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Abstract: In multi-axis fused deposition modeling (FDM) printing systems, support-free curved layer
fabrication is realized by continuous transition of the printer nozzle orientation. However, the ability
to print 3D models with complex geometric (e.g., high overhang) and topological (e.g., high genus)
features is often restricted by various manufacturability constraints inherent to a curved layer design
process. The crux in a multi-axis printing process planning pipeline is to design feasible curved layers
and their tool paths that will satisfy both the support-free condition and other manufacturability
constraints (e.g., collision-free). In this paper, we propose a volumetric curved layer decomposition
method that strives to not only minimize (if not prevent) collision-inducing local shape features
of layers, but also enable adaptive layer thickness to comply with a new volumetric error-based
surface quality criterion. Our method computes an optimal Radial Basis Functions (RBF) field to
modify the fabrication sequence field, from which, the iso-surface layers are extracted to design the
corresponding multi-axis printing tool paths. A method to fine-tune variable nozzle orientations on
each resulting curved layer is then proposed to overcome possible collisions in high-genus geometries.
To validate the concept and exhibit its potential, several support-free fabrication experiments and
comparisons with the conventional geodesic field-based slicing are presented, and the results give a
preliminary confirmation of the feasibility and advantages of the proposed method.

Keywords: multi-axis additive manufacturing; support-free 3D printing; radial basis functions (RBF);
weighted distance field; non-planar 3D printing

1. Introduction

In contrast to subtractive manufacturing (i.e., machining), Additive Manufacturing
(AM) offers a better means for fabricating complex 3D freeform models [1]. However, the
conventional planar-layered material deposition (with a fixed build direction) employed in
AM constrains its design space. In Fused Deposition Modelling (FDM), this restricted fabri-
cation nature induces manufacturability constraints such as support structure requirement
in overhang regions and degraded surface quality due to the staircase effect [1,2]. Despite
numerous efforts [3–5] on optimising certain process parameters (e.g., build orientation,
layer thickness) in the conventional (3-axis) FDM printer setting, the overall impact of the
constraints remains inevitable in 3D models that contain complex geometric (e.g., large
overhang, high curvature) and topological (e.g., high-genus) features. The emerging multi-
axis AM technology [6,7] has introduced the concept of employing high degrees-of-freedom
(DOF) printer systems to enable the printing nozzle to continuously change its orienta-
tion during fabrication. Wu et al. [8] exploited this rotational flexibility to realise support-free
fabrication of 3D models by printing (with planar layers) segmented parts of a 3D model
along different build orientations. Inspired by the potential of support-free printing, several
notable efforts [9–11] on model-segmentation-based (i.e., the 3+2-axis) multi-axis printing were
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proposed in recent years. However, due to the limitations inherent to model segmentation
techniques (e.g., relying on planar slices, fixed build direction for each segmented part, etc.),
a complete elimination of support structures remains impossible (especially for 3D models
with both overhanging and high-genus structures) for these so-called 3+2-axis multi-axis
printing methods [10,11].

To overcome the limitations in both 3-axis and 3+2-axis multi-axis AM methods, re-
searchers have now endeavoured to develop 3D printing with non-planar printing layers.
It is evident that non-planar (i.e., curved) printing layers are effective in minimising the
staircase effect in curved 3D models [12,13]. Dai et al. [14] presented a curved layer decom-
position method, which employs continuous nozzle orientation change (i.e., continuous
multi-axis printing) to realise non-planar print paths to achieve support-free printing. As
their method relies on the convexity of decomposed surface layers (to avoid collision during
fabrication), it nevertheless suffers from severe surface artifacts and high computational
load. Recently, some methods of curved layer decomposition for support-free continuous
multi-axis fabrication based on the use of geodesic distance field were introduced [15–17].
However, those by Xu et al. [15] and Li et al. [16] showed that highly concave curved layers
are inevitable when decomposed based on the geodesic distance field. Thus, local gouging
(i.e., the collision between the printer nozzle and the printing layers) remains a serious
concern (see Figure 1), restricting their algorithms to considerably simpler 3D models. In
contrast to the conventional multi-axis printer setting (i.e., the nozzle orientation remains
fixed while the workpiece changes its orientation), Mitropoulou et al. [17] deposited mate-
rial (with a mobile tool) along non-planar paths on a fixed workpiece to realise support-free
fabrication of large-scale single-shell surfaces. However, their method offers no direct
solution to prevent local gouging and collisions that could occur between the nozzle and
the in-process workpiece. Mainly concerning strengthening a printed part, Fang et al. [18]
presented a strength-aware curved layer decomposition method, which, though, did not
consider the support-free fabrication requirement.
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Figure 1. Local gouging occurs while fabricating highly concave shape features of a curved surface
layer (yellow circle indicates a possible local gouging location).

A recent work by Xie et al. [19] showed how convex ellipsoidal layers could be utilized
to overcome the local-gouging problem while upholding the support-free requirement. In
fact, some quite complex 3D geometries (e.g., a genus-3 model) were successfully fabricated
by their method. However, as the skeleton is used in their method, full covering of a
complex 3D geometry with ellipsoidal slices becomes a serious problem (as typically, it
is extremely difficult to stably compute the skeleton of a complex 3D model, particularly
near the model boundary). In addition, their method suffers from risks of collision during
fabrication of highly convex surface layers in proximity (see Figure 2). Recently, a vector-
field-based curved slicing method was proposed by Li et al. [20] to realise support-free
multi-axis fabrication. Unfortunately, their strategy to eliminate concave (i.e., local gouging-
inducing) shape features in curved layers solely depends on minimising the mean curvature,
which is an extrinsic property that contains little information of the local shape properties
of a given curved surface layer. Therefore, the resultant shapes of most decomposed layers
tend to be undesirable (highly planar) rather than being convexity-enhanced. This caveat
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complicates (if not prevents) maintaining the support-free requirement and, as a result, low
printing surface quality becomes a serious concern.
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From the above review, it is evident that manufacturability constraints native to curved
layer decomposition techniques have caused loss of generality in handling complex geo-
metrical features. For example, determining the severity of concavity in decomposed layers
has never been well studied before to evaluate the manufacturability of a given curved
surface layer. Even if the concavity were eliminated (i.e., when convexity is guaranteed),
constraints such as collisions due to highly convex layers in proximity of one another
remains inevitable in the existing methods [14,19]. On the other hand, improvement of
the surface quality of printed models has been rarely (if ever) studied in the domain of
multi-axis printing.

In this paper, we present a new curved layer decomposition method that employs a
multi-objective optimisation model to provide a generalised solution to the above-explained
challenges (i.e., evaluating the severity of concave features, collision in high-convex layers,
and unawareness of surface quality control). Our method employs the powerful algebraic
tool Radial Basis Functions (RBFs) to compute an optimised distance field, which focuses on
minimising (if not completely eradicating) unsafe regions within the decomposed curved
layers and improving the surface quality based on a volumetric error model, while ensuring
the support-free fabrication requirement for a range of complex 3D models. As a result of
our effective unsafe shape feature-minimising strategy, we have successfully fabricated
some complex 3D models that would fail under conventional geodesic field-based slicing
methods [15,16]. We will show that allowing adaptive layer thickness in curve-layer
design has potential to improve the surface quality of fabrication. Finally, we propose an
experimental approach to fine-tune the nozzle orientation vector on a multi-axis tool path
to realise collision-free curved-layer fabrication of complex 3D models that contain both
high-genus and large overhanging structures.

2. RBF Field-Based Curved Layer Decomposition
2.1. Overview

Given an input 3D model represented as a tetrahedral mesh M containing V vertices,
our goal is to decompose M into a set of curved surface layers that can ensure an accu-
rate approximation of the input model geometry while enabling fabrication of complex
shape features (e.g., high-genus structure, large overhang, etc.) in a support-free manner.
Therefore, it is evident that our goal demands for multiple objectives to be satisfied during
the non-planar layer decomposition stage. Optimisation models of multiple objectives
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are generally non-linear [14,18]; thus, the computational cost and the complexity of the
optimisation algorithm could rise to an exceptional level [18].

Our process-planning pipeline employs the RBF interpolation (Section 2.2) technique
to compute a weighted fabrication sequence field (Section 2.3) for the input 3D model.
To optimise (i.e., compute the optimal RBF design parameters) the fabrication sequence
field, we first introduce several mathematical models (Section 2.5) to evaluate the impact of
fabrication constraints and to determine the manufacturability on each extracted iso-surface
layer (Section 2.4). Ideally, the optimisation phase iteratively modifies the shape of each
problematic (i.e., containing unsafe regions) curved surface layer while respecting the given
thresholds (e.g., the overhang angle criterion, the layer thickness, etc.). Finally, a (printing)
tool path on each decomposed curved layer is planned to realise continuous multi-axis printing.

2.2. RBF Interpolation

In this section, we give a brief introduction of the RBF interpolation technique to make
this paper self-contained. The RBF theory emerged in topographical data representation
for the first time [21]. Given a certain metric space (e.g., the Euclidean distance), RBFs
have a potential to generate a node-wise response, which mainly relies on the distance
between a given node P (P ∈ V) and the centre point (RBF centre) of each overlapping RBF
field. Since the overall response of overlapping RBF fields is simply formulated as a linear
combination, the interpolated scalar value at P, O(P), can be computed by the following
equation [21]:

O(P) =
n

∑
k=1

WkΦ(‖ P− Ck ‖) (1)

in which Φ , Ck , Wk represent the RBF kernel, the RBF centre location, and the RBF centre
weight, respectively, in a domain comprising n RBF centres, while ‖ . ‖ indicates the L1
norm. From Equation (1), it is evident that the RBF interpolated values also depend on the
following design parameters,

• The number of RBF centres
• The RBF centre weights
• The RBF centre locations
• The RBF kernel type

2.3. RBF Weighted Fabrication Sequence Field

One of the challenges in approximating a 3D model with non-planar layers is to
automatically induce a natural design for the curved layers that are stacked in a sequential
order [15,16]. As the first step of our curved layer decomposition method (Section 2.4), we
employ the heat geodesics method proposed by Crane et al. [22] to compute an initial heat
gradient vector field H (see Figure 3a), which can help induce a geodesic distance field in
different kinds of discretized domains (in our case, a volumetric mesh). It is important to
note that the base vertices of the input 3D model are set as multiple heat sources for this
computation, thus propagating a heat flow from the base to the top of the model. As the
result of this step, each tetrahedron of M will be assigned with a unique discrete gradient
vector by the end of this step [22].

Next, we compute the RBF weight field RX , which will be used to modify the original
heat propagation patterns inside M. Ensuring the generality of the function domain of RBF
interpolation is crucial. Therefore, for each tetrahedron of M, its centroid is considered
as a node of the RBF function domain. The coordinates of the centroid can be computed
by averaging the sum of the vertex coordinates of each tetrahedron [23]. To guarantee
the smoothness of weights spreading over the function domain (M) and to preserve their
magnitude within an appropriate range, we choose the infinitely smooth Multiquadric
(MQ) RBF kernel [21] for the interpolation. The MQ kernel can be represented as

Φ =

√
1 + (εr)2 (2)
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in which ε and r stand for the shape parameter of the MQ kernel and Euclidean distance
between a given RBF centre and each node of the function domain (i.e., ‖ P − Ck ‖),
respectively. Even though ε has a slight influence over the interpolated RBF field values
(i.e., changing ε will result in a negligible difference in the RBF field values) [21], we observe
that it is considerably less impactful than the design parameters listed in Section 3.2.
Therefore, keeping ε fixed (in our case ε = 1), we compute the RBF weights by interpolating
the functions defined at RBF centres. The interpolated RBF weight field RX can be viewed
as a point cloud (Figure 3b) that comprises a unique scalar value at every node of the
function domain. Finally, to modify the original heat propagation pattern (i.e., modify the
original geodesic distance field with the RBF weights), the weighted gradient vector field
HW is derived as the product of the initial gradient vector field and the RBF weight scalar
field, as follows:

HW = H × RX (3)

To extract the RBF weighted distance field (i.e., the fabrication sequence field) (see
Figure 3d), we solve the Poisson equation on HW to convert it into a scalar field, which
assigns a scalar distance value ϕ at each V of the mesh by the following equation:

∆ϕ = ∇HW (4)

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 5 of 23 
 

 

model. As the result of this step, each tetrahedron of 𝑀 will be assigned with a unique 

discrete gradient vector by the end of this step [22]. 

 

Figure 3. Steps for computing a weighted fabrication sequence field: (a) the initial heat gradient 

vector field; (b) the RBF weight field; (c) the weighted heat gradient vector field—(RBF centres as 

red circles); and (d) the iso-contours plotted on the RBF weighted fabrication sequence field. 

Next, we compute the RBF weight field 𝑅𝑋, which will be used to modify the orig-

inal heat propagation patterns inside 𝑀. Ensuring the generality of the function domain 

of RBF interpolation is crucial. Therefore, for each tetrahedron of 𝑀, its centroid is con-

sidered as a node of the RBF function domain. The coordinates of the centroid can be 

computed by averaging the sum of the vertex coordinates of each tetrahedron [23]. To 

guarantee the smoothness of weights spreading over the function domain (𝑀) and to 

preserve their magnitude within an appropriate range, we choose the infinitely smooth 

Multiquadric (MQ) RBF kernel [21] for the interpolation. The MQ kernel can be repre-

sented as 

Φ =  √1 + (𝜀𝑟)2 (2) 

in which 𝜀 and 𝑟 stand for the shape parameter of the MQ kernel and Euclidean dis-

tance between a given RBF centre and each node of the function domain (i.e., ‖𝑃 − 𝐶𝑘‖), 

respectively. Even though 𝜀 has a slight influence over the interpolated RBF field val-

ues (i.e., changing 𝜀 will result in a negligible difference in the RBF field values) [21], 

we observe that it is considerably less impactful than the design parameters listed in 

Section 3.2. Therefore, keeping 𝜀 fixed (in our case 𝜀 = 1), we compute the RBF weights 

by interpolating the functions defined at RBF centres. The interpolated RBF weight field 

𝑅𝑋 can be viewed as a point cloud (Figure 3b) that comprises a unique scalar value at 

every node of the function domain. Finally, to modify the original heat propagation pat-

tern (i.e., modify the original geodesic distance field with the RBF weights), the 

weighted gradient vector field 𝐻𝑊 is derived as the product of the initial gradient vector 

field and the RBF weight scalar field, as follows: 

𝐻𝑊 = 𝐻 × 𝑅𝑋 (3) 

To extract the RBF weighted distance field (i.e., the fabrication sequence field) (see 

Figure 3d), we solve the Poisson equation on 𝐻𝑊 to convert it into a scalar field, which 

assigns a scalar distance value 𝜑 at each 𝑉 of the mesh by the following equation: 

∆𝜑 = ∇𝐻𝑊 (4) 

Figure 3. Steps for computing a weighted fabrication sequence field: (a) the initial heat gradient
vector field; (b) the RBF weight field; (c) the weighted heat gradient vector field—(RBF centres as red
circles); and (d) the iso-contours plotted on the RBF weighted fabrication sequence field.

2.4. Iso-Surface Extraction

In this step, we decompose the fabrication sequence field into a sequence of curved
surface layers, on each of which, the manufacturability will be evaluated, and a multi-axis
tool path will be designed. Given an iso-value F of the fabrication sequence field, we march
through every tetrahedron and check for any intersection by the corresponding iso-surface
S (i.e., check if iso-value F lies between the extremal fabrication field values at the four
vertices of the current tetrahedron). If such intersections exist, the iso-points (Viso) of S
are computed by linearly interpolating the vertex coordinates of the tetrahedron by the
following equation:

Viso =
F− Di

Dj − Di

(
Vj −Vi

)
+ Vi (5)

in which Vj and Vi represent the end vertex coordinates of a candidate edge while Dj and Di
stand for the field-values of Vj and Vi respectively. While there are many possibilities for
occurrence of the three intersecting points (see Figure 4), the extremely rare case of having
four intersecting points of an iso-surface in one tetrahedron is handled by splitting the
quadrilateral into two triangles across the diagonal (see Figure 5). For example, in the
first case (Figure 4a) of three intersecting points in Figure 4 (assume iso-value F is given),
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the coordinates of Viso can be computed by replacing Vi, Vj, Di, and Dj of Equation (5)
with Vr, Vs, Dr, and Ds, respectively. The exact similar interpolation is performed along
Vr, Vq and Vr, Vp edges. In the case of four intersecting points (Figure 5), the above
interpolation is performed twice along the corresponding edges of both triangles. Once
all these intersection points inside model M are connected, the iso-surface layer that
corresponds to iso-value F can be automatically extracted in the form of a triangular mesh.
However, the mesh connectivity of the extracted surface layers would mostly remain
irregular, leading to numerical degeneracies in the later tool path design phase. Therefore,
we apply a remeshing technique proposed by Botsch et al. [24] to ensure the required
regular mesh connectivity within all the decomposed curved layers.
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Figure 5. The degenerate case of four intersecting points is handled by forming two
corresponding triangles.

2.5. Manufacturability Constraint Evaluation Models

In this section, we introduce mathematical models that evaluate the manufacturability
on each decomposed curved surface layer (i.e., to identify whether a given curved layer
qualifies for fabrication based on the pre-defined criteria).

2.5.1. High-Risk Local Shape Feature Detection

As is well known, concave features (i.e., local areas where inward pointing vertex
normal vectors exist) in non-planar surface layers are the most prominent cause behind
local gouging [15,16]. In addition to constraining the complexity of manufacturable 3D
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geometries, local gouging also prevents safe fabrication on multi-axis printer systems. Our
approach is to first identify the existing local concavities and to compute the severity of
total local concave features in each curved layer to determine whether the curved layer
could be fabricated in a gouging-free manner. For this purpose, we implement the surface
shape analysis model as introduced by Koenderinek et al. [25]. Both the Shape Index (SV)
and Curvedness Index (CV) measures presented in this model are computed by employing
the discrete principal curvatures (K1, K2) of the surface layer mesh, as follows:

SV =
2
π

tan−1 K2 + K1

K2 − K1
(6)

CV =

√
K1

2 + K22

2
(7)

SV , which ranges from −1 to 1, distinguishes between vertices located in convex/concave
local shape features. Given a set of layers with concave features, we observe that the degree
of curvature measured by CV is an ideal indicator of the severity of local concavities. Since
the first objective of our optimisation is to improve the convexity of decomposed layers, it
is crucial to integrate both the above measures to define certain criteria that could filter out
the unsafe features that are prone to local gouging. Once both SV and CV are evaluated on
a given curved surface layer (see Figure 6), it is conceivable that, for local concave features,
their SV is generally negative. Through our tests, it is found that in highly curved regions
of such a concave surface layer the value of CV is typically greater than 5. Therefore,
by following an experimental approach, we consider a vertex to be in a high-risk (i.e.,
local-gouging inducing) region if it fulfils the below criteria:

SV < 0.2 and CV > 4 (8)
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The total number of at-high-risk vertices, HK (which fulfill the above criteria), will
serve as an indicator for the optimisation model. For instance, on a totally convex curved
surface layer, HK would be zero. Thus, minimising HK is set as one of our objectives for
optimising the fabrication sequence field to improve the convexity within the decomposed
curved surface layers and to avoid local gouging.

2.5.2. Volumetric Error Approximation

In this section, we introduce a new mathematical model that approximates the volu-
metric error between two adjacent curved surface layers (i.e., volumetric deviation from the
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original 3D representation). The discretisation effect of both planar and non-planar slicing
procedures causes compromised surface quality of the final printed part. While surface
quality is directly influenced by the layer thickness distribution, curvedness of surface
profile (i.e., surface angle), and the part orientation, numerous adaptive slicing methods
(in 3-axis AM) based on the cusp-height measure [26,27] and volumetric error [28,29] have
been proposed to uphold the printed surface quality. Volumetric error approximates the
deviation of the sliced model and is considered superior to cusp-height for adaptive slicing
techniques [29]. However, in the case of a curved layer, surface quality improvement
has rarely been studied, mainly due to two reasons: the unpredictable nature of curved
layer decomposition and the difficulty in handling numerous objectives to satisfy both the
support-free and collision-free requirements.

It is important to note that the geometric deviation occurs (or is measured) along the
boundary of each decomposed layer [4,29]. Our volumetric error approximation model
starts with finding the boundaries (i.e., the boundary vertices) of each curved surface
layer. For this task, all the vertices that form non-repeated edges (i.e., boundary edges)
are extracted as boundary vertices. We compute the volumetric error at each boundary
vertex since the local layer thickness is adaptively changed in the optimisation phase.
If the total number of boundary vertices in adjacent layers SK and SK+1 are given as
m and n, we consider m (m < n) as the total number of corresponding vertices. In our case,
it is crucial to form the correspondence between the boundary vertices of two adjacent
layers SK and SK+1 to approximate the triangular cross sections formed by the deviation
between the two [29]. To find the corresponding vertex pairs between the boundary vertices(

Bk,j=1,...,m, Bk+1,j=1,...,m

)
of SK and SK+1, we first calculate the Euclidean distance from

each vertex Bk,j of the current layer to all the boundary vertices Bk+1,j of the adjacent layer.
We label the closest vertex pairs as the corresponding vertices for any two adjacent curved
surface layers. The next step is to form triangular cross sections for each corresponding
vertex pair.

If the boundary lengths of SK and SK+1 are given as RK and RK+1 (RK > RK+1), we
find the closest point VK,j located on SK (the longer boundary length layer) to form the
triangular cross section for each corresponding vertex pair. Thus, d = ‖ VK,j − Bk+1,j ‖
corresponds to the local layer thickness h (i.e., the height of the triangular cross section)
that ultimately influences the approximated volumetric error. Once all the cross sections
are formed, next, we compute the edges (by considering the Euclidean distance) to connect
each cross section. This process forms oblique prisms that approximate the volumetric
errors of individual segments between the adjacent curved layers (Figure 7b). The volume
of an oblique prism Vol(Pk) can be easily calculated as:

Vol(Pk) = A× H (9)

in which A and H
(
= l1+l2+l3

3

)
represent the area of a triangular cross section and the

average length of the prism, respectively. Thus, we approximate the total volumetric error
HV between two adjacent curved layers as the total volume of all the surrounding oblique
prisms:

HV = ∑k∈m Vol(Pk) (10)

It is important to note that the shape and local thickness of curved layers vary (often
significantly) in our layer decomposition algorithm, which is one of the significances of the
non-uniform weighted heat gradient vector field. By exploiting this ability, our method
focuses on optimising the fabrication sequence field in a way that minimises HV .
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2.5.3. Boundary Overhang Angle

To achieve support-free fabrication for 3D models with large overhang areas, the angle
θB between the nozzle orientation vector at each boundary vertex and the surface normal
vector of the curved surface layer should be maintained [15] under a pre-determined
threshold (in our case, θB < 135◦). Since it is clear that the shape of a curved surface layer
has a direct impact on the computed overhang angle, any modification to the fabrication
sequence field must respect the support-free overhang angle criterion. For this purpose,
we evaluate the overhang angles for each decomposed surface layer to ensure that the
support-free condition is met throughout. While the nozzle orientation vector computation
(Section 3.2) could be modelled in different ways, the surface normal vector at any vertex
of any curved layer is considered to be the weighted mean of the face normal vectors of the
incident triangles of the layer [30]. Once both the nozzle orientation vector PB and surface
normal vector RB are known, the angle θB can be computed by the following equation:

θB = arccos
[

PB.RB

|PB||RB |

]
(11)

3. Multi-Objective Optimisation and Multi-Axis Fabrication Path Generation

To find an optimal solution for the multiple objectives in our curved layer decompo-
sition stage, we employ a multi-objective genetic algorithm (GA) optimisation model to
search for an effective result. The optimisation variable setting (Section 3.1.1), objective
functions (Section 3.1.2) and definition of constraints (Section 3.1.3) in our model are de-
scribed in this section. Once the optimal fabrication sequence field is computed within the time
and other pre-defined constraints, we then design a multi-axis tool path with a variable nozzle
orientation vector (Section 3.2) that strives to avoid collisions during the fabrication.
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3.1. Multi-Objective GA Model for Field Optimisation

Conceivably, a global optimisation solution (i.e., minimising the total volumetric error
or high-risk region vertices of all the decomposed curved layers) would not be a local
optimal solution to individual curved layers (e.g., maximizing the convexity). In fact, such
a global approach could cause overcompensation in a non-linear optimisation problem.
Therefore, to ensure improvement of shape features within each decomposed curved layer,
we opt for a local (i.e., layer-based control) optimisation approach (Section 3.1.3).

3.1.1. Optimisation Variable Setting

Since our optimisation solely depends on finding the optimal RBF scalar weights inter-
polated over the input 3D geometry, the following impactful RBF field design parameters
will serve as the optimisation variables:

• Number of RBF centres (NB)
• RBF centre locations
• RBF centre weights

3.1.2. Objective Functions

The purpose of optimising the fabrication sequence field is to iteratively improve the
convexity (i.e., minimising the concavity), while at the same time, minimising the volumet-
ric error within each decomposed curved surface layer through adaptively changing the
layer thickness and the shape of surface layers under the support-free overhang angle con-
dition. Thus, the objective functions aim to minimise Hk and HV at each individual curved
layer (Section 2.5). Based on the evaluation score of these two objectives, the fabrication
sequence field values are modified until the stopping criteria are met. For a 3D geometry
which consists of both concave surface layer features and a high-genus topology (which
usually induces high HV), the above two objectives are combined with user-provided
weight parameters as W1 × HV + W2 × HK.

3.1.3. Constraints for Optimisation

We set several constraints in optimising the fabrication sequence field to search for a
high-quality outcome while considering the computational load and the printer hardware
constraints. As explained in Section 2.5.3, the first constraint to ensure support-free fabrication
is the overhang angle criterion (θB < 135◦). Next, the layer thickness range [hmin , hmax] is
set between the values of 0.1 mm and 0.9 mm to ensure the material extrusion within the
printer nozzle size specifications (this depends on the specific hardware). In terms of the RBF
interpolation, the maximum number of RBF centres is restricted to 10, which is chiefly due to
the concern on computational load. Nevertheless, these parameters can be defined by the user,
depending on their requirements and the available processing power.

Finally, we introduce two layer-based constraints, HV ≤ K1 and HK ≤ K2, to gauge
susceptible curved layers with highly concave shape features or causing a high volumetric error.
In our case, K1 = 6 (the maximum number of high-risk region vertices) and K2 = 200 mm3

(the maximum allowable volumetric error), which are experimentally determined. Finally,
to influence the fabrication field values to comply with the above layer-based constraints,
we have also included another objective of minimising the total number of erroneous layers
SE and added a penalty score depending on the SE for each iteration in the optimisation.

3.2. Multi-Axis Tool Path Design

A (printing) tool path for curved layer fabrication on a high-DOF system is usually
defined by a position vector, a corresponding nozzle orientation vector, and the accumu-
lated feed value [14,15]. For the position vector that defines the tool path pattern, we adopt
the popular parallel-contour pattern. Given a curved surface layer as a triangular mesh,
we first extract the boundary vertices (as explained in Section 2.5.2) again and by setting
them as the source vertices. The exact surface geodesic field [31] is then computed on the
triangular mesh. Then, the intersecting points that form a g number (g = 5 in our case) of
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iso-contours are computed by linearly interpolating the geodesic distance values assigned
at the mesh vertices. Finally, the last point of each contour is connected to the first point of
the next contour to form a continuous printing path on each curved layer.

The conventional planning of nozzle orientation to guarantee non-warping fabrication
has been to align the nozzle orientation vector along the layer surface normal vector at each
vertex of the curved layer. However, sometimes this is susceptible to collisions, regardless
of the improved convexity, especially in high-genus 3D geometries with multiple branches
where other curved layers exist in the proximity (Figure 8a). To overcome this bottleneck,
we propose a new method to design the nozzle orientation vector. Specifically, both the
vertex surface normal vector PN and the average surface normal vector (i.e., a fixed vector)
Pavg at each vertex of a curved surface layer are used to derive the fine-tuned nozzle
orientation PV through the following equation:

PV = α× Pavg + β× PN (12)

in which α and β represent the experimentally determined fine-tuning parameters for the
input 3D model depending on the geometric complexity (Section 4.4). The motivation
of this is that, with a careful tuning, PV eliminates most of the inward pointing nozzle
orientation vectors (Figure 8b) in the proximity, thus preventing (if not eliminating) possible
(global) collisions in high-genus 3D geometries (Section 4.4). Note that, while set by the
user, the selected α and β must ensure that PV complies with the support-free overhang
angle criterion, as defined in Equation (11).
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4. Results and Discussion

In this section, the fabrication results generated by our curved layer decomposition
method are presented. Our process-planning framework is implemented in MATLAB
and the multi-objective optimisation model is also based on the in-built multi-objective
genetic algorithm functions of MATLAB. First, we conduct several layer-only fabrication
experiments to provide a comparison between our convexity-enhanced layers and the
conventional curved layers generated by the geodesic field-based methods [15–17]. We
show that the layers extracted from the geodesic field often fail due to local gouging,
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while that generated by our RBF-based field are rid of local gouging. Furthermore, it
is important to note that all the selected models in our experiments are too complex
to realise a full-model printing (in a safe no-local-gauging and collision-free manner)
under the conventional geodesic-field-based curved slicing method and the conventional
nozzle orientation settings. Finally, to demonstrate the potential of our method in surface
quality enhancement through the proposed volumetric error-based adaptive slicing strategy,
simulation results are presented and comparisons are made with both the planar slicing
and geodesic field-based slicing methods.

4.1. The Fabrication System

The (homebuilt) multi-axis printer system (Figure 9) employed for our experiments
comprises a fixed nozzle with an nD = 1 mm diameter and a mobile workpiece attached to
the end effector of a 6-axis UR5 robot arm. Thus, the workpiece orientation is continuously
altered according to the nozzle orientation vectors of a tool path. Meanwhile, the nozzle
deposits fused filament (1.75 mm standard PLA) at the position vector coordinates of the
tool path with a variable accumulated feed value ( fp) to realise adaptive layer thickness
control, so to fabricate decomposed curved layers from our method. The varying rate fp is
computed by the following equation:

fp =
µ× (le × dn × h)

πrm2 (13)

where le, dn, and h represent the Euclidean distance between any two adjacent points of the
tool path, the nozzle diameter, and the local layer thickness, respectively; rm stands for the
filament radius (fixed); while µ (in our case µ = 0.7) is a pre-assigned shape parameter that
improves the accuracy of fp by complying to the elliptic shape of the deposited material.
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Figure 9. The homebuilt multi-axis printer system.

It is important to emphasize that the main purpose of our inexpensive homebuilt multi-
axis printer is to assess the feasibility of the developed multi-step printing process, which
suffers from a few hardware limitations that, though, could be improved. For example,
the positioning error of the UR5 robot arm [14], which causes a considerable impact on the
printing surface quality, can be significantly reduced by employing a high-precision 5-axis
CNC table [18]. In addition, a higher quality nozzle (e.g., 0.2 mm radius nozzle instead of
the current 1mm radius nozzle) would be an ideal candidate to showcase the true potential
of our surface-quality-improvement method.
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4.2. Simulation Results

In this section, we provide the simulation results for the selected 3D geometries
(Figure 10). The input 3D models are decomposed into the traditional planar layers, the
conventional geodesic field-based curved layers, and the RBF-based (our method) curved
layers. From the test data given in Table 1, it is evident that the curved layers generated
from our RBF-based method exhibit much enhanced convexity (i.e., lower number of
high-risk region vertices—VU) and contain the lowest approximated volumetric error (VE),
while at the same time, achieving a higher compliance to the support-free requirement in
contrast to geodesic field-based method.
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Figure 10. (a) Selected input 3D mesh models; (b) RBF scalar weight fields; (c) the optimised heat
gradient vector field for each 3D model with the final determined RBF centres (red circles).

Table 1. Comparison of simulation statistics for different layer decomposition methods (VO—number
of overhang vertices, VU—number of high-risk region vertices, VE—total volumetric error in mm3).

3D Model Number of Tetrahedrons

Layer Decomposition Method

Planar Geodesic RBF-Based (Our Method)

VO VU VE VO VU VE VO VU VE

Kitten 100,045 435 - 5.89 115 1539 3.42 86 900 2.21

2-genus 105,911 580 - 6.2 302 1150 4.3 166 592 3.8

Nintendo 135,913 996 - 7.85 502 1288 4.71 382 992 4.02

3-genus 138,746 289 - 4.12 153 1473 1.8 81 837 1.05

To visualise the significance of convexity-improvement of our method, we compare
the extracted curved layers at some critical regions (i.e., concavity inducing) from both our
RBF-based fabrication sequence field and the geodesic distance field for the Kitten and
two-genus model. For the Kitten model, the SV and CV plots of the layer shown in Figure 11
indicate high concave features (max CV of 8), posing a risk of local gouging. In contrast, the
curved layer from our method, as shown in Figure 12, achieves better convexity (the max CV is
reduced to 5). Figures 13 and 14 depict the similar comparison plots for the two-genus model.
Again, by examining the SV and CV plots in Figures 13 and 14 respectively, our RBF-based
method fares much better in terms of these two important metrics. On a different note, as
revealed in Figures 12 and 14, our method naturally generates adaptive layer thickness
depending on the local features and volumetric error measure, in contrast to the uniform
layer thickness in the geodesic distance-based field method [15].
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Naturally, as the number of RBF centres NB directly controls the span of design space
in our optimization model, it greatly impacts the quality of the optimised output. Table 2
provides the test data of a comparison experiment of our method with three different
ranges of NB, which shows a clear monotone positive trend between the optimality and
NB. However, the mitigating factors must be considered when selecting a larger NB, e.g., the
increasing computational load, the numerical stability, and the point of diminishing returns.
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4.3. Layer-Only Comparison with the Geodesic Field-Based Slicing

The above simulation results indicate that the curved layers decomposed from the
geodesic distance field are susceptible to a greater risk for local gouging in all our tested
3D models. To better exhibit the local gouging problem in the geodesic field-based curved
layers and the advantages of our convexity-enhanced curved layers, we have fabricated
the layers shown in Figures 11–14 from both the geodesic distance field and our optimised
RBF-based field. Figure 15 shows the fabrication comparison for the Kitten model. The
geodesic field-based layer of the Kitten model from Figure 11 is confirmed to incur local-
gouging (Figure 15b,c) and therefore, the fabrication could be considered as a failure (as
the nozzle must bypass the location to avoid damage to the nozzle). Figure 15a displays
the fabrication result of the convexity-enhanced layer (Figure 12) from our method, which
incurs no local-gouging. Similarly, for the two-genus model, Figure 16b,c reveal the failed
fabrication of the curved layer (Figure 13) by the geodesic distance field, while Figure 16a
shows the success by our method on the curved layer (Figure 14).
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From Figures 15 and 16, it is evident that in the presence of high concave local fea-
tures, the quality of the printed part would deteriorate if printing is allowed to continue,
regardless of local gouging, as cracks or defects would result on the layer. In addition, it is
also highly unsafe for the nozzle. Therefore, local gouging must be prevented.

4.4. Physically Fabricated 3D Models

Finally, we show the physically fabricated models by our RBF-based multi-axis print-
ing process planning system. The nozzle orientation tuning parameters (α and β) and the
total fabrication time (in hours) for each model are tabulated in Table 3, while Figures 17–20,
respectively, show the photos of the four fabricated models, i.e., the Kitten, two-genus,
Nintendo, and three-genus. Figure 21 depicts the support-structures required to print the
overhang areas of the selected models in a 3-axis setting (i.e., with planar slicing).

Table 3. Comparison of the impact on the number of RBF centres employed for optimal gradient
vector field computation.

3D Models
Nozzle Orientation Vector Tuning Parameters Fabrication Time

(Hours)α β

Kitten 0.35 0.65 7.1

2-genus 0.61 0.39 3.9

Nintendo 0.4 0.6 7.8

3-genus 0.42 0.58 4.7

For the Kitten model, Figure 17a,b illustrate how local gouging is effectively avoided on
convexity-improved curved layers during the fabrication process, while Figure 17c displays
the effect of varying nozzle orientation parameters towards fabricating highly convex
(potential risk of local gouging with a fixed nozzle orientation) layers, and Figure 17d
displays the successfully fabricated Kitten model.

In terms of dealing with high-genus topology structures, Figures 18a and 20c indicate
the significance of α and β (the nozzle orientation tuning parameters) in realising safe
fabrication of curved layers of 2-genus and 3-genus models. Fabricating such layers would
be impossible with a vertex normal vector-based nozzle orientation. Figure 18b depicts how
the convexity-improved layers of our method eliminate local gouging to realise successful
fabrication of the slanted two-genus model (see Figure 18d). With the similar convexity-
enhancement (e.g., Figure 20a) and adaptive thickness control through our fully automatic
process planning, the three-genus model (see Figure 20d) is successfully fabricated in a
support-free manner while maintaining a desirable finish surface quality (i.e., reducing the
stair-case effect by adjusting the nozzle orientation when printing the part boundary). It is
worthwhile to note that Xie’s method [19] relied on manual processing to overcome the
complexity of approximating a three-genus model with curved layers.

On the other hand, the Nintendo model contains a significant amount of overhang
areas (see Figure 21d); thus, it poses additional challenges for the optimisation phase and
the fine-tuning process of the nozzle orientation. However, as depicted in Figure 19b, the
tuned nozzle orientation vectors by our algorithm have clearly handled the highly convex
layers (in proximity) without collision and achieved a continuous fabrication of the entire
model (Figure 19d). In summary, our proposed RBF-based curved layer decomposition
algorithm has effectively upheld the numerous manufacturability constraints in multi-axis
printing and successfully fabricated the four selected models containing various complex
geometric features, while achieving high surface quality (i.e., reducing the stair-case effect
by adjusting the nozzle orientation when printing the part boundary surface).
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4.5. Limitations

Despite the promising fabrication results (see Figure 22), there are a few limitations
in our RBF-based volumetric curved layer decomposition system. First, though not the
focus of this work, the hardware (i.e., the homebuilt printer) used in the physical printing
experiments is quite crude and inaccurate. E.g., it is even not equipped with a cooling
fan to prevent material dragging during the fabrication (as evidently seen in Figure 19a).
Algorithm-wise, the optimisation model is currently unaware of generating curved layers
that conform to the shape of the input model’s starting base. As a result, when curved
layers are decomposed from the bottom (i.e., the base) of the model, there is a slight
distortion (e.g., the two-genus model) in contrast to the original 3D model representation
(see Figure 14). Additionally, due to the non-linear mapping in the conversion of the nozzle
orientation vectors from the workpiece coordinate system into the corresponding joint angles of
the robot arm (the machine coordinate system), the issue of material under-extrusion becomes
inevitable in some regions of the fabricated models (e.g., the two-genus model). While this
issue also affects the surface quality, it could be potentially eliminated by the singularity-aware
motion planning method proposed by Zhang et al. [32]. In addition, currently our optimisation
model is not focused on improving the mechanical strength properties of decomposed
layers. Although formulating the mechanical strength properties as objectives (e.g., see
Fang et al. [18]) could be an immediate solution, its impact on maintaining the support-free
fabrication requirement for all the decomposed curved layers is yet unknown and the
increased computational complexity of the optimisation algorithm is also a serious concern.
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5. Conclusions and Future Work

The challenging nature of decomposing a 3D model into printable curved layers
(i.e., support-free, no local gouging, and global collision-free) in multi-axis printing restricts
the achievable geometric complexity. In this paper, we introduce a computational frame-
work that employs the RBF interpolation technique to compute an optimised fabrication
sequence field that is focused on improving the convexity of decomposed curved layers and
the resulting surface quality under the support-free fabrication requirement. By evaluating
the impact of manufacturability constraints on each decomposed layer using several fitting
mathematical models, we identify the layers that require further shape modification to
comply with the pre-defined standards. Finally, based on the evaluation result, the GA
optimisation model iteratively optimises the shapes of the curved layers by changing the
positions and the weights of the RBF centres inside the model, with an aim of realising
support-free and gouging-free curved layer fabrication. While our process planning is
completely autonomous, the optimisation parameters are also flexible to be set as user
defined inputs; thus, users can be given the freedom to select the desired accuracy and
the corresponding computational load. We also present a method to fine-tune the nozzle
orientation vectors to avoid possible collisions in highly curved (both convex and concave)
areas of the decomposed layers.

Our process-planning pipeline presents a new path towards achieving safer support-free
curved layer multi-axis fabrication. The physical fabrication results of our curved layer
decomposition method are promising as large overhang areas, concave shape features
and highly convex layers in proximity of various complex 3D models have been printed
without global collision or local gouging. For the future work, our aim is to integrate a
global 3D shape analysis (in addition to the current method of analysing local geometric
properties of curved layers) into the process-planning pipeline to automatically optimize
the nozzle orientations that are aware of the topology of the input model. This would not
only eliminate the current experimental approach in computing nozzle orientations, but
also increase both the computing efficiency and quality of process planning. Finally, to
further improve the printing quality, we hope to include more objectives (e.g., the printing
time, the mechanical strength properties) into the current multi-objective optimisation
model under the support-free multi-axis printing framework.
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