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Abstract: The synthesis of advanced materials at high pressures has been an area of growing research
interest for several decades. This article is the third in a three-part series that reviews Laser Materials
Processing Within Diamond Anvil Cells (L-DACs). Part III focuses on the practice of Laser Reactive
Synthesis Within Diamond Anvil Cells (LRS-DAC). During LRS-DAC processing, chemicals are
precompressed within diamond anvil cells, then microscale chemical reactions are induced by focused
laser beams. The method is distinguished from the well-known Laser-Heated Diamond Anvil
Cell (LH-DAC) technique (see Part I) through the existence of chemical precursors (reactants), end-
products, and quantifiable changes in chemical composition upon reaction. LRS-DAC processing
provides at least three new degrees of freedom in the search for advanced materials (beyond adjusting
static pressures and temperatures), namely: laser-excitation/cleavage of chemical bonds, time-
dependent reaction kinetics via pulsed lasers, and pressure-dependent chemical kinetics. All of these
broaden the synthetic phase space considerably. Through LRS-DAC experimentation, it is possible to
obtain increased understanding of high-pressure chemical kinetics—and even the nature of chemical
bonding itself. Here, LRS-DAC experimental methods are reviewed, along with the underlying
chemistry/physics of high-pressure microchemical reactions. A chronology of key events influencing
the development of LRS-DAC systems is provided, together with a summary of novel materials
synthesised, and unusual chemical reactions observed. Current gaps in knowledge and emerging
opportunities for further research are also suggested.

Keywords: diamond anvil cell; laser deposition; chemical reaction; laser-induced reaction; selective
deposition; materials synthesis; high pressure; additive manufacturing

1. Introduction

Recently, many novel advanced functional materials with emergent properties have
been discovered under highly compressed conditions [1–5], such as high-temperature
superconductors (HTS) [6], superhard compounds [7–12], ferroelectric materials [13], and
high-thermal conductivity compounds [14,15]. Ongoing research includes high purity,
single-crystal growth [16], and the synthesis of novel metal hydrides [6], borides [17,18],
carbides [19,20], nitrides [21,22], oxides [23], and intermetallic compounds [24,25]. These
useful materials were formed, not through the application of pressure or temperature alone,
but through the combined actions of an incident laser beam and applied pressure.

One emerging high-pressure method is Laser-Reactive Synthesis Diamond Anvil
Cell (LRS-DAC) experimentation. During LRS-DAC investigations, chemical precursors
(or reactants) [i] are converted to desired product(s) [ii], within a region known as the
reaction zone [iii] (See Figure 1). Often, precursor(s) and byproduct(s) [iv] are transported
to/from this reaction zone across a region of the DAC’s gasket chamber [v] that is filled
with a pressure medium [vi]. The precursor may be a solid sample, may be mixed with
the pressure medium, or may be the pressure medium itself. Similarly, when laser heating
occurs, heat is transported away from the reaction zone to other portions of the gasket
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chamber—ultimately conducting away from the chamber through the diamond anvils [vii]
or gasket walls.
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Figure 1. Illustration of the LRS-DAC method: (i) chemical precursor(s) (reactants) that transport to
the reaction zone, (ii) the resulting product, (iii) the reaction zone where the incident laser interacts
with the precursor(s), and (iv) byproducts of the reaction that may diffuse or segregate away from
the product. Additional components include the (v) gasket chamber, (vi) pressure medium, and
(vii) diamond anvils.

A key distinction between previously reviewed L-DAC modes and LRS-DAC experi-
mentation is that the laser beam(s) are used in conjunction with high pressures to drive
purposeful chemical reactions. Rather than (solely) modifying a sample material’s phase or
microstructure, a new chemical composition is created. During Laser-Heated Diamond
Anvil Cell (LH-DAC) experimentation, for example, samples are often heated to observe
phase or structural transformations (see this review, Part I [26]), whereas changes to a
sample’s chemical composition are frequently avoided. Sample contamination and reaction
with adjacent materials has been the bane of many LH-DAC experiments [27–29]. At high
temperatures, diffusion occurs more rapidly, and undesired reactions often ensue between
samples and their surroundings; this includes reactions with the DAC’s pressure media,
chamber gasket, and diamond anvils. A classic example includes the works of Santamaria-
Perez and Chulia Jordan et al., who cautioned researchers about the use of refractory metal
gaskets, e.g., rhenium and tungsten, in conjunction with CO2 and carbonate samples, as
they observed rapid gasket oxidation under high-temperature, high-pressure (HTHP) con-
ditions [30,31]. So, although unintended chemical reactions do occur in LH-DAC work, this
review distinguishes LRS-DAC studies as those (purposefully) inducing chemical reactions
with useful/desired products.

Similarly, we exclude chemical reactions caused only by changes in pressure (i.e.,
mechanochemistry) [32,33]), where lasers do not interact with the sample nor influence the
reaction directly. For example, during Laser Dynamic Compression Diamond Anvil Cell
(LDC-DAC) experimentation, samples are compressed though the passage of laser-induced
pressure- or shock-waves (see this review, Part II [34]); in this case, any chemical reactions
present are induced by rapid changes in pressure—but not by any direct interaction of
the laser beam(s) with the samples. Finally, Part III does not include any “beam-induced
synthesis” using sources outside of the 225 nm (deep UV) to 300 µm (terahertz) transmission
band of diamond anvils [27,35,36].

An LRS-DAC system (e.g., that in Figure 1), typically includes a minmium of one
cw or pulsed laser system, a focused laser beam, a precursor or reactant [i], an optional
pressure medium [vi], a desired product [ii], a byproduct [iv], a substrate [viii], a reaction
zone [iii], one or more diamond anvils [vii], a chamber gasket [v], and characterisation tools
(not shown). Although some alternate materials such as sapphire (Al2O3) or moissanite
(SiC) have been substituted during some L-DAC experiments due to their lower cost and
transparency in the deep ultraviolet [37–39], diamond is the most common anvil material
in LRS-DAC systems [40].
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An exceptional range of thermodynamic conditions is made available through LRS-
DAC methods, allowing investigators to effectively break chemical bonds and induce reac-
tions that otherwise could not occur [41–43]. It is well-known that the electronic structure
and chemical bonding of atoms, molecules, and crystals can be modified greatly through
the application of pressure [1,44,45], potentially reducing activation barriers to reaction [1].
For example: (1) Interatomic and intermolecular distances may be reduced, increasing the
probability of favourably oriented orbitals forming bonds (or where significant realignment
is necessary, reducing the probability of bond formation). (2) Interatomic and intermolec-
ular bonds may also be shortened, which tends to enhance the covalent nature of these
bonds. (3) Inner and normally unoccupied orbitals can also become available for bonding.
(4) Sometimes, even interstitial orbitals in a lattice, not associated with any particular atom,
can also form bonds. (5) In some configurations, bond angles can become distorted greatly,
which may lead to dissociation or bond reconfiguration(s). (6) Longer bonds are generally
weaker than shorter bonds, may be distorted the most, and are generally dissociated most
readily; thus, as the pressure increases, shorter bonds tend to become favoured. (7) The
chemical behaviour of elements tends toward those of higher-Z elements within the same
group of the periodic table. (8). The number of ligands bound to central atoms or molecules
tends to increase (i.e., coordination numbers increase). (9) The structure of molecules and
crystals tends to adjust to more compact arrangements, e.g., polymeric chains or cubic-
and hexagonally close-packed structures. (10) At extreme pressures (>100 TPa), it has even
been theorised that (core) atomic orbitals well below the normal valence levels may become
accessible for chemical bonding; this would open up an entirely new landscape of potential
chemical compounds that could be synthesised [46]. However, what is less understood is
how the combined effects of both pressure and laser stimuli direct the outcome of chemical
reactions—and this represents a significant opportunity for further research.

The range of thermodynamic conditions available when both high pressures and
laser stimuli are employed is impressive (even when considering only state variables like
pressure and temperature). Moreover, when short-pulsed lasers and dynamic pressure
DACs are introduced, materials can be processed to states far from equilibrium. This
introduces the potential for many novel advanced materials (and metamaterials) to be
created—and potentially recovered to ambient conditions.

As shown in Figure 2A, the number of published L-DAC studies has grown steadily
for the last three decades, whilst LRS-DAC-related studies have increased by a factor of
6+ times—second only to LH-DAC-related work, this trend appears to be continuing and
exponential. Most LRS-DAC research can be categorised according to several material
classes, as plotted in Figure 2B. This includes low-Z carbon-containing compounds, and
metal -hydrides, -borides, -carbides, -nitrides, and -oxides, as well as high-Z metallic
compounds and intermetallics. The majority of articles have been focused on the binary
metal nitrides (30%) or the binary metal oxides (22%).

Accordingly, this article describes the physics underlying LRS-DAC experiments,
outlines the chronological development of LRS-DAC systems/methods, and summarises
key reactive synthesis experiments. Lists of materials created to date via LRS-DAC sys-
tems are provided, together with the precursors, process conditions, and laser source
wavelengths/powers. It is our hope that this article provides a useful guide to further
forthcoming LRS-DAC studies.
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Figure 2. At left, (A) the total annual scientific production for laser- and synchrotron-based studies,
(B) all L-DAC studies with (just) UV-IR lasers, (C) laser-heated diamond anvil cell (LH-DAC) research
papers where primarily laser heating has been conducted for materials modification, (D) LRS-DAC
articles where laser-induced chemical reactions/synthesis occurred, and (E) LC-DAC spectroscopic
studies, [data for (A–E) obtained from the Web of Science database [26]. At right, the proportion
of LRS-DAC-synthesised materials organised by the material categories: low-Z carbon-containing
compounds, metal -hydrides, -borides, -carbides, -nitrides, -oxides, and high-Z metallic compounds
and intermetallics.

2. Methodology

This L-DAC review was conducted using the primary academic research databases: Web of
Science®, ScienceDirect®, ProQuest Science®, SCOPUS®, Wiley Online Library®, IEEE Xplore®,
Access Engineering®, and Google Scholar®, as described in Parts I and II [26,34]; initial search
outcomes for the keywords ‘diamond anvil cell,’ with no restrictions on publication year, yielded
more than 8400 papers. Adding the keywords “laser”, with at least one of: “React*”, “chemical
reaction”, or “synthe*”, yielded 407 articles. From these articles, 65 studies were manually
identified where laser-induced chemical reactions at high pressures were obviously performed.
An additional search using the keywords “high pressure” and “laser”, together with any of
the following, “react*”, “chemical reaction”, or “synthe*”, or “stoichiomet*”, were searched.
This yielded 4429 journal articles. Replacing “laser” with the keywords, “laser-induced” OR
“laser-assisted” OR “laser-heated” then down-selected this to only 963 results. Adding the
keyword “anvil” then yielded only 388 results. Out of these, an additional 93 studies were
manually verified where LRS-DAC studies were conducted. Finally, a third search looking for
specific materials in conjunction with high-pressure laser processing was carried out, using the
keywords “high pressure”, with the material class in question, e.g., “oxide”, plus any of the
following, “react*”, “chemical reaction”, or “synthe*”, or “stoichiomet*”, and with any of the
set, “laser-induced”, “laser-assisted”, or “laser-heated”. No “anvil” or reference to the chamber
hardware was included in this search. This provided 19 additional articles.

Further articles in all three cases were then found by searching forwards/backwards
using key author (and related topical) information. A final tally of 186 LRS-DAC-related
research articles was obtained.

The most cited of these articles focused on the synthesis of binary metal nitrides,
rare-earth hydrides, and diamond. The 28 most cited articles published to date are listed
in Figure 3, together with their authors and topics; each of these had a minimum of
100 citations.
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3. Overview of Laser Reactive Chemical Synthesis in Diamond Anvil Cells
(LRS-DAC) Experimentation

LRS-DAC reactions occur via two primary mechanisms: (M1) decomposition reactions
of at least one precursor to produce one or more stable products (e.g., A→ B + C), and
(M2) oxidation-reduction (redox) reactions between two or more chemical precursors,
generating at least one stable product (e.g., A + B + . . . → C + . . . ). One notable subset
of the latter reaction set (M2) are the so-called combustion reactions, in which a fuel and
oxidizing agent are present.

LRS-DAC experimentation is distinctive because the laser spot is often directed onto
a smaller subset of the chamber volume, allowing intense thermal and concentration
gradients to be generated (e.g., >>106 K/m, in the case of temperature gradients) [73]. Such
gradients tend to instigate diffusive- and/or convective-transport to/from the reaction
zone, enabling fresh reactants to enter and byproducts to exit this zone (refer back to
Figure 1).

Note that laser stimulus can be thermally activated (i.e., pyrolysis), or photoactivated
(i.e., photoexcitation or photolysis), or it can be a combination of these. Photoexcitation
allows researchers to drive electrons to higher energy levels and partially ionize precur-
sor molecules, which may be used to enhance chemical reactivity. Intense, multiphoton
laser excitation provides a route to control reaction pathways and thereby select for spe-
cific compounds/isomers, some of which may otherwise be inaccessible under ordinary
conditions [74]. Photolysis, on the other hand, takes photostimulation to an even higher
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level, directly breaking bonds; these are known as dissociation or decomposition reactions
(e.g., the A→ B + C reactions, described above). All of these non-thermal mechanisms
can significantly alter (and broaden) the thermodynamic landscape, as they may enable
reactions at reduced temperatures or even eliminate sample heating entirely [1].

Both continuous wave (cw) lasers and pulsed lasers have been successfully employed
to induce chemical reactions in LRS-DACs. Frequently, high-powered cw lasers are applied
in pyrolytic reactions [75], whereas pulsed lasers are used in photoexcitation [76] and pho-
tolysis [77] applications. Most experiments thus far have been cw pyrolysis experiments.

The most common continuous wave laser sources included Nd:YAG (@ 1064 nm),
Nd:YLF (@ 1053, 1060, or 1090 nm), YDFL (1.07 µm), Ar+ (351, 488, or 532 nm), and
CO2 (10,600 nm) lasers [19,22,23,60,61,71,74–84]; many experiments employed constant
high powers exceeding 25 W. The most frequently applied pulsed laser sources were the
Q-swtiched Nd:YAG (@ 1064 nm) and CO2 (10,600 nm) lasers. Interestingly, no DUV
sources below 350 nm, nor IR sources above 10,600 nm, were reported, although many such
lasers and masers are commercially available. Likewise, no uses of short-pulsed lasers (with
pulse widths shorter than 100 ps) have been reported, nor have uses of tunable light sources
been reported, such as optical parametric amplifiers (OPAs). In fact, it would appear that
experiments with laser pulses shorter than five nanoseconds have yet to be attempted. This
suggests that a wide variety of potentially important LRS-DAC experiments have yet to
be performed.

Indeed, the prospective thermodynamic landscape for LRS-DAC experiments is ex-
ceedingly large. Not only can pressures applied to the precursor be controlled dynamically,
but static/dynamic temperatures can be set to any value ranging from below the back-
ground temperature to tens of thousands of degrees Kelvin; induced temperatures can
be varied rapidly using femtosecond [85,86] to millisecond pulsed beams, and intense
spatial temperature gradients are also usually present [29,87]. Independent of any laser
heating, precursor molecules can be photoactivated with intense pulsed sources, preferably
at energies approximating those of electron transitions or molecular vibrations/rotations.
In the former case, ultraviolet and visible photons are suitable [88], while in the latter case,
photon energies ranging from the near infrared through the far IR and into the mm-wave
regime can be employed [89,90]. In all cases, tunable light sources, which can match the
transitions and vibrational energies of the precursor(s), are desired.

In addition to photon energies, the fluence of the beam is critical in determining the
rate at which energy is applied to the chemical precursor, whether or not the beam causes
heating of the precursor. For a cw beam, the temperature rise, T, at a laser-heated sample is
proportional to the average laser power delivered, Po, and inversely proportional to the
thermal conductivities of the various media/components, ki, and the beam’s 1/e2 Gaussian
spot size, v0, as follows:

T ∼ Po

ki

(
1/

v0

)2
(1)

Thus, the temperature rise depends strongly on the laser spot size, and finely focusing
the beam allows one to dramatically increase the peak temperature attained. Note that
the spot size attainable with a Gaussian beam is directly proportional to the laser beam’s
wavelength, so using short laser wavelengths makes it possible to achieve small laser spots.
For the reviewed articles, 1/e2 spot sizes ranged from 1–100 µm, with typical sizes of 30 µm,
and many of the lasers employed were in the near-infrared regime. Finally, where average
power, Po, is low, the average temperature rise of samples will not be great, even if the peak
energy is large. These simple rules of thumb allow one to design LRS-DAC experiments to
either: (1) heat samples effectively, or (2) stimulate samples without excessively heating
them, decoupling sample temperatures from photoexcitation and other factors.

Accordingly, one can see that parametric inputs to any reaction within an LRS-DAC
system include at least the following: (1) instantaneous applied (static) pressures, P; (2) pres-
sure profiles vs. time P(t); (3) laser pulse wavelength, λ; (4) laser pulse width, τ; (5) laser
spot size, ωo; (6) number of pulses within a pulse train (or total illumination time, t);



J. Manuf. Mater. Process. 2023, 7, 57 7 of 43

(7) optical absorbance of the sample, thermofluid properties of the precusor(s) and/or
pressure medium, such as (8) heat capacity, (9) thermal conductivity, (10) absolute viscosity,
(11) dynamic viscosities; (12) number of reactants; (13) relative concentrations of reactants;
and (14) thermal conductivity of the diamond anvils and chamber walls, etc. Consequently,
an LRS-DAC process can be quite complex to model, irrespective of the chemistry involved,
with many potential input parameters affecting reaction outcomes. Furthermore, there
are many potential outcomes for a material’s composition and microstructure. Thus, to
successfully map the entire parameter space for the synthesis of even one set of binary or
ternary compounds can indeed be time-consuming and challenging.

Nonetheless, more than 100 distinct binary/ternary compounds have been synthesised
using the LRS-DAC method thus far, and many of these compounds have been newly
discovered or unusual materials not ordinarily found in nature. Most of these materials
were reported with at least some compositional and phase mapping versus the pressure,
temperature, and fluence (P-T-F) conditions under which they were generated. For example,
a novel material, Ru2C, was identified, among other conditions, and one set of optimal
conditions was identified as (8 GPa, 2000 K, 120 W) [14]. Another example was the mapping
and the synthesis of molybdenum nitride, γ-Mo2N, from molybdenum metal foil and liquid
nitrogen at (7 GPa, ~2000 K, 100 W) [41].

4. LRS-DACs: Physical Processes, Historical Development, and Key Experiments

Figure 4 provides a synopsis of the maximum pressure and temperatures attained
during LRS-DAC experiments (green-shaded region), as compared to those used during LH-
DAC experiments (orange-shaded box) and LDC-DAC experiments (red-shaded region).
For comparison, estimated P-T conditions of various astrophysical and geophysical sources
are also provided (cross-symbols), including Jupiter’s moon Europa at a depth of 250 km
and Jupiter’s central core. Observe that LRS-DAC experiments have been conducted within
a comparable range of conditions to LH-DAC investigations; this is to be expected, as many
of the chemical reactions were pyrolytic in nature. Maximum pressures apparent in the
LRS-DAC studies range from just 1 GPa to over 900 GPa, while maximum temperatures
begin at room temperature and reach to >7300 K. Of course, these are the reported maximum
or peak values in each study; many of these reactions were also investigated at more
moderate P-T conditions. It is noteworthy that most LRS-DAC experiments reported
maximum temperatures lower than 3000 K, whereas LH-DAC studies clustered somewhat
at higher temperatures (as the research emphasis has been on high-temperature phase
transitions). Interestingly, there is a dearth of (peak) reaction data between 300 K and 1000 K,
with no data at temperatures below 293 K. This leaves many reactions at more moderate
conditions less explored. Additionally, extreme conditions well above 7500 K (which would
include plasmas) have not been studied in LRS-DAC systems. This is also an invitation
for further investigation, as plasma enhancement is a useful tool for controlling chemical
reaction pathways, as is often observed in high-pressure sintering [91,92] or plasma-jet
processing [93–95].
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Figure 4. (A—Green) Peak P-T Map of LRS-DAC experiments [14,19,56,61,74,76–80,84,96–104], as con-
trasted with other L-DAC methods, such as: (B—Orange) LH-DAC experiments [28,29,73,105–220] and
(C—Red) LDC-DAC experiments [46,221–227]. For reference, several P-T conditions are provided, includ-
ing: 250 km down in Europa’s oceans [228]; 660, 2900, and 5100 km below the Earth’s surface [136,190,221];
12 × 103 km deep within Neptune’s core [229]; 26 × 103 km deep inside Saturn’s liquid- hydrogen
mantle [230]; and 20× 103 km deep in Jupiter’s upper atmosphere [231].

LRS-DAC systems can be implemented as single-sided configurations in which the
incident beam is directed through one diamond anvil [18,75,77], such as illustrated in
Figure 1, or as dual-sided configurations with two incident beams arriving on either side of
the DAC [232]. Although the laser beam focal spot can encompass the entire clear aperture
of the L-DAC, it is often much smaller to accommodate localised reactions. It is even
possible to have multiple laser spots within the chamber, as depicted in Figure 1. The laser
beam wavelength is selected to interact with the precursor (i), the pressure medium (vi),
the substrate (such as the grid (viii) displayed in Figure 1), or the product (ii), depending
on the type of reactions planned.

For localised pyrolytic reactions, the laser beam wavelength is typically selected to
be absorbed by the precursor, the substrate, or the product, without being absorbed by
the pressure medium or other materials in the chamber. Incident photons are converted
into heat, which ultimately defines the reaction zone (iii). For localised photoexcitation or
photolysis, laser wavelengths are chosen to cleave bonds within the precursor material [233,234],
without exciting other media or substrates in the chamber. One potential exception to this
is photocatalysis, in which a substrate or pressure medium may act as a catalyst for the
reaction of the precursor(s) [235,236]. For photoexcitation or photolysis, pulsed laser sources
are often employed to reduce the average power delivered to the sample [237], and tuneable
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sources, e.g., optical parametric amplifiers (OPA), may be used to match the relevant bond
energies [238].

Important elements of a complete LRS-DAC system are shown in Figure 5. This
includes cw or pulsed laser sources (i), beam delivery optics designed to provide a well-
focused laser spot (viii), transparent anvils (iv), a gasket chamber enclosing the experiment
(v), diamond seats (vi), and a mechanism for driving the diamond anvils (vii). In addition,
measurement and characterisation tools observing the reaction zone typically include (at
a minimum): infrared pyrometers (x) to monitor the temperature profile in the reaction
zone, a high-resolution spectrometer for pressure measurements (e.g., using Ruby fluores-
cence [239]) (xi), and microscopes for general observation and process control (xii) [27,240].
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Figure 5. Typical arrangement of a Laser Reactive Synthesis Diamond Anvil Cell (LRS-DAC) for
scientific or engineering experiments. The various components of this system are described in the text.

4.1. Chemical Reactions

For a given set of precursors, the reaction rate for an LRS-DAC process is determined
by the slowest (rate-limiting) step. At high pressures, all of the following can limit the
reaction rate: (1) chemical thermodynamics, (2) chemical kinetics, and (3) mass transport of
products, adsorbates, and byproducts. We will discuss each of these in more detail below.

4.1.1. Chemical Thermodynamics

It is well-known that the application of pressure can alter the Gibbs Free Energy, G,
and shift the equilibrium of a reaction [241–244]. In terms of the state variables—internal
energy, U, enthalpy, H, entropy, S, temperature, T, molar volume, V, and pressure, P—the
Gibbs free energy is defined by:

G ≡ U + PV − TS = H − TS (2)

Assuming a constant temperature and taking the differential of Equation (2) gives:

dG ≡ dH − TdS (3)

Then, by applying the definitions of enthalpy and internal energy, one further obtains
the equation:

dG = +VdP− SdT (4)

From Equation (4), one can see that the natural variables for Gibbs free energy are
pressure and temperature, and that large changes in pressure can indeed influence the
outcome of a chemical reaction. In fact, it has been shown that decomposition reactions
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can be driven solely by pressure rises without any heating [1,245,246]. By again assuming
isothermal conditions (dT→0) in Equation (4), one obtains:(

dG
dP

)
T
= V (5)

For highly incompressible materials, such as liquids and solids, the molar volume (V)
is relatively small compared to gases, so changes in the Gibbs free energy with pressure
are often neglected under ordinary conditions (and over limited pressure ranges), and
V is assumed to be constant. However, given the extended pressure ranges of diamond
anvil cells, especially above 1 GPa, V becomes a significant function of pressure. To find
the change in Gibbs free energy, Equation (5) must be integrated using an appropriate
empirical function, e.g., V(P,T) in:

∆G =
∫ Pf

Po
V(P, T) dP (6)

Depending on the sign of V(P, T), the change in Gibbs free energy can be positive or
negative, and where ∆G becomes ≤ 0, spontaneous reactions may occur [247]. For most
materials, the sample volume decreases with pressure, and there are many examples in the
literature where reactions have been enhanced though the application of pressure [248].
However, there are also examples of negative compression [249].

For the opposite extreme of a compressible ideal gas, the molar volume can be replaced
using the ideal gas law, and Equation (6) becomes:

∆G =
∫ Pf

Po

RT
P

dP = RTln
(

Pf
/
Po

)
(7)

Of course, no gas behaves ideally when compressed to the pressures typical of a
diamond anvil cell (including small atoms like helium), so caution should be used in
applying Equation (7). This is because the ideal gas law assumes that a gas’s molecular
size and intermolecular attractive forces are negligible, which is no longer true at pressures
where molecules are forced into close contact.

Thus far we have focused on pressure dependencies, but during LRS-DAC experi-
ments both pressure and temperature are factors. When a laser heats a sample, the −SdT
term in Equation (4) can significantly alter the Gibbs free energy; for many reactions,
increased temperatures are needed to activate the reaction, even with the application of
pressure [99,250–252]. This is one reason why extreme pressures are often seen in LRS-
DAC studies.

4.1.2. Chemical Kinetics:

For kinetically limited (KL) reactions in gases at low pressures, the reaction rate, r,
follows the well-known Arrhenius rate equation, with associated activation energy, Ea, and
preexponential factor, A, as follows:

r = A·e−
Ea/
RT (8)

Here, T is the temperature at the reaction zone, and R is the universal gas constant.
The differential form of this equation is:

ln(r) = ln(A)− Ea
/
RT (9)

Equation (9) is often used to curve-fit experimental data in an Arrhenius plot. Where
pressure and other dependencies are anticipated, the preexponential factor, A, in Equation (8)
is sometimes expanded as follows:
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r = ro· f (T)·g(P)·e−
Ea/
RT (10)

Here, ro is a constant, g(P) is a function describing the pressure dependency, and f (T)
accommodates any temperature dependencies in the preexponential factor, and is often
empirically derived or estimated from models [253,254].

For gas-phase reactions, one often-used form of Equation (10) defines g(P) ≡ Pn,
where n is a simple exponential reaction order, i.e.,:

r = ro·Pn·e−
Ea/
RT , (11)

Now, it is important to understand that Equations (8)–(11) are all based on collisional
dynamics models of gases [241,255], which are not generally applicable to liquid- or solid-
state reactions. Nevertheless, these equations have regularly been applied to high-pressure
reactions, even when condensed phases have been present [253].

A more relevant rate equation based on transition-state theory that applies to liquid,
solid, and mixed phases was developed by H. Eyring and M. Polanyi in 1935 [256–258]:

r =
kB T

h
·e−

∆G‡/
RT (12)

Here, ∆G‡ is the change in the Gibbs Free Energy of Activation, kB is Boltzmann’s
constant, and h is Planck’s constant. ∆G‡ is the energy required to bring the reactants to an
intermediate activated state. The logarithmic form of Equation (12) is:

ln(r) = ln
(

kB T
h

)
− ∆G‡/

RT (13)

Now, similar to the derivation of Equation (5), the activation volume, ∆V‡, is obtained
by taking the derivative of Equation (13) with respect to pressure [259–261]:

RT
dln(r)

dP
ln(r) = −∆V‡ (14)

Via analogy with Gibb’s equation (Equation (3)), ∆G‡ depends on changes in the
enthalpy of activation, ∆H‡, and the entropy of activation, ∆S‡:

∆G‡ = ∆H‡ − T∆S‡ (15)

Substituting Equation (15) into Equation (12) affords Equation (16):

r =

[
kB T

h
·e+

∆S‡/
R

]
·e−

∆H‡/
RT (16)

Note that the term, e
+∆S‡/

R, induces positive changes in the reaction rate when the en-
tropy of activation increases, which is consistent with the Second Law of Thermodynamics.
While this term is (nominally) independent of temperature, it does depend on pressure and
the activation volume. Note also that the expression in square brackets is analogous to the
preexponential factor, A, in the Arrhenius relation Equation (8) above.

From Equations (14) and (16), one finally obtains:

r =
[

kB T
h
·e+

P∆V‡
R

]
·e−

∆H‡/
RT (17)
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Equation (17) is very useful for understanding the influence of high pressures on the
reaction kinetics inside a diamond anvil cell. By analogy with Le Chatelier’s principle [262,263],
one would expect a reaction to proceed from precursor→product, where an increase in
pressure results in a decreased volume of the product, e.g., as through a reduced number
of moles in the product and/or rearrangements into a more compact lattice. Similarly, the
reaction should proceed where a decrease in pressure results in an increased volume of the
product, e.g., an increased number of moles and/or rearrangements into a less compact lattice.
Indeed, one can see that increases in applied pressure, P, result in an increasing reaction rate
in Equation (17), provided ∆V‡ is of the correct sign. This is illustrated in Figure 6, where a
dimensionless version of Equation (17) is plotted, with changes in pressure, P, and sign of
∆V‡ indicated. Although the reaction rate’s pressure dependency is small at pressures near
STP, it is much more significant in LRS-DACs where pressures may be >>0.1 GPa [264].
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Thus, one significant difference in the kinetics of LRS-DAC processes is that the pres-
sures applied by the DAC must be accounted for, in addition to the temperatures induced
by the laser beam [254]. Furthermore, this pressure dependency is unlikely to fit well onto
a simple reaction order model, e.g., Equation (11); rather, Equation (17) or a variation of
Equation (12) should be used. Several possible variants have been proposed [265–267].
Unfortunately, reaction kinetic studies within diamond anvil cells are few, and where laser-
induced processes are involved, there are even fewer [47]. This is definitely an opportunity
for further research.

Finally, when materials are synthesised at high pressures, there is always the risk that
they are not thermodynamically stable at ambient conditions and cannot be recovered
upon release of compression [268–271]. It is well-known, for instance, that diamond is
a metastable material—it is thermodynamically unstable at STP, but exists at ambient
conditions due to the presence of a large activation barrier in its phase-transition kinetics,
preventing its reversion to the more thermodynamically-stable graphite. Similarly, when
compression is released following a chemical reaction, the nature of some newly formed
bonds may change; some may revert to their earlier configurations, or where the kinetic
barriers are sufficiently high, they may be recovered to ambient conditions. As chemical
kinetics is time-dependent, rapid release of pressure and/or quenching can be attempted
to recover (metastable) materials [272]. Of course, pulsed and modulated lasers may be
used during LRS-DAC studies to quench materials at extremely high rates (>>10ˆ6 K/s).
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Analysis of the pressure-dependence of both the chemical thermodynamics and kinetics
aids in understanding whether a particular material may be recovered or not [273,274]. In
many cases, although the chemical thermodynamics are relatively well-understood during
LRS-DAC experiments, the reaction (and recovery) kinetics may not be known a priori, and
tend to be less well-documented.

4.1.3. Diffusive and Convective Mass Transport:

The rate of a decomposition or redox reaction will usually follow an exponential
rise with temperature, e.g., in Equation (12), until T is sufficiently high that the precursor
in the reaction zone cannot be resupplied at a faster rate; when this occurs, the reaction
becomes limited instead by the transport rate of the precursor(s)/byproduct(s), whether
this transport occurs through diffusion, convection, or advection. In this case, the process
is considered to be mass transport limited (MTL). This situation occurs quite often in
diamond anvil cells, where the sample in the chamber may be a solid, semi-solid, or viscous
fluid, and the reaction rate is sufficiently high to locally deplete the precursor(s) within
the reaction zone. When this occurs, the reaction rate is governed by the generalised
convection-diffusion equation (CDE), where D(x,t) is the diffusion constant, c(x,t) is the
one-dimensional concentration vs. time, u(x,t) is the convection fluid velocity, and d(x,t) is
a retardation factor [275]:

d(x, t)·∂c(x, t)
∂t

=
∂

∂x

[
D(x, t)

δc(x, t)
δx

− u(x, t)·c(x, t)
]

(18)

Here we provide only the one-dimensional form of the CDE for a single diffusing
species. In reality, Equation (18) must be solved for c(x,t), given multiple species and
an LRS-DAC three-dimensional geometry with a set of known material properties and
physical arrangements within the cell. With the exception of a few simple geometries, this
is usually done numerically [276,277].

One useful simple geometry is that of a spherical sink, of radius ao, within an infinite
medium; this is similar to the geometry in which a laser induces a reaction at a reaction
zone within a DAC that is much smaller than the gasket chamber. Smoluchowski et al.
provided the steady-state rate at the sphere’s surface, ao [278]:

r(ao, t→ ∞) = 4π aoD co (19)

Solutions have also been derived analytically for the case of multiple spherical sinks [279];
this situation is similar to the illustration of Figure 1, where multiple laser spots are focused
inside the chamber. In the simplest case of two spherical sinks, both of radius, ao, separated by a
centre-to-centre distance, L, an approximate solution was developed by Calef and Deutch [280]:

c(a = ao, t→ ∞) = 8π aoD c∞

[
1

1 + ao
/
L

]
(20)

Equation (20) shows that the concentration profile is proportional to the diffusivity
and background concentration, c∞. It also suggests that having more than one reaction
zone occurring simultaneously within the gasket chamber slows down the diffusive-limited
reaction rate of each zone slightly, depending on their separation distances, L. This can be
seen in Figure 7 where the calculated diffusive reaction flux, r’, at each spherical reaction
zone is provided, by dividing Equation (20) with the surface area of each sphere and
normalising by 8πDc∞. One can see that as the separation distance, L,→ 1 (close contact),
the diffusive flux reaches a minimum that is typically half that of the L→∞ asymptote.
Interestingly, at sufficient distances, L >> ao, the reaction flux is almost unaffected by the
presence of a second competing sink, which has implications for the parallel processing of
materials within diamond anvil cells. This is also a potentially fruitful area that should be
explored further.
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Figure 7. Log-Log parametric plot of diffusion-limited reaction fluxes for two reaction zones (diffusive
sinks), which depend on the reaction zone radii, ao, and the centre-to-centre distances between these
zones, L. Note that the smaller the reaction zone, the more rapid the diffusion-limited reaction flux.

Finally, observe that in Figure 7, the smaller the reaction zone radii, ao, the more rapid
the diffusive reaction flux, r’, to both spherical sinks (direction of dotted arrow indicates
increasing ao). Note that r’ scales as 1/ao. This enhanced reaction-flux effect has been
observed previously in other microchemical processes [281], e.g., hyperbaric-pressure laser
chemical vapour deposition (HP-LCVD), in which rapid growth of fibres along the direction
of the beam axis is made possible by minimising the size of the reaction zone [282].

The diffusion constant in liquids tends to decrease upon application of pressure as the
viscosity of the fluid increases. This will, of course, dampen diffusion-limited reaction rates.
When reactions involving solids are diffusion-limited, it is anticipated that such reactions
will progress quite slowly compared to those in low-viscosity fluids, because solid-state
diffusion constants are 6–10 orders of magnitude smaller than in the liquid state [283,284].
To minimise this drawback, researchers may take steps to: (1) thoroughly mix all solid
precursors at the nano/microscale prior to processing [82], (2) use porosities in solids to
provide transport “highways” across the solid [285], or (3) use strong thermal gradients to
drive diffusive transport, including applying phenomena such as the thermodiffusion (or
Soret) effect [185].

Now, up until this point, we have treated the diffusion constant, D, in Equation (18)
as a constant. D(P) is weakly dependent on the pressure, so this dependency is frequently
overlooked in the literature. However, within diamond anvil cells, D(P) can no longer be
treated as negligible. Nachtrieb’s law describes the diffusion constant’s dependence on T
and P in solids [286,287], as follows:

D(T, P) = Doe
−[β·Tm(P)

/
T
]
. (21)

Here, Do and β are empirically derived constants, and Tm(P) is an expression for
the observed melting temperature versus pressure for the matrix material in question;
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auspiciously, Tm(P) has been determined for a wide range of solid materials in DACs,
allowing Equation (21) to become a practical model in this context.

Outside of determining diffusion constants [288], there is little data available on mass
transport within diamond anvil cells, especially during LRS-DAC experiments. This is
undoubtedly due to the confined spaces within gasket chambers and the difficulty in mak-
ing in situ measurements. Consequently, few detailed models of the mass transport limited
behaviour of high-pressure reactions have been developed in the literature [289]. However,
due to the extreme pressures involved in LRS-DAC experiments, it is anticipated that many
reactions are mass-transport limited, with solid-state or liquid-state diffusion being the
rate-limiting step [1]. This is also an area ripe for future development.

4.2. Diffusive and Convective Heat Transfer

As described in Part I for continuous wave (cw) LH-DAC experiments [26], the
temperature rise at the reaction zone is dependent on the balance between the incident
laser power and the rate of heat transfer to the surrounding precursor medium and DAC
components. As illustrated in Figure 8, energy is delivered by the focused laser beam
(purple arrow, [ii]), and heat conducts away through the diamond anvils and chamber
gasket (black arrows, [xxvi]). Where temperatures are sufficiently high, thermal radiation
from the reaction zone can be significant (orange arrows, [xxvii]). This radiation can be used
to monitor the reaction temperature (see [x] in Figure 5). The same is true for the LRS-DAC
configuration, but in this case, the laser-heated (reaction) zones are often intentionally
smaller than those for LH-DAC experiments (where broad constant temperature profiles
are desired). For LRS-DAC experiments, the reaction zone is often surrounded by a
comparatively large pressure-medium region. Light can also be observed from the backside
of the DAC and measured using a spectrometer (green arrows, [xxix]).
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Figure 8. Schematic of heat and mass transport in an LRS-DAC. The laser is focused (ii) to selectively
heat only a portion of the chamber, specifically a small reaction zone. Where the precursor medium
is in a liquid state, (rapid) convection cells (ix) can form inside the gasket chamber. This transfers
heat from the reaction zone to the surrounding diamond anvils (iv) and gasket (v), and moves the
precursor to the reaction zone and byproducts from this zone.

Note that finely focused laser beams can induce extreme local thermal gradients,
such as that illustrated in the temperature profile of Figure 8 (see super-Gaussian dotted
graph [xxviii]), and such thermal gradients can drive solid-phase diffusion, allowing fresh
reactants to transport into the reaction zone and byproducts to leave this zone. This
is very important because diffusive exchange enables reversible chemical reactions to
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proceed where they would otherwise stagnate at equilibrium [1]. When diffusive exchange
occurs rapidly, it also enables mass-transport-limited reactions to proceed quickly, as fresh
precursor is available [290].

Now, when liquid or semisolid precursors/pressure media are present, combined
with sufficient laser fluence, it should not be assumed that convective heat and mass
transfer are inherently negligible (as is sometimes presumed during LH-DAC or LDC-
DAC experiments). Rather, given these conditions, convective cells can form within the
pressure medium, allowing the precursor to circulate continuously past the reaction zone.
Typically, the more rapid this circulation, the more rapid the reaction rate, as less time is
required to exchange reactants/byproducts at the reaction zone. Recent simulations and
measurements of convective flows inside L-DACs where melts are present suggest that
fluid velocities approaching 100 µm/s may occur within a gasket chamber, depending on
fluid viscosities [291]. Such velocities are sufficient to sustain rapid reaction rates, until all
available precursor is exhausted. Given sufficient laser irradiation and convective transport,
single crystals and whiskers have even been “grown” in LRS-DACs [292], in a manner
analogous to solution-liquid-solid (SLS), or supercritical fluid-liquid-solid (SFLS), whisker
growth [293]. Of course, the potential for convective circulation depends on the precursors’
and pressure media’s thermophysical properties, the incident beam parameters, the overall
timescale of irradiation, and the diamond anvil cell’s geometry.

Of course, the rate and manner in which the laser beam energy is applied matters
greatly to the induced temperature rise in the reaction zone. Figures 9 and 10 provide an
overview of the LRS-DAC laser pulse widths and exposure times that have been reported
in the literature for pulsed and cw lasers, respectively. CW lasers and long-pulse lasers
are often used for the constant heating of samples; on the contrary, short-pulsed lasers
are typically used to drive reactions over short time periods while minimising any large-
scale heating.
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laser illumination time for continuous-wave lasers, including laser wavelengths, from the ultraviolet
(350 nm) to the infrared (10.6 µm) [19,22,23,61,71,74–76,78–81].

In Figure 9, one can see a range of LRS-DAC laser pulse widths being employed, from
nanoseconds to long pulses approaching 1 s. Yusaa et al., who in 2001 conducted photolytic
decomposition experiments on silver iodide, used the shortest-pulse laser to date, with
5 ns pulse widths [237]. Similarly, Peiris and Russell used a dye laser in 2003 to carry out
photolysis experiments on sodium azide (NaN3), with 7–8 µs pulses [77]. These are the
two pulsed photolysis LRS-DAC experiments of which we are aware. The pulse energy in
Yusaa’s and Peiris/Russell’s experiments were 120 W and 3–50 J/cm2, respectively, which
are near the ablation threshold.

Meanwhile, pulsed LRS-DAC pyrolysis experiments included: (1) Aprilis et al. (2020)
at 11, 250, and 500 microsecond pulse widths; (2) Bayarjargal et al. (2010) at 8 microsecond
pulse widths; and (3) Semenok et al., with long pulses of 300–500 ms [60,82,83], approaching
that of cw lasers. In all these cases, the intent was to heat and pyrolyze chemical precursors
at temperatures ranging from 1400 to over 4000 K. As a result, most of these lasers had high
average powers, capable of 100 W or more.

Interestingly, there is an absence of LRS-DAC processing at laser pulse widths shorter
than 5 ns, despite many short-pulsed lasers (<100 ps) now being widely available. This is
certainly an area ripe for further exploration, i.e., the combination of high pressures with
ultrashort time duration processing could lead to the syntheses of many novel materials,
including those with glassy and nanocrystalline structures [294,295].

Figure 10 gives an overview of selected LRS-DAC experiments with laser exposure
durations longer than 1 s. For these durations, it is presumed that the lasers were being used
in cw mode, and where any modulation was employed, it was through the use of chopped
beams or shutters. As anticipated, most of these LRS-DAC experiments involved pyrolysis
of precursors at high average power lasers, combined with relatively long time durations
of hundreds to thousands of seconds. These included the works of Zerr et al. (2006),
Hirai et al. (2009), Tschauner et al. (2001), Serghiou et al. (1999), Liu et al. (2020),
Hasegawa & Yagi (2005), Kronbo et al. (2020), Aparijita et al. (2021), and Dorfman et al.
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(2021) [19,22,23,61,71,75,79–81]. Induced temperatures ranged from 300 K to 6400 K, with
the average maximum temperature being ~2000 K. These are extremely high temperatures,
in many cases relevant to chemical reactions in planetary and geophysical studies, rather
than for high-temperature high-pressure (HTHP) chemical synthesis of novel materials.

Now, while elevated temperatures may often be required for reaction kinetics to
proceed, long-duration heating may also lead to large-scale grain growth and Ostwald
ripening. This can be seen in the formation of diamond from CaCO3 samples produced
by Bayarjargal et al. of Figure 9 [83]. Grain growth may be desirable where large single
crystals are the intended product, but such is often not the case. The rate of grain growth,
rxtl , often follows an Arrenhius-like relationship, similar to Equation (8), of the form:

rxtl = rxtl, o·e
−Eb
/
RT , (22)

but here, Eb is the activation energy of boundary mobility and rxtl,o is an empirically
derived rate constant for grain growth. As one can see from Equation (22), the grain growth
rises exponentially with temperature, so extreme temperatures are likely to produce large
crystalline structures.

On the right side of Figure 10, one can also see three important photolysis experiments
by Cintroni et al., which were performed using the ultraviolet/visible lines of a cw Ar+ laser.
The exposure times in this case were on the order of 104–106 s, as they were conducting
experiments on the polymerisation of isoprene [74].

4.3. LRS-DAC: Historical Development & Key Experiments

To our knowledge, the first LRS-DAC-related chemical synthesis was the dispropor-
tionation of olivine [(Fe,Mg)2SiO4] to stishovite [(Fe,Mg)O + SiO2] by L. Ming and A. Bassett
in 1973 [157]. However, purposeful LRS-DAC research (intentionally inducing reactions)
began in earnest during the 1990s. In 1991, Shekar et al. synthesised a novel binary inter-
metallic, indium antimonide (InSb), from elemental In and Sb [251]. The authors indicated
that an exothermic reaction occurred when the cubic phase (and other “high-pressure”
phases) of InSb were generated for the first time. Since this successful reaction, interest
in LRS-DAC syntheses has been growing steadily. In 1992, Goarant, Guyot, Peyronneau,
and Poirier of the Institut de Physique du Globe de Paris mixed iron, iron sulphide, and
various metal silicates (e.g., forsterite, enstatite, and olivine), pressurising them to 130 GPa;
the mixture was subsequently laser-heated until it melted, and the iron and other metallic
phases were partially oxidised [296]. The authors observed significant temperature gradi-
ents within the gasket chamber during this process. These three initial events are displayed
on the left side of the timeline in Figure 11.

In 1997, Yoo et al., from Lawrence Livermore National Laboratory (LLNL) and the
University of California Los Angeles, explored the kinetics of boron nitride synthesis from
elemental boron and nitrogen at high pressures [96]. This is the fourthevent shown in
Figure 11. No pressure-induced reactions were observed at room temperature, but with
laser heating, hexagonal wurtzite and cubic boron nitride were synthesised at temperatures
above 1300 K. They concluded that the activation energy for BN synthesis must be quite
large, despite a highly exothermal reaction. This work encouraged others to explore the
synthesis of boron–nitrogen compounds via L-DAC methods.

In 1999, another useful LRS-DAC experiment was conducted by Serghiou et al. of the
Max Planck Institute in Germany, where a novel cubic spinel phase of germanium nitride
(Ge3N4) was produced from elemental germanium and molecular nitrogen (See 5th event in
Figure 11). They heated the Ge-N mix to over 2000 K with a YLF laser at various pressures
between 3.7–20 GPa. This work opened the door for additional researchers to explore novel
nitride-based compounds/structures for new semiconductor and ceramics materials.
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The first utilisation of a pulsed laser, rather than cw lasers, was in 2001 by H. Yusa
of the Japanese National Institute for Research in Inorganic Materials [237]. Importantly,
Yusa stimulated a photochemical reaction (via photolysis) to decompose silver halides as a
source of high-pressure halides for reactions in future experiments (see event location in the
middle of Figure 11). A pulsed KrF excimer laser at ultraviolet wavelengths (248 nm) was
used at a peak pulse energy of 5 mJ and pulse repetition rates (PRR) of 10 Hz. This work
was also the first example of laser photolysis being conducted in an LRS-DAC experiment.
Importantly, Yusa et al. suggested that tuning the laser excitation wavelength to chemical-
specific absorption bands, e.g., using an optical parametric amplifier (OPA), could be used
to target specific chemical bonds and realise selective photolytic reactions.

In 2006, A. F. Young, together with an international team of researchers from the
USA, Italy, France, and the UK, demonstrated the growth of new metal nitrides, including
iridium nitride, IrN2, and osmium nitride, OsN2 (see middle of Figure 11) [53]. These
binary compounds proved to be superhard, highly incompressible materials, with IrN2
having a measured bulk modulus of 428 GPa—just under that of diamond at 455 GPa. This
LRS-DAC effort demonstrated that new transition metal compounds can yet be discovered
with the aid of laser-induced reactions at high pressure, and inspired others to search for
new superhard materials via this approach.

The highest laser-induced temperature in an LRS-DAC experiment to date was at-
tempted by Zerr, Gerghiou, Boehler, and Ross in 2006, with temperatures of up to 7300 K
(see event in middle of Figure 11) [79]. They studied the decomposition of straight-chain
alkanes into diamond and hydrogen, with alkane chain lengths up to nonane. The de-
composition of methane initiated at applied pressures >13 GPa and temperatures over
2500 K. This is a significantly higher decomposition temperature than is normally observed
at atmospheric pressures (typically >900–1000 K) [297]. Remarkably, the greatest diamond
yield was obtained from the longer-chain alkanes. During the experiments, strong thermal
gradients were observed laterally from the centre of the laser focus. Gradients were also
observed axially (along the laser beam axis); the authors suggested that this was (plausibly)
caused by insufficient insulation between the samples and the diamond anvils.

In 2012, Kumar et al. of the Gandhi Centre for Atomic Research, demonstrated the
synthesis of a novel intermetallic of ruthenium and carbon, Ru2C, using an LRS-DAC (see
the middle of Figure 11) [14]. Pure ruthenium and graphite were mixed, and pressure was
applied to 5 GPa. The sample was then laser-heated to approximately 2000 K using a CO2
laser with a 40 µm focal spot size. The bulk modulus for the resulting Ru2C sample was
178 GPa—a new highly incompressible material (compare to diamond’s bulk modulus
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at ∼455 GPa). This work demonstrated that novel advanced materials could actually be
realised via the LRS-DAC technique, even at relatively “low” pressures of 5 GPa.

Recent LRS-DAC advances in 2020 have seen the chemical syntheses of palladium
carbide and palladium hydride compounds, which under certain P-T conditions exhibit
superconductivity [99]. Fedotenko et al. placed palladium foils inside an LRS-DAC with
neon as a pressure medium. They then reacted the foils with carbon from the system’s
diamond anvils to produce palladium carbide at pressures and temperatures of 50 GPa
and 2500+ K, respectively. Likewise, palladium hydride was derived from the reaction
of palladium foils with paraffin oil at 39 GPa and 1500 K. In this case, the paraffin also
acted as the pressure medium. This work was important because it encouraged further
high-pressure research into the synthesis and testing of metal hydride superconductors.

In 2021, Ma et al., an international team from China and Japan, synthesised europium
hydrides, EuH6 and EuH9, using an LRS-DAC, which exhibited clathrate superhydride
structures [6]. Such superhydride structures are known to contribute toward high-temperature
superconductivity in other metal hydrides, including lanthanum hydride, LaH10, which has a
very-high critical temperature of ≈250 K (nearly room temperature) [50,51]. Ma et al. reacted
europium with ammonia borane (BH3NH3) at pressures between 80–170 GPa and heated
them with a 1050 nm laser beam. The ammonia borane served as a source of hydrogen. EuH6
formed at 152 GPa and 1700 K, while EuH9 was generated at 170 GPa and 2800 K. This study
used the greatest hydrostatic pressure of any single-stage LRS-DAC experiment to date, at
170 GPa (see event on right hand side of Figure 11). This work also contributed to growing
interest in the synthesis of high-temperature superconductors using the LRS-DAC technique.

Next to last on the timeline of Figure 11 (in 2021) is the decomposition of methane
hydrate [(CH4)8(H2O)46] within an LRS-DAC system to produce diamond [252]. At high
pressures/temperatures, Kadobayashi et al. demonstrated that methane hydrate dissociates
into methane and water, and that the methane subsequently polymerises and dehydro-
genates to rapidly form diamond. They also observed rapid convection within the DAC at
temperatures above 1200 K. The C-O-H system produced diamond at less extreme pres-
sures and temperatures (13–45 GPa, 1600 K) than had been observed previously using
only hydrocarbon precursors and hydrogen. This article contributed because it provided a
useful synthetic route to diamond, and because it demonstrated that diamond likely forms
within the mantles of icy planets, like Uranus and Neptune, so that it “rains” diamond
within the icy planets’ interiors.

Finally, at the end of the Figure 11 timeline, the work of L. Dubrovinsky et al. (in 2022)
is notable for achieving the highest pressures to date in an LRS-DAC experiment (900 GPa)
using a toroidal, two-stage DAC [84]. In this study, a metastable binary intermetallic of
rhenium nitride, Re7N3, was synthesised from a few rhenium (Re) metal powder grains
and nitrogen at temperatures of 2200 K and 2900 K, inside a focused-ion-beam machined
Re gasket chamber only 6 µm across. This metastable compound was only stable under
highly compressed conditions.

5. LRS-DAC Synthesis: Summary of Important Material Classes

To date, over 100 separate binary/ternary compounds have been produced using
LRS-DAC systems. For the reader’s reference, a summary is provided in Figure 12 of all
the product materials synthesised successfully using LRS-DAC methods thus far, together
with their peak reported processing pressures (blue curves) and temperatures (orange
bars); further details of processing conditions are provided in the following sections. LRS-
DAC materials are grouped into the following material classes (roughly according to their
position on the periodic table):

• Low-Z Carbon-Containing Compounds/Materials.
• Binary Metal Hydrides.
• Binary Metal Borides.
• Binary Metal Carbides.
• Binary Metal Nitrides.
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• Binary Metal Oxides.
• High-Z Intermetallics and Metallic Compounds.
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5.1. Low-Z Carbon-Containing Compounds/Materials

The low-Z carbon containing compounds/materials primarily includes the synthesis
of diamond, with additional products of methane, various alkanes, alkenes, and hydrocar-
bonates. Note in Figure 12 the extreme processing temperatures involved in these reactions,
many of which were over 2000 K, while applied pressures were under 50 GPa. Several
impactful articles were published in 2021–2022 on diamond synthesis in this materials
class. A group of Japanese researchers, including authors at Rissho University and Ehime
University, demonstrated low-pressure polymerisation of methane and subsequent dehy-
drogenation into diamond using the C-O-H system [252]; this occurred at more moderate
temperatures and pressures (P = 13–45 GPa, T ≈ 1600 K) than are typically observed in the
C–H system. This work demonstrated a novel lower-energy route to diamond. In addition,
the same group decomposed polyethylene (C2H4) n into diamond nanoparticles and hydro-
carbon byproducts at pressures of 13–45 GPa and temperatures between 1600–3800 K. These
pressures were significantly lower than related gas-gun dynamic compression experiments
with the same precursors, and produced more diamond. This suggests that the timescale of



J. Manuf. Mater. Process. 2023, 7, 57 22 of 43

the process is very important for the decomposition of polymers into diamond, which is an
important insight into the process kinetics.

Similar results were obtained by a group comprising authors from the University of
California, Berkeley, Lawrence Livermore National Laboratory (LLNL), the University of
Missouri (UM), the University of Tsukuba, Tokyo University, and the National Institute
of Advanced Industrial Science and Technology in Japan. They were able to verify that
methane polymerised and dissociated to diamond at pressures as low as 10–20 GPa, which
contradicts current theories that predict polymerisation above 100 GPa. This provided new
insights into the process kinetics. Finally, two additional groups explored novel pathways
to diamond, including the decomposition of calcium carbonate, CaCO3, and carbon dioxide,
CO2. For further processing details of the low-Z carbon-containing compounds, see Table 1.

Table 1. Low-Z, Carbon-Containing Compounds: Low-Z Carbon-Containing Materials Synthesised
During Selected LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure

Time [s], Powers/Energies
[W/J], Spots [µm], or
Induced Temps. [K]

Refs.

c-Diamond
a: methane

hydrate
b: (C2H4) n

a: 13–45
b: 11–29

a: CO2
[10.6 µm]

b: CO2
[10.6 µm]

a: [200 W], 50 µm
b: [80 W], 2500–4000 K

a: [252]
b: [9]

Diamond a: CH4
b: CH4

a: 10 to 50
b: 16.8

a: Nd: YAG [1062 nm]
b: Nd: YAG or CO2

a: CW, 2000 to 3000 K
b: CW, >3000 K

a: [48]
b: [75]

Diamond CaCO3 9–21 CO2
[10.6 µm]

PW: 8 µs, [10–250 W], 40 µm,
3500 K [83]

Diamond CO2 30–80 CO2
[10.6 µm]

100–200 s, [60 W],
<30 µm, 300–3000 K [80]

CaCO3 + MgCO3 (CaMg(CO3)2) 20–30 Nd: YAG [1062 nm] 30 µm,2000 K [58]

C8H12 C4H6 0.6–0.8 Ar
[458/488 nm] 10–20 mW [63]

C3H8 + H2 C2H6 5 Nd: YLF 20–25 µm, 1500 K [70]

CH4 C2H6, H2 5 Nd: YLF 20–25 µm, 1500 K [70]

C2H6+ C+ H2 CH4 2 Nd: YLF 20–25 µm, 1000–1500 K [70]

5.2. Binary Metal Hydrides

This class of compounds is important for many technologies, including (1) high-
temperature superconductivity, (2) catalysis where hydrogen is present, and (3) hydrogen
separation membranes. One can see in Figure 12 that the pressures and temperatures
applied with the class of materials thus far have not exceeded 200 GPa and 3000 K.

The emphasis for many metal-hydride LRS-DAC studies was on creating compounds
with the highest possible critical temperature for superconductivity, while applying the
lowest possible pressures. Research in metal hydrides as superconductors was originally
inspired by the 1968 theoretical work of Ashcroft et al., who proposed hydrogen becoming
metallic (and superconducting) at pressures above 500 GPa [298]. Ashcroft et al. later
theorised that hydrogen-rich compounds and alloys could reduce the external compression
needed to achieve superconductivity [299,300]. Recently, this theoretical work has been
extended to hydrogen chains and networks [301].

Some of the metal hydrides investigated thus far include: palladium hydride [99], PdH;
the lanthanum-yttrium hydrides, (La,Y) H6 and (La,Y) H10 [101]; the europium hydrides,
EuH6 and EuH9 [6]; and thorium hydride, ThH10 [60]. Perhaps the most noteworthy of
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these studies was the synthesis of lanthanum-yttrium hydrides, (La,Y) H6 and (La,Y) H10,
in which a critical temperature of 253 K was measured for the latter compound. Importantly,
the critical current density for (La,Y) H10 may actually be greater than that of yttrium barium
copper oxide (YBCO), which was the first superconductor discovered possessing a critical
temperature greater than liquid nitrogen’s boiling point of 77 K (which is technologically
enabling). The lanthanum-yttrium hydride study (and related metal hydride works) are
exciting because they may ultimately lead to practical room-temperature superconductors.
For additional processing specifics concerning the binary metal hydrides, refer to Table 2.

Table 2. Binary Metal Hydrides: Metal Hydrides Synthesised During Selected LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure

Time [s], Powers/Energies
[W/J], Spots [µm], or
Induced Temps. [K]

Refs.

a: (La,Y)H6
b: (La,Y) H10

La, Y, NH3BH3 170–196 Data N/A PW: 100–400 ms, <2000 K [101]

EuH6 and EuH9 Eu, NH3BH3 152 & 170 YDFL
[1050 nm] 1700 & 2800 K [6]

PdH Pd, Paraffin oil 39 Nd: YAG
[1.06 µm] ≈1500 K [99]

FeH3 Fe, H2 100–125 Nd: YAG
[1.06 µm] <1500 K [67]

FeH5 Fe, H2 130–140 Nd: YAG
[1.06 µm] <1500 K [67]

CeH9 Ce, H2 80–100 Nd: YAG
[1.06 µm]

PW: 1 µs,
10 µm, ~2000 K [302]

NaH3 NaH, H2 ≥30 Data N/A >2000 K [303]

NaH7 NaH, H2 40–50 Data N/A >2000 K [303]

PrH9 Pr, NH3BH3 115–130 Nd: YAG
[1.06 µm] 1650 K [304]

5.3. Binary Metal Borides

Binary metal borides are an important class of high-hardness, high-temperature,
oxidation-resistant materials that in some cases exhibit superconductivity (e.g., MgB2). LRS-
DAC studies focused on the synthesis of refractory or rare-earth compounds, including:
tantalum boride, TaB2 [305]; rhenium boride, Re2B [69]; and the lanthanum borides, LaB5
and LaB8 [18].

Juarez-Arellano et al. verified that Re2B was the most stable high-pressure phase of
rhenium boride and measured its compressive moduli [17]. Intriguingly, it is a superhard
material with a bulk modulus of ∼405 GPa; this value is akin to that of tungsten carbide.
However, the bulk modulus is anisotropic—along one crystal plane, [001], Re2B is estimated
to have a linear compressibility of 500 GPa. This finding, along with modelling analogous
phases of Os2B, provided a noteworthy contribution in the search for materials harder
than diamond.

Among all the metal borides, the lanthanum borides were processed under the most
extreme conditions of 108 GPa and ∼2100 K (See Figure 12). LaB8 was found to have a
clathrate structure and to be a tuneable superconductor, through the substitution of alkaline
earth metals into its lattice. This has important implications for potential microelectronic
devices, as well as the pursuit of room-temperature superconductors. For further processing
details about the binary metal borides, see Table 3.
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Table 3. Binary Metal Borides: Metal Borides Synthesised During Selected LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots
[µm], or Induced Temps. [K]

Refs.

LaB8 2B + LaB6 108 Nd: YAG
[1.06 µm] PW, ≈2100 K [18]

TaB2 Ta, B 14–23.7 Nd: YLF [10–15 W], 1600–2000 K [305]

ReB2 Re, B 8 Data N/A 1500 K [69]

Re7B3 Re, B 8.9–22.1 Data N/A 120–360 s, [8–25 W], 30 µm,
1500–4000 K [306]

WB4 W, B 30.3 Data N/A 10 µm, 2300 K [307]

5.4. Binary Metal Carbides

Many of the binary metal carbides exhibit high stiffnesses/hardnesses, extreme melt-
ing points, and high thermal conductivities; these materials are commonly used as coatings
in industrial processes where cutting, grinding, or boring are needed. Metal carbides have
thus far been studied using LRS-DAC systems at relatively moderate pressures <100 Gpa,
but at temperatures of up to 3000 K (See Figure 12). Some of the carbides investigated thus
far include (sorted into groups):

• Transition Metal Carbides: The scandium carbides (Sc2C5 and Sc4C3), titanium carbide
(TiC), chromium carbide (CrC),

• Refractory Metal Carbides: The titanium carbides (TaC and Ta2C), and rhenium
carbides (ReCx and Re2C).

• Platinum Group Metal Carbides: Palladium carbide (PdCx), ruthenium carbide (Ru2C),
and platinum carbide (PtC).

One highly cited article on the metal carbides was that of Ono et al. in 2005 [57]. They
reacted platinum powder with high-purity carbon at 85 GPa and 2600 K to obtain a new
high-pressure phase, PtC, in a rock-salt-like structure. By discovering a new carbide phase,
the work inspired researchers to investigate other HPHT carbides.

One interesting later study was that of a large international group, Juarez-Arellano
et al., studying the synthesis of scandium carbide [308]. Scandium is a less common
transition metal, and, in its elemental form, is highly reactive. For this work, scandium
carbide was synthesised from scandium flakes and graphite at pressures of 10 GPa and
temperatures of 1600–2200 K, and it was found to have the stoichiometry Sc4C3. This article
contributed by suggesting that there are a wide variety of compounds and minerals yet to
be investigated via the LRS-DAC approach, and they studied a less conventional material.
For additional processing details of the binary metal carbides, refer to Table 4.

Table 4. Binary Metal Carbides: Metal Carbides Synthesised During Selected LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots
[µm], or Induced Temps. [K]

Refs.

Ru2C Ru, C 5 CO2
[10.6 µm] CW, [120 W], ≈40 µm, 2000 K [14]

PdCx Pd and C 52 Nd: YAG
[1.06 µm] ≈2500 to 3000 K [99]

c-Sc2C3 and
c-Sc4C3

Sc0.87(6)O0.13(6) 9 Nd: YLF
[1090 nm]

CW,10–15 W, ≈25 µm
≈1600–2200 K [308]
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Table 4. Cont.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots
[µm], or Induced Temps. [K]

Refs.

δ-TiC Ti, graphite 15 Nd: YLF
[1090 nm] CW, [<20 W], 1600–2000 K [309]

c-TaC Ta, graphite 8.6–14.3 Data N/A ≤2300 K [69]

c-Ta2C Ta, graphite 8.6–14.3 Data N/A ≤2300 K [69]

a: ReCx
b: Re2C Re, graphite a: 67

b: 20–40
a: Nd: YAG
b: Nd: YLF

a: [80 W], 3800 K
b: CW, [10–15 W],

15–30 µm, 1000–2200 K

a: [310]
b: [17]

PtC Pt,C 85 Nd: YLF, Nd: YAG ≈2600 K [57]

CrC Cr, C,
RCH2OH 5–5.3 CO2

[10.6 µm] 50 min, [120 W], ~30 µm, 1500 K [19]

ZnS type-MnC Mn, C 4.7–9.2 CO2
[10.6 µm] [120 W], 30 µm, 2000 K [7]

5.5. Binary Metal Nitrides

Metal nitrides are important technological materials, known for their hardnesses, wear
resistances, high melting points, and optoelectronic properties. By far the most LRS-DAC
studies have been carried out on the binary metal nitrides. This includes synthesis of the
following compounds, within the groups shown:

• Metalloid-based Nitrides: Boron nitride (BN), silicon nitride (Si3N4), and germanium
nitride (Ge3N4). (See Table 5).

• Transition Metal Nitrides: Manganese nitride (Mn3N2), iron nitride (Fe2N), cobalt
nitride (Co2N), nickel nitride (Ni3N), and gallium nitride (GaN). (See Table 6).

• Refractory Metal Nitrides: Titanium nitride (TiN), vanadium nitride (VN), chromium
nitride (CrN), zirconium nitride (Zr3N4), molybdenum nitride (Mo2N), hafnium ni-
tride (Hf3N4), tantalum nitride (Ta2N3), and the rhenium nitrides (Re2N and Re3N).
(See Table 7).

• Platinum Group Metal Nitrides: Palladium nitride (PdN2), osmium nitride (OsN2),
iridium nitride (IrN2), and platinum nitride (PtN2). (See Table 8).

Table 5. Binary Metalloid-Based Nitrides: Metalloid Nitrides Synthesised During Selected LRS-
DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots [µm],
or Induced Temps. [K]

Refs.

a. c-BN
b. h-BN B, N a.14.6

b. 2
Nd: YAG
[1.06 µm]

a. ≈30 W, 2300 K
b. ≈30 W, ≈1800 K [96]

c-Si3N4
a: Si, N

b: β-Si3N4

a: 15
b: 30

a: Nd: YLF
[527 nm]
b: CO2

[10.6 µm]

a: CW: 1–10 min, [14.5 W], 2200 K
b: [≤120 W], ≈2800 K [200]

BP-N
pure N and

TiN/Pb + N2
precursors

130–140 Nd: YAG
[1.06 µm] ≈15 µm, 2500 K [22]

c-Ge3N4 Ge, N 14–20 Nd: YLF
[1.053 µm] 55 W, 2000 K [61]

Fe3N2 + FeN Fe, N2 49.6 [1.07 µm] 1900 K [65]
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Table 5. Cont.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots [µm],
or Induced Temps. [K]

Refs.

FeN2 + FeN Fe, N2 58.5–69.6 [1.07 µm] 2100–2200 K [65]

FeN4 FeN2, FeN, N2 106–135 [1.07 µm] >2000 K [65]

TiN2 TiN, N2 73 YLF
[1.06 µm] 2400 K [311]

CoN2 Co, N2 39.9 IR laser Data N/A [312]

CuN2 Cu, N2 >50 Nd: YAG
[1.064 µm] >1500 [313]

NiN2 Ni, N2 ~40 IR
[1.09 µm] 300 K [314]

C3N4 C2(CN)4 40 YLF
[1.054 µm] Data N/A [315]

C2N2(NH) C2N4H4 27–42 YLF
[1.054 µm] ~1950–2500 K [316]

β-Li3N Li, N2 3.5, 25.2 YLF ~1500, ~2500 K [317]

LiN2 Li, N2 10.5–73.6 YLF ~1500–2500 K [317]

LiN5 Li, N2 73.6 YLF ~2500 K [317]

Table 6. Binary Transition Metal Nitrides: Transition Metal Nitrides Synthesised During Selected
LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots [µm],
or Induced Temps. [K]

Refs.

GaN Ga, LN2 9 YDFL
[1.07 µm] CW: 90 min, [17 W], 1925 K [318]

NaCl-typeTiN Ti, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

IrU2C2-type-Mn3N2 Mn, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

PbO2-type-Fe2N Fe, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

CFe2-type-Co2N Co, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

NaCl-type-VN V, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

NaCl-type-CrN Cr, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

O3Re-type-Ni3N Ni, N2 ≈10 Nd: YAG CW: 30 min, [100 W], ≈1800 K [71]

Table 7. Binary Refractory Metal Nitrides: Refractory Metal Nitrides Synthesised During Selected
LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure time [s],

Powers/Energies [W/J], Spots [µm], or
Induced Temps. [K]

Refs.

γ-Mo2N Mo, N 7 YDFL
[1.07 µm] 600s, [30 W], 2000 K [41]

c-Hf3N4 Hf, MN, N2 18 Nd: YAG
[1053 nm] CW: 2–20 min, [55 W], 2800 K [49]

c-Zr3N4 Zr, N2 15.6–18 Nd: YAG
[1053 nm] CW: 2–20 min [55 W], 2500–3000 K [49]

a: Re3N
b:h-Re2N Re, N2

a: 13–16
b: 20 Nd: YLF [1090 nm] [100 W], ≈25 µm, a: 1600–2400 K

b: 2000 K [62]

η-Ta2N3 Ta, N2 11–14.1 Yb fiber [8–9 W], 1600–2000 K [319]
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Table 8. Platinum-Group Metal Nitrides: Platinum-Group Metal Nitrides Synthesised During
Selected LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots
[µm], or Induced Temps. [K]

Refs.

OsN2 Os, N2 43 N/A >2000 K [53]

IrN2 Ir, N2 47–64 N/A 1600 K [52,53]

PtN2 Pt, N2 45–50 N/A 2000 K [52,54]

PdN2 Pd, N2
a: 60

b: >58

a: Nd: YAG
[1053 nm]

b: Nd: YAG [1064 nm]

a: CW, [55 W], >1000 K
b: CW, 1 µm, 800–900 K

a: [59]
b: [320]

One of the more technologically significant metal nitride articles was the first synthesis
of a novel silicon nitride phase in 1999, which exhibited a cubic spinel-type structure, and was
metastable at room pressures and <700 K [200]. This phase was likely a superhard material
with a hardness similar to those of stishovite and c-boron nitride. The Si3N4 was synthesised
from elemental silicon and nitrogen at 30 GPa and 2800 K. Soon after this work, Zerr et al.
synthesised the first zirconium and hafnium nitrides with a M3N4 stoichiometry [49]. These
studies were significant because they stimulated others to explore the synthesis of superhard
materials and novel metal nitrides through the LRS-DAC technique.

The most cited LRS-DAC article on the metal nitrides, by Gregoryanz et al., described
the first synthesis of a noble metal nitride, platinum nitride, (PtN) [54]. They combined
elemental platinum and nitrogen in the diamond anvil cell and obtained PtN at pres-
sures between 45–50 GPa and temperatures of ∼2000 K. Similar results were obtained by
Crowhurst et al. at ∼50 GPa and ∼2000 K [52]. These experiments were influential in
that they demonstrated that novel metal nitrides could be realised within an LRS-DAC
system—even when a chemical reaction would not ordinarily occur.

Another notable article was the LRS-DAC synthesis of polymeric nitrogen, with the
structure of black phosphorus [22]. Liu et al. heated TiN and Pb powders with nitrogen at
130–132 GPa and 2200–2500 K to polymerise the nitrogen. This form of nitrogen is a very
high energy-density material, as there is a considerable difference in energy between single
bonds in a nitrogen polymeric chain and that of triple bonds in diatomic nitrogen. This
difference can be used as the basis for novel, potentially environmentally friendly, fuels.
For further processing particulars of the binary metal nitrides, see Tables 5 and 6, and the
highly cited early high-pressure review of metal nitrides by Horvath-Bordon et al. [47].

5.6. Binary Metal Oxides

Metal oxides are often used as protective coatings in high-temperature applications (as
they are already oxidised), or as dielectric materials, e.g., for optoelectronics applications.
Referring to Figure 12, metal oxides have been processed under more severe conditions than
most other materials—up to 130 GPa and 3400 K. There have been many metal-oxide LRS-
DAC studies, focused primarily on iron oxide, silicates, and related compounds important
in geophysical studies of the interior of terrestrial planets (Table 9). For example, two of
these works examined reactions between common minerals, e.g., reacting FeS + Mg2SiO4 to
form iron oxide [296], or reacting iron oxide (FeO) with silica (SiO2) to form Fe-SiO3 [321].

One of the most cited of these works is that of Hu et al., who demonstrated that
goethite (FeOOH) decomposed to FeO2 and H2 at pressures of 76 GPa and 1800 K, allowing
for hydrogen to be separated from oxygen in the lower mantle. This mechanism may have
contributed to the current high-oxygen concentration in Earth’s atmosphere [55]. Related
studies include the dissociation of Fe2O3 to Fe5O7 + O2 [56], and the reaction of water with
Fe2O3 to form FeO2H [298].
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Table 9. Binary Metal Oxides: Metal Oxides Synthesised During Selected LRS-DAC Studies.

Product
Material(s) Precursor(s) Press.

[GPa]
Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure

Time [s], Powers/Energies
[W/J], Spots [µm], or
Induced Temps. [K]

Refs.

FeO FeS + Mg2SiO4 70, 75 and 130 Nd: YAG
[1.06 µm] [60 W], ≈2250 K [296]

FeO2 α-Fe2O3+ O2 76–78 Nd: YAG
[1.06 µm] 1800 K [55]

FeO2 FeOOH 92 Nd: YAG
[1.06 µm] 2050 K [55]

Fe5O7 α-Fe2O3 + Fe2O3 40.7 [1.07 µm] 4 to 30 µm, 1800 K [64]

Fe5O7 + O2 η-Fe2O3 71 [1.07 µm] 4 to 30 µm, v2700–3000 K [64]

Fe25O32 Fe3O4 80.1 [1.07 µm] 4 to 30 µm, 2950 K [64]

FeO + Fe3O4 Fe5O6 38–59 Yb fiber 100 W, 30 µm,1930–2350 K [322]

FeO + h-Fe3O4 Fe4O5 39 Yb fiber 100 W, 30 µm, 1860 K [322]

ε–Fe, FenO Fe, Fe2O3 220–260 Data N/A 1 s, 20–30 µm
3000–3500 K [323]

Fe-SiO3 FeO and SiO2 45, 110 Nd: YAG
[1.06 µm] 2200 v3100 K [321]

FeSiO3 (Mg,Fe)SiO3 +Fe 25–97 Nd: YLF ∼50 µm, 2300–3150 K [66]

Xe2O5 Xe, O2 ∼77–83 Data N/A >2000 K [324]

Xe3O2 Xe, O2 ∼97 Data N/A >2000 K [324]

FeO2H Fe2O3, H2O 133.5 Nd: YAG 2000 K [325]

Fe5O7+ η-Fe2O3 FeOOH 52 Data N/A 1200 K [326]

P-FeO2 α-FeO2H 72–132 Nd: YAG 1700–2000 K [325]

CO2–SiO2 SiO2, CO2 16–22 CO2
[10.6 µm]

30 s, 150 W, 30–40 µm,
>4000 K [327]

β-ReO2 CO2, SiO2, Re 8–48 [1.07 µm] 30 µm, 1500–2400 K [30,328]

MgCO3 MgO, CO2 5–40 Nd: YLF
[1.05µm] 1400–1800 K [329]

5.7. High-Z Intermetallics and Metallic Compounds

Unlike metallic alloys, where metallic bonding dominates, intermetallic compounds
show at least some evidence of chemical bonding with specific structures and occur in
distinct elemental ratios, which can be stoichiometric or nonstoichiometric [330]. They are
included in this review, as there are frequently chemical reactions associated with their
formation. Intermetallics are known for their high melting points, high hardnesses, and
corrosion resistances. Several intermetallic binary compounds have been synthesised using
LRS-DAC systems from mixtures of their respective elements, including germanium tin
(GeSn), indium antimonide (InSb), tungsten germanide, (W-Ge3), and iron bismuthide, (FeBi2)
(Table 10). Also included here is the dissociation of water to “alloys” and ionic species at high
pressures and temperatures observed by Lin et al. and Goncharov et al. [56,331].
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Table 10. Intermetallics and Metallic Compounds: Metallic Compounds and Intermetallics Synthe-
sised During Selected LRS-DAC Studies.

Product Material(s) Precursor(s) Press.
[GPa]

Laser Type
[nm or µm]

Laser Parameters:
Pulse Length/Exposure Time [s],

Powers/Energies [W/J], Spots
[µm], or Induced Temps. [K]

Refs.

O2–H2 H2O 8.8 Data N/A Up to 700 K [331]

H3O+, OH- H2O 56 Nd: YAG
[1.06 µm]

5–20 s, [50 W], 20–30 µm,
1600 K [56]

GeSn Ge, Sn 8 CO2
[10.6 µm]

CW, [≤125 W], ≈30 µm,
up to 2000 K [98]

InSb In, Sb a: 100,
b: 0.2–10

CO2
[10.6 µm]

a: CO2, 40 µm, ≥ 5000 K
b: CW, [10–15 W], 20 µm

a: [250]
b: [251]

WGe3 W, Ge 2.6 Nd: YAG
[1.06 µm] CW, [30 W], ≈1274 K [332]

FeBi2 Fe, Bi 32 Nd: YLF
[1053 nm] [170 W], 1400 K [24]

Y2ClC+ Y2Cl Y, NaCl 41 Nd: YAG
[1.06 µm] 2000 K [333]

Dy2ClC + DyCl Dy, NaCl 40 Nd: YAG
[1.06 µm] 2000 K [333]

HP-PdF2type-FeCl2 FeO, KCl 160 Nd: YAG
[1.06 µm] 2100 K [333]

CuBi Cu, Bi 3.19–4.88 IR ~40 µm, ~450 K [274]

Cu11Bi7 CuBi 4.16–10 IR ~40 µm, ~920 K [274]

One thought-provoking article discussed the synthesis of the FeBi2 intermetallic by
Walsh et al. in 2018 [24]. In addition to surveying similar work, they demonstrated the
formation of a new intermetallic between two normally immiscible elements, Fe and Bi,
for which there are no previously known intermetallics. As they state in their article,
“the uncovered compounds represent the first intermetallics in their respective classes
and hint at the enormous promise of this method as a way to isolate families of currently
‘impossible’ compounds”. This points the way for many others in their study of potential
new intermetallic compounds using the LRS-DAC approach.

Another article focused on the HTHP dissociation of water (H2O) into its constitutive
elements. This article is significant because the dissociation of water at high pressures and
temperatures ultimately can affect the internal composition/structure within dwarf planets
and similar planetary bodies; this could greatly revise current models of planetary dynamics.

6. Conclusions & Future Work

This article reviewed laser-induced reactive chemical processing within diamond
anvil cells, where 186 articles have been published and over 100 separate materials have
been synthesised so far. Clearly, there is an enormous potential for discovery in this field,
where high pressures and laser excitation provide additional degrees of freedom to the
thermodynamic phase space for materials synthesis. Many chemical reaction pathways
that do not occur at STP may yet be realised at high pressures within a diamond anvil cell.
For example, even normally stable compounds, e.g., water at STP, may be dissociated at
high pressures and temperatures. Novel reactions have been observed at high pressures,
such as the polymerisation of nitrogen, which ordinarily does not polymerise, as it is an
extremely stable diatomic molecule. It is also clear that process kinetics within diamond
anvil cells may be altered at high pressures relative to those at STP; indeed, one must
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determine the sign of the volume activation energy, ∆V‡, to determine whether a reaction
rate will increase or decrease with pressure.

Much of the focus in the literature has been on the synthesis of novel binary metal
nitrides, carbides, or diamond. However, new advanced functional materials, such as high
temperature superconductors (viz. lanthanum-yttrium hydrides), or superhard materials
(viz. rhenium carbides) have been developed. It has even been proposed that devices using
these materials can be fabricated inside L-DACs. New compounds and novel phases of
even highly unreactive materials, e.g., the platinum group metals, as well as uncommon
materials, e.g., scandium carbide (Sc4C3), have been synthesised, and new routes to di-
amond synthesis are being explored in the C-O-H system. Although some experiments
emulating chemical reactions deep within terrestrial or icy planets have been carried out,
much remains to be done to create realistic models. Currently, chemical reactions have
been induced at pressures approaching 1 TPa, but many planetary/geochemical research
questions will require even greater pressures.

To date, most LRS-DAC studies have employed cw lasers for thermally induced
reactions (pyrolysis), rather than pulsed lasers. Few photolysis experiments have been
conducted, and no experiments with short pulse lasers (<100 ps) appear in the literature
(thus far). However, it is apparent in many cw laser experiments that extreme thermal
gradients are present during LRS-DAC processing, which likely influence the transport and
concentration of precursors during the reaction. It has also been observed that rapid mass
transport may occur within an LRS-DAC, including convective mass and heat transfer
when fluids are present. Finally, it was determined that the diffusive reaction flux for two
(or more) reaction zones depends on the reaction zone radii, ao, and the centre-to-centre
distance between these zones, L. The mass transport (diffusion) limited reaction rate was
shown to be proportional to the inverse of the reaction zone radius.

Throughout this review, it can be seen that there is vast potential for new discoveries
to be made through LRS-DAC research, and that there remain many opportunities for
important contributions to be made, such as: (1) the potential discovery of new binary
and ternary intermetallic compounds, consisting of elements that ordinarily are consid-
ered normally immiscible or otherwise “impossible” to synthesise; (2) more exploratory
research into the binary metal hydrides, borides, carbides, and oxides would be worth-
while; (3) LRS-DAC methods may ultimately provide a route to materials that exhibit
room-temperature superconductivity, and more work should be done there; (4) there are
massive opportunities to measure (and model) chemical kinetics at high pressures for
the first time (and compare their differences to measurements at STP), thereby furthering
the fundamental understanding of kinetics; (5) much more research into photoexcited or
photolytic reactions could be carried out using modern, intense ultraviolet-visible tuneable
lasers to achieve selective chemistry; (6) the exploration of reactive materials synthesis
using modern ultrafast and short-pulsed lasers has yet to begin, where either heating can
be minimised or thermally excited states can be accessed; (7) the use of short-pulsed lasers
to simultaneously heat, shock, and induce chemical reactions has been minimal and is open
for further investigation; (8) explorations of very extreme conditions, well above 7000 K
(including plasmas), to induce chemical reactions have not been realised; (9) no detailed
studies/modellings of reactive mass transport processes within diamond anvil cells have
been carried out (an entirely new field); (10) there has been limited use of multiple laser
spots within an L-DAC for the simultaneous processing of multiple samples, which can
enhance the throughput of LRS-DAC experiments; (11) LRS-DAC methods have been
limited to relatively small sample volumes, limiting this type of work to scientific examina-
tions rather than manufacturing of commercial products; (12) few ternary, quaternary, and
higher compounds (such as high-entropy alloys) have been investigated using LRS-DAC
synthesis; (13) most chemical reactions have been either simple redox reactions or dissoci-
ation reactions involving two elements, rather than more complex molecules (e.g., CVD
precursors with multiple ligands)—this presents many opportunities for innovation; and
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finally, (14) further research into the mechanisms of diamond formation in the C-O-H and
similar systems are needed. Indeed, the future looks bright for LRS-DAC-related research.
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