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Abstract: The clean technologies of self-cleaning surfaces are expanding rapidly. Highly hydrophobic
coatings with strong adhesion, high durability, and dirt-free surfaces have been prepared via sol-gel
deposition of SiO2-TiO2-alkylsilane. The influence of the effects of the alkyl chain length of silane
on surface roughness was investigated. This deposition involved a one-layer technique to produce
the rough surfaces. The bimetal oxide of SiO2-TiO2 created a high level of surface roughness. As
a result, the water contact angle of the coatings increased with the increasing alkyl chain length
of silane (up to C=8). However, the water contact angle decreased when the C=16 of alkylsilane
was applied. It was predicted that the longer alkyl chain would cause the molecules to collapse.
The higher hydrophobicity was produced by SiO2-TiO2-OTMS coatings with a water contact angle
of about 140.67 ± 1.23◦. The effect of the dip-coating technique (one layer and layer-by-layer) on
hydrophobicity was also discussed. The results showed that coatings produced by the one-layer
technique had a higher contact angle than coatings made by the layer-by-layer technique. The
coatings were stable under outdoor exposure and able to hinder dirt attachment to their surfaces.

Keywords: clean technologies; self-cleaning; hydrophobic; alkyl chain length; SiO2-TiO2-alkylsilane

1. Introduction

Hydrophobic materials are widely used for self-cleaning surfaces. Self-cleaning is the
ability of coatings to clean their surface by themselves. Hydrophobic coatings perform a
self-cleaning action through the formation of spherical water droplets that readily roll away
from the surface, carrying the dirt with them. The different mechanisms of hydrophobic
self-cleaning were revealed on hydrophobic, highly hydrophobic, and superhydrophobic
coatings [1]. In other words, the water contact angle greatly influences the performance
and mechanism of self-cleaning properties.

The highest self-cleaning efficiency was observed on the superhydrophobic surface,
which was prepared using TEOS, polydimethylsiloxane, and nanosilica. The dirt accumu-
lated on the superhydrophobic surfaces at about 34.99% and decreased to 4.13% after the
cleaning process. Air was trapped on the superhydrophobic surface [2]. This trapped air
reduced the contact area between the water droplet and the surface. The water droplets eas-
ily rolled off the surface due to the low water adhesion properties of the surface. Therefore,
no dirt remained on the surface [3].

Hydrophobicity is influenced by surface energy and surface roughness. Based on
the Young equation, the highest contact angle will be achieved with the lowest surface
energy and highest surface roughness. Fluorosilane presents the lowest surface energy.
Unfortunately, it is classified as a toxic compound [4,5]. Recently, researchers have been
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considering the replacement of fluorosilane with alkylsilane. As we know, the surface
energy of alkylsilane is higher than fluorosilane, therefore it must be modified with a rough
surface to achieve high hydrophobicity. This roughness is achieved by etching, sol-gel,
electrochemical deposition, chemical grafting, chemical vapor deposition, and nanoparticle
deposition [6].

Superhydrophobic glass was successfully produced by the deposition of SiO2 and
alkylsilane [7–10]. More than one alkylsilane was needed to decrease the surface energy.
Consequently, it created greater thickness and caused lower adhesion between the coatings
and the glass substrate [11]. In other words, although superhydrophobic glass was achieved,
there were still limitations to the adhesion of coatings, as reported by Liu et al. [12]. In
practical applications, the main criterion for the acceptable performance of coated materials
is the bonding strength of the coating to the substrate. Some researchers have reported
ways to overcome this problem, such as adding SiO2 sol to increase the amount of the
hydroxyl group, using SiO2-TiO2 composite, applying a dip coating method, and the sol-gel
deposition technique [2,7,13,14].

For this research, we fabricated highly hydrophobic glass and enhanced the adhesion
strength by coating the glass using SiO2, TiO2, and one alkylsilane via sol-gel deposition.
The effects of long-chain alkylsilane on the hydrophobicity of coated glass have been inves-
tigated. Three alkylsilanes with different chain lengths were studied: methyltrimethoxysi-
lane (MTMS, C=1), octyltrimethoxysilane (OTMS, C=8), and hexadecyltrimethoxysilane
(HDTMS, C=16). Spataru and co-workers [15] reported that samples containing long hy-
drocarbon chains are highly hydrophobic. The increase in the hydrocarbon chain length
contributed to higher non-polar properties in the CH3 groups. However, Tang and col-
leagues [16] stated that the short alkyl chain of silane exhibited a high water-contact angle.
The surface coupling of the short alkyl chain of silane and the vertical polymerization
(intermolecular silane coupling) created thick films with micro-nanoscale roughness. We
also discuss the influence of dip-coating techniques (both layer-by-layer and one-layer).
Our research also studied the self-cleaning performance of samples. Our results show
that coated glass with SiO2-TiO2-OTMS displays the highest hydrophobicity. Interestingly,
the as-prepared glass exhibits unique properties when a self-cleaning test is applied. The
coated glass hinders the dirt’s attachment to the surface; therefore, water is not required to
clean the surface.

2. Materials and Methods
2.1. Materials

Tetraethylorthosilicate (TEOS, 99%) and titanium tetraisopropoxide (TTIP, 97%) as
the SiO2 and TiO2 precursor, were purchased from Sigma Aldrich, St. Louis, MO, USA.
Methyltrimethoxysilane (MTMS, 95%), octyltrimethoxysilane (OTMS, 96%), and hexade-
cyltrimethoxysilane (HDTMS, 85%) as the hydrophobic modifier were obtained from TCI
Chemicals, Tokyo. Glacial acetic acid (100%) as acid catalyst was purchased from Merck,
Rahway, NJ, USA. Absolute ethanol was purchased from JT Baker, Princeton, NJ, USA.
All these materials were used as received without any further purification. Glass slides
(38 × 12 × 1 mm) were used as a substrate.

2.2. Preparation of Acid-Catalyzed SiO2-TiO2-Alkylsilane Sol

SiO2-TiO2-MTMS sol was fabricated by mixing SiO2, TiO2, and MTMS sols. SiO2,
TiO2, and MTMS sols were prepared in separate containers. First, 7.5 mmol of SiO2 sol was
prepared by mixing 1.67 mL of TEOS in 4 mL of ethanol. Then, 7.5 mmol of TiO2 sol was
made by mixing 2.22 mL of TTIP with 4 mL of ethanol. Then, 15 mmol of MTMS sol was
prepared by adding 2.1 mL of MTMS into 4 mL of ethanol. In all sols, the pH was adjusted
to pH 2 with the addition of glacial acetic acid. Each sol was further stirred for 60 min at
70 ◦C. After that, the SiO2 and TiO2 sols were mixed and stirred continuously for 60 min at
70 ◦C. The MTMS sol was then added to the SiO2-TiO2 sol. The sol was then stirred and
heated at 70 ◦C until the volume was 20 mL.
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The effects of the SiO2, TiO2, and MTMS sols on hydrophobization were studied by
varying the mol value. The various amounts of SiO2, TiO2, and alkylsilane were 3.75, 7.5,
15, and 30 mmol, respectively. While the mol of SiO2 was varied, we kept the mols of
TiO2 and MTMS constant. The optimum mol of SiO2 and the constant mol of MTMS were
handled to investigate the influence of the amount of TiO2. The variation in MTMS mol
was studied using the optimum mols of SiO2 and TiO2.

The influence of the alkyl chain length of silane was investigated using SiO2-TiO2-
MTMS, SiO2-TiO2-OTMS, and SiO2-TiO2-HDTMS sols. The preparation procedures of
these sols were similar to previously described methods used in the preparation of SiO2-
TiO2-MTMS.

2.3. Preparation of Coatings

The glass substrates were cleaned with ultrasonication in ethanol for 30 min. The
cleaned glass was then immersed in the coating solutions, with a withdrawal speed of
3 cm/min. The one-layer coating technique was conducted using SiO2, TiO2, and alkyl-
silane, prepared in one vessel. After immersion of the glass in the coating solution, the
coated glass substrates were firstly dried at room temperature (33 ◦C) for 10 min and then
at 70 ◦C for 30 min.

In the layer-by-layer deposition, the SiO2, TiO2, and alkylsilane sols were prepared
separately. SiO2, TiO2, and alkylsilane were employed as the bottom, middle, and top
layers. Each layer was cured at room temperature (33 ◦C) for 10 min, and then followed
at 70 ◦C for 30 min. The one-layer technique was formed as a one-time coating onto the
substrates. Meanwhile, the layer-by-layer technique was applied in three layers, wherein
SiO2, TiO2, and alkylsilane were deposited one by one. This means that the first, second,
and third layers were SiO2, TiO2, and alkylsilane, respectively.

2.4. Characterization

The contact angle of the coated glasses was measured via ImageJ software (V.1.8.0,
Bharti Airtel Ltd) using the drop analysis–drop snake method. The types of chemical bonds
were identified using Fourier transform infrared spectroscopy (Shimadzu IR-Tracer 100,
Europe). The spectrum was recorded in the wavenumber range of 4000–400 cm−1. The
surface topography and roughness value of the samples were measured using atomic force
microscopy (N8 Neos Bruke, Herzogenrath, Germany) in the non-contact mode under
ambient conditions. The morphology of the surfaces was studied using scanning electron
microscopy (Carl Zeiss EVO MA 10, Oberkochen, Germany). The cross-cut adhesion test
according to ASTM D3359 was employed to determine the adhesion quality of the coatings.
The stability of coatings was studied by measuring the change in water contact angle under
outdoor exposure for one month, with a relative humidity of between 38 and 76% and a
temperature of between 23 and 35 ◦C.

2.5. Anti-Dirt Test

The performance of the samples’ anti-dirt properties was evaluated using CuCl2.2H2O
as artificial dirt. The choice of CuCl2.2H2O was adopted from previous research [17]. The
coated glass was spiked with CuCl2·2H2O and was then weighed (m1). The glass was then
placed in an inclined position. Water was then dripped slowly onto the top side of the glass.
After that, the glass was re-weighed (m2) to determine the amount of CuCl2·2H2O that
was still left on the surface. The amount of CuCl2·2H2O remaining was calculated using
Equation 1. The less CuCl2·2H2O there was on the surface, the better the self-cleaning
properties of the glass. As a control, a self-cleaning test was also carried out on the uncoated
glass.

The amount of remaining dirt on the surface (%) =
m2

m1
× 100% (1)
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3. Results and Discussion
3.1. Wetting Properties of Coatings with Various Compositions of SiO2 and TiO2

TiO2 plays a major role in the wettability of surfaces. The hydrophobic surfaces that
were prepared using amorphous TiO2 presented a stable water-contact angle. The TiO2
phase of SiO2-TiO2-alkylsilane was investigated using X-ray diffraction (XRD) analysis.
The XRD spectra of samples are depicted in Figure 1. All samples showed broad peaks,
indicating that the sample had amorphous TiO2. Under UV irradiation, amorphous TiO2
did not demonstrate photocatalytic properties [16]. There were no hydroxyl groups that
were released under UV irradiation. As we know, the hydroxyl groups have hydrophilic
properties; therefore, this can decrease the contact angle of the coatings.
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Figure 1. The XRD diffractogram of the samples.

Figure 2 shows the contact angle with respect to the SiO2 and TiO2 in the sol. The
contact angle increased with increasing SiO2 and TiO2 content from 3.75 to 15 mmol. With
SiO2 and TiO2 above 15 mmol, the water contact angle was decreased. These results were
influenced by the surface roughness of the coatings. The roughness of the coatings, as
measured using SEM, is displayed in Figure 3. Figure 3a–c displays the SEM images of
samples using 7.5, 15, and 30 mmol of SiO2. It can be seen that 15 mmol of SiO2 presented
a rougher surface than the others. This is because the clustering of SiO2 on the surfaces
created rougher surfaces. With SiO2 above 15 mmol, the surface morphology of the coating
became smooth. The high content of SiO2 tended to fill the surface holes and create smooth
surfaces. A similar trend of topography was also observed for 7.5, 15, and 30 mmol of TiO2
(Figure 3d–f). Comparing the topography of the coatings with various compositions of
SiO2 and TiO2, the roughest surface was obtained from the deposition of 15 mmol of TiO2.
The agglomeration of particles was clearly obvious. This particle agglomeration resulted
in irregular surfaces. According to the data regarding water contact angle and the SEM
images, it can be concluded that the rougher the surface is, the higher the hydrophobicity.
Table 1 shows the data regarding water contact angle and the roughness value of the
samples, which were measured by AFM.
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The decrease in water contact angle in over 15 mmol of SiO2 and TiO2 was also
attributed to the increase in the amounts of the hydroxyl groups on the surfaces. The
presence of hydroxyl groups enhanced the hydrophilicity of the substrates. We calculated
the ratio of peak areas of O-H (~3400 cm−1) and C-H (~3400 cm−1) vibration in 15 and
30 mmol of SiO2 and TiO2, based on the FTIR data, to quantify the hydroxyl groups on
the surface (Figure 4). It was found that 15 mmol of SiO2 and TiO2 had higher A 3400 cm−1

1450 cm−1

values than 15 mmol of SiO2 and TiO2. It means that 15 mmol of SiO2 and TiO2 had higher
hydroxyl groups than 15 mmol of SiO2 and TiO2. The abundance of hydroxyl groups on
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the surface caused an increase in its hydrophilicity. Table 2 shows the ratio of peak areas of
O-H to C-H vibration from the FTIR spectra of SiO2-TiO2-OTMS samples.

Table 1. The correlation of water contact angle and roughness value of SiO2-TiO2-OTMS coatings
prepared with various SiO2 and TiO2 values.

Sample x
(mmol)

Water Contact Angle
(◦)

Roughness Value
(nm)

x SiO2, 7.5 mmol
TiO2, 15 mmol OTMS

7.5 99.09 ± 1.73 11.2
15 121.75 ± 1.71 157
30 98.79 ± 1.21 12.9

15 mmol SiO2, x TiO2,
15 mmol OTMS

7.5 121.75 ± 1.71 163
15 136.92 ± 2.45 235
30 114.77 ± 2.15 87
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Table 2. The ratio of peak areas of O-H to C-H vibration at 3400 and 1450 cm−1 from FTIR spectra of
SiO2-TiO2-OTMS samples with various compositions of SiO2 and TiO2.

Sol
Composition

(mmol)
The Ratio of Peak Areas (A) at- A 3400 cm−1

1450 cm−1
3400 cm−1 1450 cm−1

SiO2 15 71.32 7.074 10.082
30 42.50 4.12 10.315

TiO2 15 64.12 12.97 4.94
30 100.47 15.85 6.33

In order to study the effect of SiO2 and TiO2 on hydrophobicity, measurements such
as the water contact angle test, AFM analysis, and cross-cut adhesion test were employed.
Table 3 reveals the water contact angle of coated glass using SiO2-MTMS, TiO2-MTMS, and
SiO2-TiO2-MTMS. It was observed that SiO2-MTMS, TiO2-MTMS, and SiO2-TiO2-MTMS
resulted in a water contact angle of about 63.73 ± 1.58◦, 80.03 ± 1.45◦, and 126.18 ± 1.86◦.
The use of SiO2-TiO2 produced higher hydrophobicity than others.
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Table 3. The influence of SiO2, TiO2, and SiO2-TiO2 on the hydrophobicity of coatings.

Composition (mmol)
Water Contact Angle

SiO2 TiO2 MTMS

30 - 30 63.73 ± 1.58◦

- 30 30 80.03 ± 1.45◦

15 15 30 126.18 ± 1.86◦

To address these concerns, we analyzed the topography of SiO2-MTMS, TiO2-MTMS,
and SiO2-TiO2-MTMS using AFM as shown in Figure 5. As a result, the topography
surface of SiO2-TiO2-MTMS was rougher than SiO2-MTMS and TiO2-MTMS. The roughness
values of SiO2-MTMS, TiO2-MTMS, and SiO2-TiO2-MTMS were 4.95, 18.60, and 173 nm,
respectively. The average particle sizes of SiO2-MTMS and TiO2-MTMS were 0.472 and
0.175 µm, respectively. The previous research stated that SiO2 resulted in higher particle
size than TiO2 under similar conditions [18]. It can be assumed that the difference in particle
size between SiO2 and TiO2 led to an increase in the hierarchical morphology.
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SiO2-TiO2 also improves the adhesion of coatings. The cross-cut adhesion test was
conducted with the SiO2-MTMS, TiO2-MTMS, and SiO2-TiO2-MTMS-coated glass. Accord-
ing to ASTM D3359, it was observed that the SiO2-TiO2-MTMS had the highest adhesion
of the coating, rated as 4B. Ramirez-Garcia and colleagues also reported that the use of
SiO2-TiO2 increased the adhesion of coatings [12].
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3.2. The Influence of Composition and the Alkyl Chain Length of Silane on Hydrophobicity

Figure 6 displays the water contact angle of coated glass with various compositions
of alkylsilane. Both SiO2-TiO2-MTMS and SiO2-TiO2-OTMS show that hydrophobicity
increases with an increase in the amount of alkylsilane from 0 to 30 mmol. The decrease
in the water contact angle was obtained in 60 mmol of MTMS and OTMS. Moreover, the
SiO2-TiO2-HDTMS coatings resulted in an increase in water-contact angle with increasing
HDTMS content, from 0 to 15 mmol. In 30 mmol of HDTMS, the water contact angle
was reduced. Unfortunately, the observation could not be completed at up to 60 mmol
of HDTMS because the sol then changed to a gel. Moreover, the highest contact angle of
140.67 ± 1.23◦ was achieved by those coatings with 15:15:30 mmol of SiO2:TiO2:OTMS.
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The data also presented an increase in the peak area ratio of C-H to Si-O-Si vibration, which
indicated that the number of –CH3 groups on the surface had increased.

Table 4. The ratio of peak areas of O-H to Si-O-Si at 3400 and 1100 cm−1 and the C-H to Si-O-Si
vibration at 1450 and 1100 cm−1 from the FTIR spectra of SiO2-TiO2-OTMS samples with various
compositions of OTMS.

Composition
(mmol)

The Ratio of Peak Areas (A) at- A 3400 cm−1

1100 cm−1
A 1450 cm−1

1100 cm−13400 cm−1 1450 cm−1 1100 cm−1

15 108.1 18.59 32.29 3.35 0.57

30 93.6 18.61 40.54 2.31 0.46

The SEM images also revealed that the rougher surfaces were formed by the higher
content of alkylsilane (Figure 8). The dispersion of alkylsilane created holes on the surface
and tended to produce a hierarchical surface. However, the surface roughness decreased
when a larger amount of alkylsilane was applied. The molecules of silane, as predicted,
filled the grooves and produced smooth surfaces; therefore, the coatings presented a low
contact angle.
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Figure 8. The SEM images of SiO2-TiO2-OTMS coatings prepared with (a) 15, (b) 30, and (c) 60 mmol
of OTMS.

The main difference between MTMS, OTMS, and HDTMS is the alkyl chain length of
silane. The alkyl chain length of MTMS, OTMS, and HDTMS are 1, 8, and 16, respectively.
The measured water contact angle of SiO2-TiO2-MTMS, SiO2-TiO2-OTMS, and SiO2-TiO2-
HDTMS coated glass under similar conditions is also depicted in Figure 9. It was clear that
increasing the alkyl chain length up to C=8 increased the water contact angle, due to the
non-polar contribution from alkylsilane. The contact angle value increased with an increase
in the alkyl chain length. Coating with long alkyl-chain silane significantly reduced the
surface energy of the glass, which was also favorable for enhancing the water-repellent
effect.
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Figure 9. (a) The molecular structure of MTMS (C1), OTMS (C8), HDTMS (C16), and (b) water contact
angles, measured on SiO2-TiO2-alkylsilane coated glass samples.

However, the water contact angle of C=16 showed the opposite trend. The measured
contact angle was decreased. According to the surface energy, HDTMS (C16) should
have lower surface energy than MTMS (C1) and OTMS (C8); therefore, HDTMS should
present a higher contact angle than other samples. In fact, coating the glass samples with
SiO2-TiO2-HDTMS resulted in the lowest contact angle.

To study the effect of alkyl chain-length silane on hydrophobicity, we characterized
the topography of coated glass samples using SEM and AFM. The SEM images of SiO2-
TiO2-MTMS, SiO2-TiO2-OTMS, and SiO2-TiO2-HDTMS coated glass samples are shown in
Figure 10. The SiO2-TiO2-HDTMS presented a lower surface roughness than SiO2-TiO2-
MTMS and SiO2-TiO2-OTMS. The smooth surface of the SiO2-TiO2-HDTMS proved that the
long chains of HDTMS did not align vertically on the surface and instead formed collapsed
molecules.

3.3. The Influence of Surface Roughness on Hydrophobicity

The profile of the surface roughness was displayed in Figure 11. It showed the
AFM images of SiO2-TiO2-MTMS, SiO2-TiO2-OTMS, and SiO2-TiO2-HDTMS. The samples
showed that the root mean square (RMS) values were 188 nm for SiO2-TiO2-MTMS, 291 nm
for SiO2-TiO2-OTMS, and 29.8 nm for SiO2-TiO2-HDTMS, respectively. An analysis of
both showed that the SiO2-TiO2-HDTMS evinced the smoothest surfaces, while SiO2-TiO2-
OTMS presented the roughest surfaces. This data supported the results and analysis of
SEM images.
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Figure 11. The AFM images of (a) SiO2-TiO2-MTMS, (b) SiO2-TiO2-OTMS, and (c) SiO2-TiO2-HDTMS
coatings.

On the rough surfaces, there was trapped air that filled the grooves on the surface.
When the water dropped onto the surface, entrapped air gave an upward thrust, resulting
in an adhesion force toward water droplets. It is not easy for the water to penetrate the solid
surface. It will rest on top of the surface and minimize the interaction between the water and
the solid. Finally, a hydrophobic surface is generated. The larger area of entrapped air, and
the lower the interaction of the water–solid, the higher the hydrophobicity. Consequently,
the portion of air trapped in the solid surface is the main factor in controlling hydrophobicity.
Figure 12 illustrates the correlation between surface roughness and hydrophobicity.
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AFM images can also identify and determine the orientation of molecules on the
surface, which influences the topography of the surface. SiO2-TiO2-MTMS, SiO2-TiO2-
OTMS, and SiO2-TiO2-HDTMS films had surface heights of about 100–300, 100–400, and
0–50 nm, respectively. The SiO2-TiO2-MTMS and SiO2-TiO2-OTMS coatings formed self-
assembled molecules because the longer the alkyl chain, the greater the height of the coating
on the surface. In contrast to SiO2-TiO2-MTMS and SiO2-TiO2-OTMS, SiO2-TiO2-HDTMS
demonstrated a low height of surface. It was predicted that HDTMS with a long alkyl
chain would create self-assembly disorder. We assumed that most of the molecules formed
a collapsed structure on the surfaces. Molecules tended to form a horizontal orientation
on the surface. The prediction of the molecule conformation of coatings is displayed in
Figure 13. These data were in line with previous research, which stated that collapsed
molecules generated smooth surfaces [16].
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Figure 13. The prediction of molecule conformation of (a) SiO2-TiO2-MTMS, (b) SiO2-TiO2-OTMS,
and (c) SiO2-TiO2-HDTMS-coated glass.

In the collapsed molecules, the water-surface interaction of CH2 groups was greater
than with CH3 groups when the water droplets were sitting on the surface [19,20]. As we
know, CH2 groups create higher surface energy than CH3 groups; therefore, the collapsed
molecules tended to produce a low contact angle.
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3.4. The Influence of Coating Technique on Hydrophobic Coatings

Figure 14 shows the influence of the coating technique on the hydrophobicity and
surface roughness of coated glass samples. Coatings made by the one-layer technique
had a higher contact angle than coatings created by the layer-by-layer technique. This can
be attributed to the difference in surface roughness. The higher surface roughness was
observed in the one-layer technique. The rougher the surface, the higher the hydrophobicity.
In contrast, the layer-by-layer technique created smooth surfaces. The loss of surface
roughness could have occurred when the thick coating covered the metal oxide layers [21].
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3.5. Stability of Coatings

Figure 15 displays the stability of coatings undergoing outdoor exposure for four
weeks. The hydrophobicity of SiO2-TiO2-MTMS and SiO2-TiO2-HDTMS coatings gradually
degraded during outdoor exposure. In contrast, the water-repellent capability of the
SiO2-TiO2-OTMS coating was stable for four weeks. The decrease in contact angle was
probably due to the absorption of moisture from the atmosphere by the polar –OH bonds
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in the surfaces [22]. A similar result was also obtained in our previous research [11]. The
stability of SiO2-TiO2-OTMS was predicted because of the contribution made by its surface
roughness. The high surface roughness was expected to make it difficult for dirt to adhere.
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3.6. Anti-Dirt Performance of Coatings

Up to now, there has been no standard procedure for investigating the self-cleaning
performance of coatings [2]. Figure 16 shows the difference in the behavior of uncoated
glass and coated glass after dirt deposition on their surfaces. On the uncoated glass, a
great deal of dirt accumulated on the surface. In contrast, there was no dirt adhering to the
highly hydrophobic surface. The very rough surface was predicted to be able to prevent
dirt attachment to the coating.
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4. Conclusions

A highly hydrophobic, anti-dirt, and durable coating was prepared using SiO2-TiO2-
alkylsilane through sol-gel deposition and the one-layer coating technique. The use of SiO2
and TiO2 helped to enhance the surface roughness and adhesion strength of the coatings.
The longer the alkyl chain length of silane (up to C=8), the higher the hydrophobicity of the
coatings. However, the water contact angle decreased when the C=16 formulation of alkyl-
silane was applied. It was predicted that the surfaces were then composed of disordered
molecules. Interestingly, the as-prepared samples demonstrated the anti-dirt accumulation
performance on the surfaces, so that no water was needed to clean the surfaces. Further
research will focus on the engineering of coatings to maintain the transparency of glass.
Based on its high hydrophobicity, durability, and excellent anti-dirt properties, this coating
shows promise in many applications.
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