after four revolutions, as revealed in Figure 15.

(a) (b)
Figure 17. 3D response plot of o for (a) AA6061 and (b) AA6061/SiCp.

3.4.3. Optimization of Compression Properties

The maximum o. was obtained by RSM optimization of the outcomes as well as
the processing input parameters that correlate with them. “In range” was chosen as the
optimization objective, “Maximize” was selected as the solution destination, and “larger-
is-better” was anticipated by the desirability function. The maximum o, value predicted
was 458.73 MPa through HPT parameters of P (A) = 3 GPa, N (B) = 4 revolutions, and
5iC% (C) = 15%. The maximization of o, indicated in Equation (18) was constrained by
the HPT boundary conditions. The highest o. value obtained by GA was found to be
458.73 MPa, attained at 3 GPa, four revolutions, and 15% SiC, as demonstrated in Figure A4
(Appendix B). The maximum o, predicted the hybrid DOE-GA was 458.73 MPa, achieved
at 3 GPa, four revolutions, and 15% SiC, displayed in Figure A4b (Appendix B). Table A2
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(Appendix A) summarizes HPT response values extracted from experimental, RSM, GA,
and hybrid DOE-GA findings.

4. Validation of ML and RSM Models for AA6061 and AA6061/SiCp Processing
through HPT

4.1. Validation of ML Model Inferences

ML model inference is the act of feeding new, unseen data points into a trained
and tested model to predict new target data, which should then be validated on a single
numerical score. This is also known as “bringing an ML model into production” or “model
deployment”. Table 6 lists the experimental results of new, unseen samples processed at a
pressure of 1 GPa and through three revolutions and the corresponding model predictions
for this unseen data with computed error and relative accuracy. The accuracy scores for
these data ranged from 73.5 to 99.9%, depending on the target output property. This range
is commonly accepted, especially for models trained using limited data.

Table 6. ML models performance validation on new unseen data.

Response SiC % Experimental  Validation Error % Accuracy
RD 0 99.33 99.43 -0.1 99.90%
15 97.35 97.33 0.02 99.98%
GS (um) 0 30.4 30.02 1.25 98.75%
15 26 28.23 —8.58 91.42%
Sub-Gs (um) 0 2.2 2.18 0.91 99.09%
15 2 2.01 -05 99.50%
Sub-Str (nm) 0 295 286.89 2.75 97.25%
15 225 243.21 —8.09 91.91%
Hoor 0 105 127.14 —21.09 78.91%
15 172 127.15 26.08 73.92%
Hosr 0 120 145.46 —21.22 78.78%
15 198 145.47 26.53 73.47%
Hior 0 125 155.78 —24.62 75.38%
15 206 155.79 24.37 75.63%
Oc 0 296 357.43 —20.75 79.25%
15 428 357.43 16.49 83.51%

4.2. Validation of RSM Models

Table 7 presents the validation of HPT’s regression model for all responses under
a specific condition. The validation of the HPT models was obtained at one GPa, three
revolutions, and two different percentages of SiC. The results of validation showed that the
HPT response models were accurate and had the lowest percentage of error between the
experimental and regression models. The HPT conditions examined in the validation were
1 GPa through three revolutions at two percentages of SiC (0% and 15%).

Table 7. Validation of HPT responses regression models and experimental.

Response SiC % Experimental  Validation Error % Accuracy
GS (um) 0 30.4 30.39 0.03 99.97%
Hm 15 26 28.44 ~9.38 90.62%
0 22 221 —0.45 99.55%
Sub-Gs (um) 15 2 1.96 2.00 98.00%
0 295 293.39 0.54 99.46%
Sub-Str (nm) 15 225 217.61 3.28 96.72%
. 0 99.33 99.35 ~0.02 99.98%
RD (%) 15 97.35 97.26 0.09 99.91%
oc (MPa) 0 296 307.46 ~3.87 96.13%

15 428 436.11 -1.89 98.11%
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Table 7. Cont.

Response SiC % Experimental = Validation Error % Accuracy
u 0 105 108.71 —3.53 96.47%
0.0R 15 172 174.47 —1.44 98.56%
u 0 120 124.08 —3.40 96.40%
0.5R 15 198 200.44 ~1.23 98.77%
H 0 125 124.24 0.61 99.39%
LOR 15 206 207.07 —0.05 99.95%

4.3. Validation of HPT Based on Previous Studies

The literature suggests that setting the HPT parameter to 12 revolutions is optimal
in light of recent investigations of HPT and the various obtained responses [47]. Table 8
outlines the findings of a genetic algorithm (GA) and a hybrid DOE-GA employed to
determine the optimum parameters for HPT processes under multiple conditions.

Table 8. Validated HPT response based on previous studies.

Response GA DOE-GA
Value 0.54457 0.54457
GS (um) Cond. 1P, 8N, 15% 1P, 8N, 15%
Sub-Gs (um) Value 0.0607119 0.0607117
Cond. 1P, 8N, 15% 1P, 8N, 15%
Value 50.9109 50.9109
Sub-Str (nm) Cond. 3P, 6N, 15% 3P, 6N, 15%
. Value 100.473 100.473
RD (%) Cond. 1P, 12N, 0% 1P, 12N, 0%
0% (MPa) Value 587.623 587.623
Cond. 1P, 12N, 15% 1P, 12N, 15%
- Value 211.333 211.333
0.0R Cond. 3P, 7N, 15% 3P, 7N, 15%
- Value 217.375 217.375
0.5R Cond. 3P, 4N, 15% 3P, 4N, 15%
- Value 224.298 224.298
LOR Cond. 3P, 5N, 15% 3P, 5N, 15%

5. Conclusions

In this study, a detailed investigation was conducted on the feasibility of adopting
HPT processing with AA6061/SiCp composites to improve strength and grain refinement.
Experiments were conducted to determine the effect of HPT processing conditions (pressure
and torsion) with and without 15% SiCp addition to the aluminum matrices on the relative
density, grain size refinement, hardness, and compressive properties. A statistical analysis
using ANOVA and response surface plots was carried out, followed by ML approaches
to determine the output variables and optimize the input parameters. Moreover, results
validation was performed to check the accuracy of the response and ML model. The
following conclusions could be deduced:

1.  HPT processing of AA6061/SiCp composite four revolutions at 3 GPa pressures
resulted in the refinement of the grain size and sub-grain size by 27% and 46.6%,
respectively, compared to the HC counterpart.

2. Processing with four revolutions at 3 GPa resulted in improving the hardness and
compressive strength of AA6061/SiCp composite by 133% and 34.8%, respectively,
compared to the HC counterpart.

3. ML results reveals that:

a. The correlation plot obtained from ML revealed that SiC content is the most
significant parameter in increasing the hardness of AA6061 alloy at Hy gr, Hosr,
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Hj or, and o. of the AA6061 discs with a high positive significant correlation of
0.79,0.78, 0.78, and 0.87, respectively.

b. The correlation plot obtained from ML showed that the GS, Sub-Gs, and Sub-5tr
were strongly correlated with the number of revolutions of HPT with a high
negative significant correlation of —0.55, —0.84, and —0.72, respectively.

c. The optimum HPT parameters for AA6061/SiCp composite was four revolu-
tions at 3 GPa.

d.  Processing the AA6061/SiC composite four revolutions at 3 GPa reduces the
grain size and sub-grain size by 27% and 45%, respectively, which resulted in
increasing the Vicker’s hardness and compressive strength by 133% and 35%,
respectively, compared to the HC counterpart.

4.  DOE-GA optimization reveals that:

a. The minimum GS, Sub-Gs, and Sub-Str were reached at 23.9 um, 1.6 um, and
154 nm, respectively, with the optimal HPT condition parameters of P = 3 GPa,
N = 4 revolutions, and 15% SiC.

b. The maximum hardness values at Hy gr, Hy 5r, and Hj gr values were calculated
to be 197.6 HV, 217.4 HV, and 223.9 HV, respectively, with P =3 GPa, N = 4
revolutions, and 15% SiC.

C. The maximum o, were reached at 458.7 MPa with the optimal HPT condition
parameters of P = 3 GPa, N = 4 revolutions, and 15% SiC.
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Appendix A

Table Al. Design of experiment of ECAP parameters and process response.

Input Output
Run No. HPT Conditions Microstructure Hardness (HV)
RD (%
P (GPa) N (rev) SiC% %) o. (MPa) GS (um) Sub-Gs (um) Sub-Str (nm) Ho.or Hosr Hi0r
1 as-HC 0 98.5 245 35 32 610 63
2 as-HC 15 96.4 342 33 3 420 96
3 1 1 0 99.1 278 33 2.8 360 80 106 120
4 1 2 0 99.2 289 31 2.5 330 98 116 122
5 1 4 0 99.5 325 30 1.9 250 118 124 126
6 1 1 15 97.1 405 31.5 2.7 260 148 172.5 201
7 1 2 15 97.2 416 31 2.5 243 161 194 205
8 1 4 15 97.4 453 25 1.6 184 184 202 209
9 3 1 0 99.3 299 32 2 277 83 108 124
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Table Al. Cont.

Input Output
Run No. HPT Conditions Microstructure Hardness (HV)
P(GPa) N (rev) SiC% RD (%) o (MPa) GS (um) Sub-Gs (um) Sub-Str (nm) Ho.or Hosr Hior
10 3 2 0 99.3 316 30.5 2 270 98 117 124
11 3 4 0 99.5 339 30 1.8 240 121 125 125
12 3 1 15 97.1 412 24.5 2.2 258 158 189 220
13 3 2 15 97.2 424 24 1.9 230 174 207 222
14 3 4 15 97.3 461 24 1.6 154 198 217 224
Table A2. Summary results of HPT processing of AA6061 and AA6061/SiC composite.
Response Experimental RSM GA DOE-GA
Gs Value 24 23.88 23.88 23.88
Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
Sub-G Value 1.6 1.6 1.6 1.6
ub-Ls Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
Sub-S Value 154 154 1534 154
ub-5tr Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
RD Value 99.5 99.5 99.5 99.5
Cond. 3P, 4N, 0% 3P, 4N, 0% 3P, 4N, 0% 3P, 4N, 0%
- Value 461 458.7 458.7 458.7
¢ Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
H Value 198 197.55 197.55 197.55
0.0R Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
H Value 217 217.38 217.38 217.38
0.5R Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
H Value 224 223.9 2239 2239
1OR Cond. 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15% 3P, 4N, 15%
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Figure A3. Optimal hardness with GA (a,c,e) and hybrid DOE-GA (b,d,f) measured at center Hy gr
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