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Abstract: The magnetic abrasive finishing process using the magnetic machining tool was proposed
to finish the internal surface of the thick tube (the thickness of the tube is 5~30 mm). It has been
proved that this process can improve the roundness while improving the roughness. In this paper,
we mainly study the machining mechanism of roundness improvement. Firstly, the influence of
finishing characteristics on the roundness improvement was discussed, including the rotational
speed of the magnetic machining tool and the rotational speed of the tube. It was concluded that
the roundness improvement increases with the increase in the rotational speed through the analysis
of finishing force and finishing times. Furthermore, the influence on roundness improvement of
different distributions of magnetic particles were experimentally compared. After finishing, due to
the magnetic force generated by the magnetic machining tool and the magnetic pole unit exerting
pressure on the magnetic particles, a fixed magnetic brush is formed. The experimental results show
that the circumferential length of the fixed magnetic brush is different due to the different distribution
areas of magnetic particles. It was concluded that the roundness improvement increases with the
circumferential length of the fixed magnetic brush increases by discussing the relationship between
the circumferential length of the fixed magnetic brush and the wavelength of the roundness curve.
When the circumferential length of the fixed magnetic brush is 76 mm, the roundness was improved
from 379 µm to 236 µm after 60 min of finishing.

Keywords: internal magnetic abrasive finishing; magnetic machining tool; mechanism; roundness

1. Introduction

With the development of the semiconductor and aerospace industries, the high pre-
cision of parts is required, meanwhile the innovation of processing technology is also
required. Magnetic abrasive finishing (MAF) is a precision processing technology in which
the finishing force is generated via a magnetic field. Magnetic particles form magnetic
brush under the action of magnetic force, and then the tube is finished by abrasive particles
through the relative motion with the magnetic brush [1–5]. Magnetic field-assisted finishing
includes nontraditional and finishing techniques that enhance both the surface quality and
integrity of machined components. Among such techniques, magnetic abrasive finishing
(MAF) can play a major role in micro-/nano-finishing, since it uses a magnetic field to force
magnetic abrasive particles and abrasives onto a workpiece, improving the quality of the
polished surface [6,7]. Furthermore, the process of MAF can also realize the finishing of the
plane, cylindrical outer surface and deburring. Shinmura et al. studied the basic principle
and finishing characteristics of MAF and developed a plane magnetic finishing device
using a stationary type electromagnet; it was verified that this process can achieve precision
finishing of the plane [8–10]. Furthermore, in recent studies, Zou et al. developed the
magnetic abrasive finishing process using an alternating magnetic field and the influence
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of magnetic particle size and magnetic field frequency on magnetic cluster changes was
observed, and the relationship between the finishing force and alternating magnetic field
was analyzed [11–13]. Moreover, the development of a new magnetic abrasive finishing
process with renewable abrasive particles using the circulatory system and the influence
of important process parameters, including the magnetic particles, abrasive particles, con-
veyor belt line speed and the working gap on the surface quality of the workpiece are
studied through the experiment [14,15]. Yamaguchi et al. developed an internal magnetic
abrasive finishing process for the nonferromagnetic complex-shaped tubes consisting of
straight and bent sections, and developed a multiple pole-tip system using a partially heat-
treated magnetic tool, allowing the finishing of multiple regions simultaneously in capillary
tubes and thus improving the finishing efficiency [16–18]. Yin et al. studied the polishing
characteristics and the mechanisms of three vibration modes in vibration-assisted magnetic
abrasive polishing, using this process to deburr for the magnesium alloy, concluding that
the deburring efficiency considerably increases with vibration assistance [19,20].

Moreover, there are many studies on the internal surface finishing process using
the finishing force generated via the magnetic field. Kim et al. developed an internal
polishing system using magnetic force for the production of ultra-clean tubes that apply the
magnetic abrasives composed of WC/Co powder and studied the optimal conditions and
machining characteristics [21]. Jain et al. developed a new precision finishing process called
magnetorheological abrasive flow finishing (MRAFF), which is basically a combination of
abrasive flow machining (AFM) and magnetorheological finishing (MRF) and has been
developed for the nano-finishing of parts, even those with complicated geometry, for a
wide range of industrial applications [22–24]. Zou et al. developed a new efficient internal
finishing process for a non-ferromagnetic thick tube via the application of a magnetic
field-assisted machining process using a magnetic machining jig. They concluded that this
process enables precise internal finishing of the thick non-ferromagnetic tubes, such as the
SUS304 stainless steel tube of 10 mm in thickness [25]. They also developed a new internal
finishing process for tubes, which is the magnetic abrasive finishing process combined with
electrochemical machining, and they concluded the surface finishing by the removal of
the pits and finishing time is reduced [26]. Chen et al. developed the magnetic finishing
with gel abrasive (MFGA) applying gels mixed with steel grit and abrasives to improve
the polishing efficiency and surface uniformity of the steel elements, and it was concluded
that since guar gum had better fluidity than the silicone gel did and that guar gum created
excellent polishing efficiency in MFGA [27–29].

In the previous studies, the changing process of roundness has been analyzed and
it was concluded that as the thickness of tube increases, the roundness improvement
decreases [30]. In addition, the influence of thee reciprocating velocity of the magnetic pole
unit on the improvement in the roundness of the interior surface was studied by establishing
the dynamic equation of the magnetic machining jig. Experimental results showed that a
low reciprocating velocity for the magnetic pole unit is conducive to the improvement of the
internal roundness of the thick SUS304 stainless steel tube [31]. However, the mechanism
of the influence of other parameters on roundness improvement has not been discussed. In
order to further clarify the mechanism of roundness improvement in this process, in this
paper, firstly, the influence of rotational speed was discussed by the analysis of the finishing
force generated by magnetic machining tool. Then the influence of the distribution of
magnetic particles on the roundness improvement of the magnetic machining tool was
analyzed. Due to the pressure generated via the magnetic force of the magnetic machining
tool and the magnetic pole unit, the magnetic particles form a fixed shape magnetic brush.
The influence of the circumferential contact arc between the fixed magnetic brush and
internal surface of the tube was discussed.

2. Processing Principle

The schematic of the internal magnetic abrasive finishing process using a magnetic
machining tool is shown in Figure 1a. The magnetic machining tool consists of a yoke and
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two pairs of permanent magnets (Nd–Fe–B magnet). Then, the epoxy putty is covered to
conform to the shape of the internal surface of the tube. Additionally, in order to prevent
collision during finishing, the magnetic machining tool is wrapped with non-woven fabric.
Magnetic particles are attracted to the surface of the magnet machining tool via magnetic
force. After the magnetic machining tool is put into the internal surface of tube, it is
attracted by the permanent magnets (Ferrite magnet) of the magnetic pole unit outside
the tube and forms magnetic closed circuits that generate a high magnetic force as the
finishing force. When the magnetic machining tool rotated with the rotation of the magnetic
pole unit, it generated the relative motion between the magnetic particles and the tube.
In this process, the abrasive slurry mixed with the abrasive particles and water-soluble
grinding fluid in a certain proportion is used to achieve a high-quality surface. Therefore,
the finishing force is indirectly transferred from the magnetic particles to the abrasive
particles. Moreover, when the magnetic pole unit outside the tube is driven in the direction
of the tube axis while rotating, the high-precision finishing of the entire internal surface of
the tube can be achieved.
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Figure 1. (a) Schematic of the internal magnetic abrasive finishing process using magnetic machining
tool; (b) Force analysis model diagram of the magnetic machining tool.

This process is realized by the magnetic particles being attracted by the magnetic force
on the surface of the magnetic machining tool, so the magnetic machining tool and the
magnetic particles are regarded as a whole for force analysis. In addition, the magnetic
machining tool and the magnetic poles outside the tube also generate the magnetic attrac-
tion force. Figure 1b shows the force analysis model diagram of the magnetic machining
tool. Fy is the magnetic attraction force generated by the magnetic machining tool and
the magnetic poles outside the tube. Fx is the magnetic force generated by the magnetic
machining tool and magnetic poles outside the tube in the direction of equipotential lines.
Fc is the centrifugal force generated by the rotation of the magnetic machining tool. G is the
gravity including the gravity of magnetic machining tool and magnetic particles. F f is the
frictional resistance generated during finishing. Figure 2 shows the straight-line expansion
of the internal surface of the tube along the circumference direction. εA(θ) and εB(θ) are
the removal amounts at point A and point B, and the removal amount is proportional to
the finishing force. According to the evaluation method of roundness, it can be seen that
when the εA(θ) becomes smaller, it is beneficial to improve the roundness. Therefore, in
this process the magnetic particles were also affected by the pressure generated by the
magnetic force, resulting in the finishing force mainly being concentrated at point A and a
little finishing force acting on point B, which is beneficial to the roundness improvement.
Therefore, this process can improve the roundness while improving the roughness.
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Figure 2. Straight-line expansion of the internal surface of the tube along the circumference direction.

3. Experimental Setup

The external view of the experimental setup is shown in Figure 3. The experimental
setup consists of the tube clamping unit (three-claw chuck, tailstock and top) and the mag-
netic pole unit (permanent magnets, ball screw, linear slide, position switch and reciprocat-
ing table). The magnetic pole unit, including four permanent magnets (50 × 35 × 26 mm)
connected to the yoke, is set up on the reciprocating table. Therefore, the magnetic pole
unit can be driven in the direction of the tube axis during rotation. Additionally, the
permanent magnets are arranged N–S–S–N at a 90◦ interval toward the tube center, and the
distribution of magnets is flexible for various tube diameters. At the same time, the tube
also rotated to generate relative motion with the magnetic unit. This setup can realize three
motions: the rotation of the tube and the rotation and reciprocating motion of the magnetic
pole unit, so it can finish the complete internal surface of the tube.
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4. Influence of Rotational Speed

In the internal magnetic abrasive finishing using the magnetic machining tool process,
not only does the magnetic machining tool rotate, but the tube also rotates, and the rotation
direction is opposite, so that the tangential finishing force is generated by the relative
motion between the magnetic machining tool and the tube. In order to study the influence
of rotational speed on roundness improvement, experiments were carried out under the
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conditions of different rotational speeds of the magnetic machining tool and different
rotational speeds of the tube.

4.1. Rotational Speed of the Magnetic Machining Tool
4.1.1. Experimental Conditions and Method

The experimental conditions are shown in Table 1. The SUS 304 stainless steel tube was
used as workpiece. In order to study the influence of the rotational speed of the magnetic
machining tool (equal to the rotational speed of magnetic pole unit), the rotational speed of
the tube is the same (66 rpm), while the rotational speed of the magnetic machining tool is
32 rpm, 123 rpm and 215 rpm, respectively. The finishing time is 100 min; to understand
the changes in roundness, surface roughness and material removal, each stage finishing
time is 20 min, and then the tube is cleaned with ultrasonic cleaner and measured with the
surface roughness meter (SURFPAK-PRO produced by Mitutoyo, Japan), the roundness
measuring instrument (RONDCOM 40C produced by TOKYO SEIMITSU, Japan) and the
balance PR8001 (SHIMADZU, Japan, minimum weighing unit: 0.1 g), respectively.

Table 1. Experimental conditions.

Workpiece
SUS304 stainless steel tube Ø89.1 × 79.1 × 200 mm
Clearance: 7 mm (Thickness of tube is equivalent to 10 mm)
Rotational speed: 66 rpm

Magnetic machining tool
Magnet: Nd-Fe-B permanent magnet
Yoke: SS400 steel
Molding material: Polymer

Magnetic pole unit

Magnet: Ferrite permanent magnet 50 × 35 × 26 mm
Yoke: SS400 steel
Rotational speed: 32 rpm
122 rpm
212 rpm
Reciprocating speed: 1500 mm/min

Magnetic particles Electrolytic iron particles: 1680 µm in mean dia., 24 g
Abrasive particles WA #400, 2.5 g

Grinding fluid Water-soluble grinding fluid (SCP-23): 30 g
Finishing width 80 mm

Finishing time 100 min (each stage 20 min)

4.1.2. Experimental Results and Discussion

Figure 4 shows the changes in surface roughness and material removal with the
finishing time. It can be seen that because the diameter of the magnetic particles and
the abrasive particles used in the experiments are the same, the final surface roughness
after finishing is almost the same. Additionally, as the rotational speed of the magnetic
machining tool increases, the amount of material removal increases.

Figure 5 shows the roundness improvement with the finishing time. It can be seen
that the roundness improvement increases with an increase in the rotational speed of the
magnetic machining tool. This is because in this process, the internal surface finishing
is realized by using a magnetic machining tool whose surface attracts magnetic particles
magnetically. According to the force analysis of the magnetic machining tool, the magnetic
machining tool has its own weight and rotates, the finishing force during processing also
includes the centrifugal force of the magnetic machining tool. Additionally, as the rotational
speed of the magnetic machining tool increases, the finishing force increases, so the faster
rotational speed of the magnetic machining tool is beneficial to roundness improvement.

Figure 6 shows the roundness profiles of the internal surface of the tube before and after
finishing. For different rotational speeds of the magnetic machining tool, the roundness
was improved from 205 µm to 129 µm in the case of 32 rpm, from 211 µm to 110 µm in the
case of 122 rpm, and from 202 µm to 65 µm in the case of 212 rpm.
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4.2. Rotational Speed of Tube
4.2.1. Experimental Conditions and Method

The experimental conditions are shown in Table 2. The SUS 304 stainless steel tube is
used as the tube. In order to study the effect of the rotation speed of the tube, the rotational
speed of the magnetic pole unit is the same (122 rpm), while the rotational speed of the tube
is 35 rpm, 115 rpm and 195 rpm, respectively. The finishing time is 100 min; to understand
the changes in roundness, surface roughness and material removal, each stage finishing
time is 20 min.

4.2.2. Experimental Results and Discussion

Figure 7 shows the changes in surface roughness and material removal with the
finishing time. It can be seen that because the diameter of the magnetic particles and the
abrasives used in the experiment are the same, the final surface roughness after finishing
is almost the same. Additionally, as the rotational speed of tube increases, the amount of
material removal increases.
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Table 2. Experimental conditions.

Workpiece

SUS304 stainless steel tube Ø89.1 × 79.1 × 200 mm
Clearance: 7 mm (Thickness of tube is equivalent to 10 mm.)
Rotational speed: 35 rpm
115 rpm
195 rpm

Magnetic machining tool
Magnet: Nd-Fe-B permanent magnet
Yoke: SS400 steel
Molding material: Polymer

Magnetic pole unit

Magnet: Ferrite permanent magnet 50 × 35 × 26 mm
Yoke: SS400 steel
Rotational speed: 122 rpm
Reciprocating speed: 1500 mm/min

Magnetic particles Electrolytic iron particles: 1680 µm in mean dia., 24 g
Abrasive particles WA #400, 2.5 g

Grinding fluid Water-soluble grinding fluid (SCP-23): 30 g
Finishing width 80 mm

Finishing time 100 min (each stage 20 min)
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Figure 8 shows the roundness improvement with the finishing time. It can be seen
that the roundness improvement increases with an increase in the rotational speed of the
tube. Figure 9 shows the roundness profiles of the internal surface of the tube before and
after finishing. For different rotational speeds of the tube, the roundness is improved from
166 µm to 73 µm in the case of 35 rpm, from 166 µm to 63 µm in the case of 115 rpm and
from 178 µm to 66 µm in the case of 195 rpm. It can be concluded that with the increase
in the rotational speed of the tube, the number of finishing times of tube increases, so the
finishing results become better.
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5. Influence of Magnetic Particles Distribution on the Magnetic Machining Tool

According to the distribution of the magnetic force lines, the magnetic machining tool
is divided into three areas, which are the left area, middle area and right area, as shown in
Figure 10.
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5.1. Only Distributing Magnetic Particles on One Area
5.1.1. Experimental Conditions and Method

The experimental conditions are shown in Table 3. In this part, the magnetic particles
are only placed on the middle area, and the weight of the magnetic particles is 12 g, 13 g
and 14 g, respectively. When the thickness of the magnetic particles is 2.382 mm and
the same axial length of magnetic particles is 43 mm, the circumferential length of the
magnetic particles is 45 mm, 49 mm and 53 mm, respectively. The finishing time is 60 min;
to understand the changes in roundness, surface roughness and material removal, each
stage finishing time is 10 min.

5.1.2. Experimental Results and Discussion

Figure 11 shows the changes in the surface roughness and material removal with the
finishing time. It can be seen that the material removal increases and the final roughness
decreases with the increase in the weight of the magnetic particles.
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Table 3. Experimental condition.

Workpiece
SUS304 stainless steel tube Ø89.1 × 79.1 × 200 mm
Clearance: 7 mm (Thickness of tube is equivalent to 10 mm)
Rotational speed: 80 rpm

Magnetic machining tool
Magnet: Nd-Fe-B permanent magnet
Yoke: SS400 steel
Molding material: Polymer

Magnetic pole unit

Magnet: Ferrite permanent magnet 50 × 35 × 26 mm
Yoke: SS400 steel
Rotational speed: 150 rpm
Reciprocating speed: 1500 mm/min

Magnetic particles

Electrolytic iron particles: 1680 µm in mean dia.
Only placing magnetic particles on the middle area
Experiment 1: 12 g; Experiment 2: 13 g; Experiment 3: 14 g
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Figure 12 shows the changes in roundness with the finishing time. It can be seen
that the roundness improvement increases with the increase in the weight of the magnetic
particles. When the thickness and axial length of the magnetic particles on the magnetic
machining tool are the same, the circumferential length of the magnetic particles becomes
longer with the increase in the weight of the magnetic particles. After finishing, due to
the magnetic force generated by the magnetic machining tool and the magnetic pole unit



J. Manuf. Mater. Process. 2023, 7, 49 13 of 22

exerting pressure on the magnetic particles, a fixed magnetic brush is formed. Figure 13a
shows the photographs of the distribution of the magnetic particles on the magnetic
machining tool before finishing, the circumferential length of the magnetic particles is
45 mm, 49 mm and 53 mm, respectively. Figure 13b shows the photographs of the magnetic
machining tool after finishing. The circumferential length of the fixed magnetic brush is
45 mm, 49 mm and 53 mm, respectively. In the case that the circumference length of the
fixed magnetic brush is 45 mm, the roundness improvement value is 85µm after 60 min of
finishing. In the case of the circumference length of the fixed magnetic brush being 49 mm,
the roundness improvement value is 102 µm. In the case of the circumference length of the
fixed magnetic brush being 53 mm, the roundness improvement value is 123 µm. It can be
seen that as the circumferential length of the fixed magnetic brush increases, the roundness
improvement value also increases.
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Figure 14 shows the roundness profiles of the internal surface of the tube before and
after finishing. For different rotational speeds of the tube, the roundness is improved from
398 µm to 313 µm in experiment 1, from 403 µm to 301 µm in experiment 2, and from
396 µm to 273 µm in experiment 3.

5.2. Distributing Magnetic Particles on Two Areas and Three Areas
5.2.1. Experimental Conditions and Method

The experimental conditions are shown in Table 4. In this part, the experiments had
been carried out; in experiment A, we placed 13 g electrolytic iron particles on the left area
and right area, respectively; in experiment B, we placed 12 g electrolytic iron particles on
the middle area and 13 g electrolytic iron particles on the right area and in experiment C
we placed 12 g electrolytic iron particles on the middle area, 13 g electrolytic iron particles
on the left area and the right area, respectively. Furthermore, the thickness of the magnetic
particles in each area is 2.382 mm. The finishing time is 60 min; to understand the changes
in roundness, surface roughness and material removal, each stage finishing time is 10 min.
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Figure 13. Photographs of magnetic machining tool before and after finishing. (a) Before finishing;
(b) After finishing.
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Figure 14. Roundness profiles of the internal surface of the tube before and after finishing. (a) Mag-
netic particles:12 g; (b) Magnetic particles:13 g; (c) Magnetic particles:14 g.
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Table 4. Experimental conditions.

Workpiece
SUS304 stainless steel tube Ø89.1 × 79.1 × 200 mm
Clearance: 7 mm (Thickness of tube is equivalent to 10 mm)
Rotational speed: 80 rpm

Magnetic machining tool Magnet: Nd-Fe-B permanent magnet, Yoke: SS400 steel
Molding material: Polymer

Magnetic pole unit
Magnet: Ferrite permanent magnet 50 × 35 × 26 mm,
Yoke: SS400 steel, Rotational speed: 150 rpm
Reciprocating speed: 1500 mm/min

Magnetic particles Electrolytic iron particles: 1680 µm in mean dia.
Experiment A: On the left and right areas 13 × 2 g
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5.2.2. Experimental Results and Discussion

Figure 15 shows the changes in surface roughness and material removal with the
finishing time. It can be seen that in experiment C, the final surface roughness after
finishing is the best and the amount of material removal is the largest.

Figure 16 shows the changes in roundness with the finishing time. It can be seen
that in condition C, the value of roundness improvement is the largest. Figure 17a shows
the photographs of the distribution of the magnetic particles on the magnetic machining
tool before finishing. Figure 17b shows the photographs of the magnetic machining tool
after finishing. The magnetic particles on the left area and right area of the magnetic
machining tool form magnetic brushes in the direction of the magnetic force line before
finishing. It can be seen that in experiment A, the fixed magnetic brush is discontinuous
in the circumferential direction, the circumferential length of the fixed magnetic brush
is 22 mm on the left and 26 mm on the right, the total circumferential length is 48 mm;
in experiment B, the circumferential length of the fixed magnetic brush is 58 mm and in
experiment C, the circumferential length of the fixed magnetic brush is 76 mm. In the
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case of the circumference length of the fixed magnetic brush being 48 mm, the roundness
improvement value is 113 µm after 60 min of finishing. In the case of the circumference
length of the fixed magnetic brush being 58 mm, the roundness improvement value is
120 µm. In the case of the circumference length of the fixed magnetic brush being 76 mm,
the roundness improvement value is 143 µm. Therefore, it can be concluded that as the
circumferential length of the fixed magnetic brush increases, the roundness improvement
also increases.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 18 of 24 
 

 

5.2.2. Experimental Results and Discussion 
Figure 15 shows the changes in surface roughness and material removal with the 

finishing time. It can be seen that in experiment C, the final surface roughness after finish-
ing is the best and the amount of material removal is the largest. 

Figure 16 shows the changes in roundness with the finishing time. It can be seen that 
in condition C, the value of roundness improvement is the largest. Figure 17a shows the 
photographs of the distribution of the magnetic particles on the magnetic machining tool 
before finishing. Figure 17b shows the photographs of the magnetic machining tool after 
finishing. The magnetic particles on the left area and right area of the magnetic machining 
tool form magnetic brushes in the direction of the magnetic force line before finishing. It 
can be seen that in experiment A, the fixed magnetic brush is discontinuous in the circum-
ferential direction, the circumferential length of the fixed magnetic brush is 22 mm on the 
left and 26 mm on the right, the total circumferential length is 48 mm; in experiment B, 
the circumferential length of the fixed magnetic brush is 58 mm and in experiment C, the 
circumferential length of the fixed magnetic brush is 76 mm. In the case of the circumfer-
ence length of the fixed magnetic brush being 48 mm, the roundness improvement value 
is 113 μm after 60 min of finishing. In the case of the circumference length of the fixed 
magnetic brush being 58 mm, the roundness improvement value is 120 μm. In the case of 
the circumference length of the fixed magnetic brush being 76 mm, the roundness im-
provement value is 143 μm. Therefore, it can be concluded that as the circumferential 
length of the fixed magnetic brush increases, the roundness improvement also increases. 

 
Figure 15. Changes in material removal and surface roughness with finishing time. Figure 15. Changes in material removal and surface roughness with finishing time.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 16. Roundness improvement with finishing time. 

Experiment A 

   
 

Experiment B 

 

 

Circumferential length  
40 mm 

Axial length 
54 mm 

26 mm 22 mm 

The fixed magnetic brush 

40 mm 

54 mm 

45 mm 

43 mm 
58 mm 

Circumferential length  
48 mm 

Figure 16. Roundness improvement with finishing time.



J. Manuf. Mater. Process. 2023, 7, 49 18 of 22

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 16. Roundness improvement with finishing time. 

Experiment A 

   
 

Experiment B 

 

 

Circumferential length  
40 mm 

Axial length 
54 mm 

26 mm 22 mm 

The fixed magnetic brush 

40 mm 

54 mm 

45 mm 

43 mm 
58 mm 

Circumferential length  
48 mm 

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 20 of 24 
 

 

Experiment C 

 
 
 
 
 
 
 
 
 
 
 

 
 (a)  (b)  

Figure 17. Photographs of magnetic machining tool before and after finishing. (a) Before finishing; 
(b) After finishing. 

Figure 18 shows the roundness profiles of the internal surface of the tube before and 
after finishing. The roundness is improved from 374 μm to 261 μm in experiment A, from 
382 μm to 262 μm in experiment B, and from 379 μm to 236 μm in experiment C. 

 
  

(a)  

 

 

(b) 
  

40 mm 

54 mm 

45 mm 

43 mm 
76 mm 

Before finishing. 

0o 

90o 

270o 

374 μm 
180o 

After finishing. 

0o 

90o

270o 

261 μm 
180o 

200 μm 
×50 

382 μm 

Before finishing. 

0o 

90o 

270o 

180o 

200 μm 
×50 

262 μm 

After finishing. 

0o 

90o 

270o 

180o 

200 μm 
×50 

200 μm 
×50 

Figure 17. Photographs of magnetic machining tool before and after finishing. (a) Before finishing;
(b) After finishing.

Figure 18 shows the roundness profiles of the internal surface of the tube before and
after finishing. The roundness is improved from 374 µm to 261 µm in experiment A, from
382 µm to 262 µm in experiment B, and from 379 µm to 236 µm in experiment C.

5.3. Comprehensive Discussion on the Length of Fixed Magnetic Brush

According to the analysis of the change in the roundness improvement by applying
the Fourier series, it is also found that the removal of the peaks of the roundness curve is
beneficial to the improvement in the roundness. When the initial roundness curve of the
internal surface of the tube has n peaks, the curve wavelength λ is the circumference 2 C/n.

In this process, after finishing, due to the magnetic force generated by the magnetic
machining tool and the magnetic pole unit exerting pressure on the magnetic particles,
a fixed magnetic brush is formed. In addition, due to the circumference length of the
magnetic machining tool is about half of the circumference of the internal surface of the
tube that the initial roundness curve of the internal surface of the tube has more than
two peaks. As shown in Figure 19a, in the case of the circumferential length of the fixed
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magnetic brush L being less than the wavelength λ, the number of finishing times (the
number of rotations) at the peak point is N.
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As shown in Figure 19b, in the case of the circumferential length of the fixed mag-
netic brush L being greater than the wavelength λ, the number of finishing times for the
roundness curve peak is increased.

Then when the circumferential length of the fixed magnetic brush is xλ ≤ L <
(

x + 1
2

)
λ, where 1 ≤ x ≤ C

λ , C is the perimeter of internal surface of tube, then the number of
finishing times at peak point is 2xN.

Additionally, when the circumferential length of the fixed magnetic brush is
(

x + 1
2

)
λ

≤ L < (x + 1) λ, where 1 ≤ x ≤ C
λ , C is the perimeter of internal surface of workpiece, then

the number of finishing times at peak point is (2x + 1)N.
Therefore, it can be concluded that when the circumferential length of the fixed

magnetic brush is long, the number of times of finishing the peak point increases, so it is
beneficial to pursue roundness improvement.

6. Conclusions

This paper investigates the machining mechanism of roundness improvement by the
internal magnetic abrasive finishing process using the magnetic machining tool, and the
experiments were carried out on the SUS 304 stainless steel tube. The main conclusions are
summarized as follows:

1. Through analyzing the finishing force generated by the magnetic machining tool, it is
concluded that the tangential and normal finishing forces increase when the rotational
speed of the magnetic machining tool increases, and the resultant finishing force also
increases, so the faster rotational speed of the magnetic machining tool is beneficial
to roundness improvement. It was obtained that when the rotational speed of the
magnetic machining tool was 212 rpm, the roundness was improved from 202 µm
to 65 µm.

2. Through a discussion on the different rotational speeds of the tube, it can be concluded
that the number of finishing times for the tube increases with the increase in the
rotational speed of the tube, so the finishing results become better. The experimental
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results show that the roundness is improved from 178 µm to 66 µm when the rotational
speed of the tube is 195 rpm.

3. The roundness improvement was discussed through the different distribution of the
magnetic particles on the magnetic machining tool. In this process, due to the magnetic
force generated by the magnetic machining tool and the magnetic pole unit exerting
pressure on the magnetic particles, a fixed magnetic brush is formed. Therefore,
it is concluded that when the distribution of magnetic particles on the magnetic
machining tool can form a longer circumferential length for the fixed magnetic brush,
it is beneficial to the roundness improvement.
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