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Abstract: In the metal cutting process, the tool condition directly affects the quality of the machined
component. To control the quality of the cutting tool and avoid equipment downtime, it is essential
to monitor its condition during the machining process. The primary purpose is to send a warning
before tool wear reaches a certain level, which could influence product quality. In this paper, tool
condition is monitored using fractal analysis of the spindle electric current signal. The current study
analyzes the monitoring of the cutting tool when milling AISI 5140 steel with a four-flute solid carbide
end mill cutter to develop monitoring techniques for wear classification of metal cutting processes.
The spindle electric current signal is acquired using the machine tool internal sensor, which meets
industrial constraints in their operating conditions. As a new approach, the fractal theory is referred
to analyze the spindle electric current signal and then assess the tool wear condition during the metal
cutting process. Fractal parameters were defined to extract significant characteristic features of the
signal. This research provides a proof of concept for the use of fractal analysis as a decision-making
strategy in monitoring tool condition.

Keywords: steel; milling; tool condition; fractal analysis; electric current

1. Introduction

The cutting tool is vital in the metal cutting process, and the tool condition directly
influences the quality of the machined component. When tool wear is severe enough to
influence product quality, the cutting tool needs to be replaced. In real time, successful
determination of wear can avoid insufficient product quality, unplanned downtime, and
economic losses associated with tool failure. The average machine tool downtime due
to the tool wear was estimated to be 7 to 20 percent, resulting in significant productivity
loss [1]. Abrasion, fracture, plastic flow, and built-up edge were reported as the main wear
mechanisms during the machining of the AISI 5140 steel [2].

Real time tool condition monitoring is a pillar of intelligent manufacturing, especially
in the highly automated production lines [3]. Tool condition monitoring has been classified
into two categories: direct and indirect methods. In the direct method, the geometric
parameters of the cutting tool are evaluated with a high degree of accuracy using an optical
microscope [4]. This method has real-time limitations since it requires interrupting the
cutting process to estimate tool wear. Furthermore, the direct method requires specific labo-
ratory equipment, which is a constraint in the harsh industrial machining environment [5].
However, the indirect method contains a simpler setup, and it is performed by correlating
relevant sensor signals to the tool wear states. Different signals can be employed to monitor
the tool condition. The cutting force signal is the most reliable monitoring signal, and it is
very sensitive to the tool condition changes [3,6]. Li et al. [3] introduced a force-based tool
condition monitoring system based on ν-Support Vector Regression (ν-SVR) and correla-
tion analysis. Experimental results proved the prediction accuracy to be up to 96.76 percent
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during the turning of steel alloy. Recently, Liao et al. [7] developed an automated tool
condition monitoring scheme using a cutting force sensor to guide decision-making in
milling steel alloy effectively. The proposed monitoring system correctly indicated the
degree of tool wear using Support Vector Machine (SVM) and Genetic Algorithm (GA).
The SVM approach, however, has some drawbacks. The performance of this method is
greatly influenced by the choice of the kernel function and its parameters. They can only
be chosen through a method of trial and error which greatly complicates their selection.

Despite the cutting force signal’s capacity to assess tool condition during machining,
obtaining cutting forces requires specialized sensors such as dynamometers. Using those
sensors in the production line is not practical or cost-effective. Low-cost sensors that do not
interfere with the cutting process are preferred in industrial environments [8]. Rmili et al. [9]
developed an automatic system for monitoring tool wear based on the vibratory signatures
produced during the turning operation using the mean power analysis. The proposed
automatic detector introduced as a useful method for improving a wear monitoring system
in an industrial environment. However, the accuracy of Tool Condition Monitoring (TCM)
using vibration signal is limited by the characteristics of machining processes and the
vibration signal is extremely sensitive to the environment. Moreover, the vibration signal
can be impacted by the location of the sensor and the type of cutting fluid as well.

For industrial applications, it is more practical to use the machine tool’s internal data,
such as power and electric current, because data acquisition is extremely fast and no external
sensors are involved [10]. Drouillet et al. [1] used the spindle power sensor data to predict
Remaining Useful tool Life (RUL). A curve fitting method of Artificial Neural Network
(ANN) was used to anticipate the RUL. The predicted and actual RUL of the cutting tool
were found to be in good agreement. However, to achieve great performance, ANN need a
lot of training data, which is time-consuming and expensive. Choi et al. [11] developed a
method based on the Root Mean Square (RMS) of the feed and spindle motor currents to
predict drill foreboding failure during steel alloy drilling. Regardless of the cutting tool
type and cutting conditions, the proposed algorithm identified impending failure before
breakage of the drill using the feed motor current signal. Moreover, Jamshidi et al. [6]
showed that the electric current signal from the spindle was extremely responsive to
the cutting conditions and could precisely depict tool condition changes during milling.
Implementing a monitoring system based on the spindle electric current signal is accessible,
and no modification is required to the workpiece fixture or machine tool.

Data mining is commonly defined as the process of obtaining valid, understandable
data from massive data sets in order to improve the decision-making process. For data
mining and extracting information from a specific signal, a variety of techniques are avail-
able [12]. As previously indicated, conventional statistical methods [13], the combination of
time and frequency domain analysis [11], genetic algorithms [7], fast Fourier transform [14],
artificial neural networks analysis [1] and other methods have been used to analyze the
acquired signals in the tool condition monitoring while machining steel alloys. However, a
method with shorter training duration and quicker processing time is required for TCM.
Recently, fractal analysis was introduced as a new approach in tool condition monitor-
ing while machining composite parts. Fractal analysis was introduced to reveal inherent
patterns hidden in the acquired signals such as cutting force signal [6,15] and electric
current signal [6]. According to the literature review, fractal parameters depend on cutting
parameters less than statistical parameters. Recently, Jamshidi et al. [6] referred to fractal
analysis to monitor the tool condition using cutting forces and electric current signal while
machining composite parts. During machining of Carbon Fiber Reinforced Plastic (CFRP),
fractal characteristics were evaluated to determine discrete wear stages of the cutting tool.

In this study, it is proposed to use the built-in machine tool spindle electric current
signal to anticipate the tool condition in an integrated system without any use of an external
device which meets industrial constraints. This research provides a proof of concept for
the use of fractal analysis as a decision-making strategy in monitoring tool condition. This
approach is an important innovation, allowing one to assess the tool condition in real time
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as shown in Figure 1. This study intends to demonstrate the possible outcome of the fractal
analysis of the built-in machine tool spindle electric signal in the online tool condition
monitoring during the metal cutting process as the effectiveness of this method was proved
during composite machining [6].
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Figure 1. Indirect method of tool condition monitoring using spindle electric current signal.

2. Methodology

In this study, the spindle electric current signal was acquired during shoulder milling
of an AISI 5140 steel block using a four-flute solid carbide end mill cutter. The experiments
lasted 50 min and the overall cutting length was 23.3 m. As shown in Figure 2, the cutting
toolpath consisted in a contour-parallel. The machining was paused every three contours
for tool wear measurement. Following the contouring operations, the areal roughness
parameter was estimated on each contour resulting surface.

2.1. Materials and Experimental Setup

A four-flute solid carbide AlTiN coated end mill cutter having a 6.35 mm (1/4′′)
diameter was used to machine a block of AISI 5140 steel with dimensions of 177.8 mm
× 127 mm × 50.8 mm as displayed in Figure 2. Tables 1 and 2 demonstrate the chemi-
cal composition and mechanical properties of AISI 5140 steel, respectively. The cutting
conditions recommended by the cutting tool manufacturer were selected to conduct this
experiment, as specified in Table 3. Tool wear was estimated by averaging the flank wear
on each of the four cutting tool edges. The photographs of the tool were taken using a
Keyence VHX-500 F digital microscope. A reading of the flank wear was taken after every
three-contour machining until the tool met the ISO 8688-1 wear criterion of 0.3 mm [16]. A
K2X10 Huron® high-speed machining center equipped with a dust extraction system was
used for the dry milling contouring process.
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Figure 2. The experimental setup.

Table 1. General chemical properties of AISI 5140 steel.

Element Fe Mn Cr C Si S P

Content (%) 97.395–98.07 0.7–0.9 0.7–0.9 0.38–0.43 0.15–0.3 ≤0.04 ≤0.035

Table 2. Mechanical properties of AISI 5140 steel.

Properties Tensile
Strength Yield Strength Elastic Modulus Poisson’s

Ratio Hardness

570 MPa 295 MPa 189,998–210,000 MPa 0.27–0.30 167 (Brinell)

Table 3. Cutting conditions.

Cutting Speed Feed Rate Radial Depth of Cut
(RDOC)

Axial Depth of Cut
(ADOC)

18336 RPM 465.73 mm/min 0.64 mm 3 mm

The spindle electric current signal is very responsive to cutting conditions and can accu-
rately describe tool condition changes. The data acquisition of this signal was done through
an internal sensor of the machine tool and a static synchronized action, programmed using
the Application Programming Interface (API) of the SIEMENS SINUMERIK 840D controller.
The signal data were recorded at a frequency of 333 Hz. The electric current signal requires
a lower frequency than the cutting force signal because the electric current variation is a
portion of the requested power and its variation is less reliant on the cutting parameters. In
this study, the NCU of K2X10 Huron® high-speed machining center has an interpolator
cycle time of 3 ms and the acquisition rate through synchronous actions was considered
as 333 Hz. The machined surface quality was evaluated using the areal surface roughness
parameter. The Keyence VR-5000 optical profiler was used to record the 3D images of the
machined surface as well as the areal surface roughness parameter.

2.2. Fractal Analysis for Feature Extraction

The concept of fractals was initially introduced by B.B. Mandelbrot [17]. Using fractal
analysis, he calculated the length of the British coastline. Fractal objects have irregular
shapes and an affine structure, and they are self-similar. They have fractal dimension
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which is greater than the topological dimension [17]. Fractal theory can be a valuable tool
for forecasting and analyzing the behavior of complex dynamic systems and explaining
and extracting properties from signals. This theory can be applied to chemistry, physics,
and geology [18]. Fractal analysis was widely used in the advanced surface roughness
evaluation [19,20]. The fractal theory has recently been introduced as a novel method in
tool condition monitoring because of the quick processing time [15].

Fractal dimension can be calculated using a variety of techniques, including correlation
analysis, information analysis, regularization analysis, and the box-counting method.
Regularization analysis was chosen in this study because it has a significant degree of
repeatability, as evidenced by recent studies [6,21,22]. In the regularization analysis, a
signal (s) can be regularized by convolution with different kernels, such as the Gaussian
kernel (ga). Convolution product is defined as:

sa = s ∗ ga (1)

The smoothed signal (sa) is theorized to have a finite length (la) and the Gaussian
kernel (ga) has the width (a). The regularization dimension can be estimated using the
following equation:

D = 1− lim
a→0

log la

loga
(2)

The slope in the area where the Gaussian kernel’s width goes to 0 and the R2 of the
linear regression is close to 1 is determined as the limit in this equation [23].

A typical region in the logla vs. loga graph with greater linearity and sufficient
points for linear regression must be selected to ensure the results accuracy. Herein, a
determination range was chosen based on preliminary computations for the spindle electric
current signal, identified in Figure 3 by dash lines. The fractal parameters were calculated
in the 5 to 15 points range. In Figure 3, two graphs were illustrated as an example. The
linear regression slope (D) and y intercept slope offset (G) were calculated for each curve
in this range. The slope in these regions where the (a) value is close to 0 and the R2 of the
linear regression is close to 1 is used to compute fractal dimension which indicates the
signal’s roughness as well as the irregularity and complexity of a system. Additional fractal
parameters were established to obtain complementary signal characteristics; topothesy (G)
and the coefficient of determination of the linear regression (R2). The signal’s ruggedness
was represented by topothesy and the auto-scale regularity of the signal was defined as the
coefficient of determination of the linear (R2).

J. Manuf. Mater. Process. 2022, 6, x FOR PEER REVIEW 6 of 14 
 

 

 
 

Figure 3. Regularization analysis of the spindle electric current signal. The plot expresses two graphs 
as an example in log format. 

3. Results and Discussion 
3.1. Conventional Analysis 

The experimental results of shoulder milling of AISI 5140 steel block using the solid car-
bide end mill tool are discussed in this section. During machining, the tool performance de-
grades and directly impacts the machined surface. The tool wear evolution curve of the solid 
carbide end mill for 23.3 m of contour milling is depicted in Figure 4. This curve has three 
separate stages. At the initial stage, the wear increased more quickly due to the high pressure 
in the small contact area. Up to the third stage, the wear rose at a slower, more consistent rate. 
In this area, tool wear was considered normal. The wear increased faster at the final stage until 
the tool achieved its wear criteria of 0.3 mm according to ISO 8688 1 [16]. The First Transition 
Point (FTP) was defined as the transition point between the first and second wear stages after 
1.3 m of machining. The Second Transition Point (STP) was defined as the transition point 
between the second and third wear stages after 18.8 m of machining (Figure 4). To avoid any 
change in the workpiece surface quality, the cutting tool must be replaced before the second 
transition point. In the present study, the procedure generated sparks after 14 m of cutting in 
the second stage of tool wear because of the elevated temperature at the tool workpiece inter-
face. The quantity of sparks increased considerably in the third stage, when the cutting tool 
lost its initial cutting geometry and generated a new contact surface. 

The areal roughness parameter was obtained in this study to evaluate the surface qual-
ity of the steel block. Surface roughness is influenced by a variety of elements throughout 
the milling process, including the cutting tool condition, machining process parameters, rel-
ative vibration between the tool and the workpiece, and machining dynamics [24]. 𝑅௔ is a 
roughness parameter based on the arithmetical mean height of a line. 𝑆௔ is the extension of 𝑅௔ to a surface. The average absolute value of the height for each point in the area is deter-
mined by 𝑆௔ [25]. The result of 𝑆௔ (arithmetical mean height) is displayed in Figure 5. With 𝑆௔ less than 1.5 µm in the first 18 m of cutting, the surface is acceptable; however, after 18 
m of machining, 𝑆௔ increased, and surface quality dropped. Figure 6 illustrates the 3D im-
age of a section of a steel block to demonstrate how the surface deteriorates as the tool wear 
increases. When tool wear became severe, and sparks rose, the arithmetical mean height (𝑆௔) 
of the surface reached 3.13 µm at the end of the machining. 

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-1 0 1 2 3 4 5

𝒍𝒐𝒈la

𝒍𝒐𝒈 𝒂

D1=1.68
D2=1.85

G1= -2.84

G2= -2.93

Determination Range

After 0.5 m machining
After 17 m machining

Figure 3. Regularization analysis of the spindle electric current signal. The plot expresses two graphs
as an example in log format.



J. Manuf. Mater. Process. 2022, 6, 115 6 of 12

3. Results and Discussion
3.1. Conventional Analysis

The experimental results of shoulder milling of AISI 5140 steel block using the solid
carbide end mill tool are discussed in this section. During machining, the tool performance
degrades and directly impacts the machined surface. The tool wear evolution curve of
the solid carbide end mill for 23.3 m of contour milling is depicted in Figure 4. This curve
has three separate stages. At the initial stage, the wear increased more quickly due to the
high pressure in the small contact area. Up to the third stage, the wear rose at a slower,
more consistent rate. In this area, tool wear was considered normal. The wear increased
faster at the final stage until the tool achieved its wear criteria of 0.3 mm according to ISO
8688 1 [16]. The First Transition Point (FTP) was defined as the transition point between
the first and second wear stages after 1.3 m of machining. The Second Transition Point
(STP) was defined as the transition point between the second and third wear stages after
18.8 m of machining (Figure 4). To avoid any change in the workpiece surface quality, the
cutting tool must be replaced before the second transition point. In the present study, the
procedure generated sparks after 14 m of cutting in the second stage of tool wear because of
the elevated temperature at the tool workpiece interface. The quantity of sparks increased
considerably in the third stage, when the cutting tool lost its initial cutting geometry and
generated a new contact surface.
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Figure 4. Tool wear evolution curve of the solid carbide end mill for 23.33 m of shoulder milling of
AISI 5140 steel block.

The areal roughness parameter was obtained in this study to evaluate the surface qual-
ity of the steel block. Surface roughness is influenced by a variety of elements throughout
the milling process, including the cutting tool condition, machining process parameters,
relative vibration between the tool and the workpiece, and machining dynamics [24]. Ra is
a roughness parameter based on the arithmetical mean height of a line. Sa is the extension
of Ra to a surface. The average absolute value of the height for each point in the area is
determined by Sa [25]. The result of Sa (arithmetical mean height) is displayed in Figure 5.
With Sa less than 1.5 µm in the first 18 m of cutting, the surface is acceptable; however, after
18 m of machining, Sa increased, and surface quality dropped. Figure 6 illustrates the 3D
image of a section of a steel block to demonstrate how the surface deteriorates as the tool
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wear increases. When tool wear became severe, and sparks rose, the arithmetical mean
height (Sa) of the surface reached 3.13 µm at the end of the machining.
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Figure 7 shows the electric current signal related to the spindle sampled utilizing the
machine tool internal sensor with the least noise level. To emphasize the electric current
changes over time, this figure also contains a moving average of the spindle electric current
signal. After 2.8 and 40.3 min of machining, the moving average of the electric current
signal displays two notable rises. Since the cutting condition remained constant over
time, these two peaks respectively can represent the FTP and STP points in the tool wear
evolution curve, as previously showed in Figure 4.
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The conventional statistical analysis (average, standard deviation, and kurtosis) was
considered in this study to extract more information from the spindle electric current signal,
as shown in Figure 8. Generally, the mechanical force required to remove material from
the workpiece is provided by electric drives and spindles. The cutting forces are directly
related to the spindle electric current. As the cutting tool wears out, the cutting force
increases, requiring more power to machine the workpiece, which result in the electric
current increase. The average of the spindle electric current signal as a function of the
cutting length is illustrated in Figure 8A. The first and second transition points of tool
wear clearly appear in the electric current signal average, where the current rose suddenly
after 1.3 and 18.8 m of cutting. Tool wear causes a slight increase in the electric current
in the second wear stage between FTP and STP. When tool wear becomes severe (third
stage of tool wear), the spindle electric current fluctuates, and several peaks appear. The
standard deviation of the electric current signal is also shown in Figure 8B. A merely
constant region can be seen in this graph, where the current readings are close to the mean
with minor variation. Tool wear was expected in this area, and the machined surface
quality was acceptable. However, after 18.8 m of cutting, a disruption in the signal appears,
where the electric current values spread out over a broader range of mean. Herein, instead
of a transition point, a transition area that comprises STP is visible, where the standard
deviation increases significantly. This area can also be seen in the kurtosis of the electric
current signal, where the kurtosis drops significantly after a merely constant area. Generally,
kurtosis describes how a distribution peak and tails depart from the normal distribution.
As shown in Figure 8C, there is a disturbance in the electric current signal between 18.8 m to
19.9 m of cutting. The cutting condition remained constant throughout the experiment; the
only variation in this experiment was the wear on the cutting tool. This disturbance could
therefore be linked to the status of the cutting tool, where the cutting tool wear had become
severe enough to modify cutting forces and, as a result, to cause a significant alteration in
the electric current signal. This unpredictable behavior in a system is the subject of chaos
theory, where the fractal parameters are utilized to predict any change in the signal shape.
The next section discusses the fractal analysis of the electric current signal to set a single
value as a warning in the machine tool before tool wear reaches a specific level.
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Figure 8. The conventional statistical analysis of the spindle electric current signal. (A) The average
of the spindle electric current signal as a function of the cutting length (B) The standard deviation of
the electric current signal as a function of the cutting length (C) The kurtosis of the electric current
signal as a function of the cutting length.

3.2. Fractal Analysis

Figure 9 represents the fractal analysis results of the spindle electric current signal
during milling of the AISI 5140 steel block. As stated in the previous section, the current
signal represents any change in the cutting tool condition. This is of major importance
since it may lead to the implementation of an online tool condition monitoring system.
Fractal theory attempts to explain and extract properties from the signal so that any change
in it may be predicted. Fractal dimension is an indication of the signal “roughness”. As
previously indicated, the First Transition Point (FTP) and Second Transition Point (STP)
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were defined as the points between the first and second wear stages, as well as the second
and third wear stages. As seen in Figure 9, fractal dimension (D) exhibited a periodic
behavior at the beginning of the machining process and attempted to maintain a consistent
behavior at the end. However, due to signal turbulence in the cutting window of 18.8 to
19.9 m, the fractal dimension dropped to an approximate value of 1.5, where the Second
Transition Point (STP) of tool wear happens. The result of topothesy also follows the same
pattern as fractal dimension; a cyclical behavior at the beginning and a consistent trend at
the end. The signal turbulence in the transition area of tool wear causes a sudden increase
in the topothesy result. Topothesy represents ruggedness of the signal. The auto-scale
regularity of the signal was measured by the coefficient of determination of the linear
regression (R2), which is also shown in Figure 9. A merely constant region could be seen
during the cutting process, where the tool wear was normal. R2 drops within the cutting
window of 18.8 to 19.9 m and then tends to resume its stable behavior for the remaining
cutting length.
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Figure 9. The fractal parameters of the spindle electric current signal during shoulder milling of the
AISI 5140 steel block.

A fractal index is also evaluated to assist the online tool condition monitoring and es-
tablish a decision-making system based on all fractal parameters. Using fractal parameters
in a combination can express more information about the spindle electric current signal and
increase the decision-making system accuracy. The empirical fractal index (I) is defined
as follows:

I = D× G× R2 (3)

Figure 9 illustrates the empirical index of the current signal as a function of the
cutting length. The magnitude of the fractal index gradually decreases with the cutting
length and exhibits a damping behavior until the cutting window of 18.8 to 19.9 m. This
turbulence in the signal is identified with a single value. This value is used in online tool
condition monitoring as a threshold value to prevent workpiece surface damage due to
severe tool wear. The threshold value for the present study was set at −3.6 or lower based
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on turbulence prediction in the spindle electric current signal to guarantee the cutting tool
still is in a perfect operating condition.

4. Conclusions

In smart manufacturing, real-time tool condition monitoring is crucial. The purpose
of real time monitoring is to issue an alert before tool wear reaches a critical value. For
industrial applications, motor-related parameters for detecting this value are preferred
because the machining does not need to be disrupted. In this study, the spindle electric
current signal was used for online tool condition monitoring during shoulder milling of an
AISI 5140 steel block using a solid carbide end mill. The spindle electric current signal was
sampled using the machine tool internal sensor, which meets industrial requirements. Two
transition points in the tool wear evolution curve were introduced; First Transition Point
(FTP) and Second Transition Point (STP). These transition points were easily recognized on
the average of the spindle electric current signal graph. Turbulence was discovered in the
spindle electric current signal when standard deviation increased, and kurtosis decreased
unexpectedly between 18.8 and 19.9 m of cutting. Fractal analysis was applied to the
spindle electric current signal to predict any unexpected turbulence in the signal and to
establish a single value in the machine tool as a warning before tool wear became severe.
The empirical fractal index (I) was defined based on a combination of the fractal parameters
to express more information about the spindle electric current signal and improve the
accuracy of the decision-making system. This research provides a proof of concept for the
use of fractal analysis as a decision-making strategy in monitoring tool condition. The
effectiveness of fractal analysis of the built-in machine tool spindle electric current signal
as a decision-making method in tool condition monitoring was demonstrated in this study.
However, to evaluate the repeatability of the method, further additional investigation
is required.
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