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Abstract: Industry 4.0 radically alters manufacturing organization and management, fostering collec-
tion and analysis of increasing amounts of data. Advanced data analytics, such as machine learning
(ML), are essential for implementing Industry 4.0 and obtaining insights regarding production,
better decision support, and enhanced manufacturing quality and sustainability. ML outperforms
traditional approaches in many cases, but its complexity leads to unclear bases for decisions. Thus,
acceptance of ML and, concomitantly, Industry 4.0, is hindered due to increasing requirements of
fairness, accountability, and transparency, especially in sensitive-use cases. ML does not augment
organizational knowledge, which is highly desired by manufacturing experts. Causal discovery
promises a solution by providing insights on causal relationships that go beyond traditional ML’s
statistical dependency. Causal discovery has a theoretical background and been successfully applied
in medicine, genetics, and ecology. However, in manufacturing, only experimental and scattered
applications are known; no comprehensive overview about how causal discovery can be applied
in manufacturing is available. This paper investigates the state and development of research on
causal discovery in manufacturing by focusing on motivations for application, common application
scenarios and approaches, impacts, and implementation challenges. Based on the structured literature
review, four core areas are identified, and a research agenda is proposed.

Keywords: manufacturing; causal discovery; machine learning; industry 4.0; artificial intelligence

1. Introduction

Digitalization, often called as Industry 4.0, is radically changing the way manufactur-
ing is conducted [1]. At the core of Industry 4.0, increasing amounts of data about products
and production processes are collected and analyzed [2]. These big datasets present an op-
portunity for advanced data analytics to obtain new insights about the production process,
provide better decision support, and enhance the quality and sustainability of manufac-
turing activities while reducing costs [3]. Aside from the aforementioned opportunities
from a business perspective, some main drivers of this digital transformation can also be
environmental and regulatory [4]. To harness these benefits, the manufacturing industry
has started to increasingly invest in research on artificial intelligence (AI) and data-driven
approaches and their applications in manufacturing [5,6]. Machine learning (ML), a subset
of AI and a currently dominant method for implementing AI, can address the following
three important aspects of (industrial) data [4]: (1) ML approaches can learn nonlinear
and complex relationships; (2) these approaches address the problem of generalization
(i.e., once the model is trained, it can capture possible hidden relationships, enabling better
predictions on unseen data in the future); and (3) these approaches do not impose any
restrictions on the input variables and their distributions.

However, with increasing complexity (e.g., deep learning), ML models become more
difficult to explain and, hence, are often referred to as black-box models [7]. This increase
in complexity has led to the formulation of new requirements for algorithmic decision
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making, such as fairness, accountability, and transparency (FAT) principles [8]. The increas-
ing complexity, as well as the limited explainability and interpretability, of complex ML
models, makes it increasingly difficult to address the FAT principles, thus hindering the
latter’s applications in industrial and mission-critical scenarios. Furthermore, a significant
amount of these methods are based on associational patterns and correlation, which do not
provide an insight into the causal relationships [9]. Knowledge of such causal relationships
(i.e., generative causal mechanisms) in an underlying system is paramount in manufactur-
ing domains [10]. Explainable AI (xAI) is an attempt to address these issues; however, it is
focused on the understanding and interpretation of the AI models rather than the causal
behavior of the underlying systems [11].

Since the initial work of Fisher (1970) [12] and Granger (1969) [13] and the causal
reasoning language and framework introduced by Pearl (2011) [14], a strong computer
science foundation has been developed in the domain of causal discovery due to large
volumes of data and the necessity for automatic causal search algorithms. Nonetheless,
causal discovery from observational data is a challenging issue with ongoing research
efforts. Notably, initial successful applications have been noted in various fields of research,
such as medicine [15], genetics [16], natural sciences [17], ecology [18], astronomy [19],
and neuroscience [20]. Due to these developments, several literature reviews can be
found on causal discovery method concepts and benchmarks [21,22], as well as their
applications in earth system sciences [23] or biomedical informatics [24]. However, due to
their specific nature and progression complexity, the insights from these reviews cannot be
transferred to manufacturing. It is worth mentioning that individual application studies of
causal discovery have been conducted in manufacturing, but no comprehensive overview
about how causal discovery can be applied in the manufacturing context is available. To
address the dearth of research on this subject, this paper aims to investigate the state and
development of research on causal discovery in the manufacturing context.

This paper is organized as follows. Section 2 provides a background on causal discov-
ery. Section 3 introduces the methodology used to conduct the literature review. Section 4
describes the findings from the literature review. Section 5 provides open points and agenda
for further research, and Section 6 presents the conclusion

2. Background

The digitalization and increased utilization of data-driven technologies in manufactur-
ing are the major driving forces and enablers of Industry 4.0 [25]. Digital transformation
enables manufacturers to increasingly collect and analyze industrial data from different
stages of the manufacturing cycle, from the low-level production engineering processes to
the holistic perspective of the lifecycle management processes. Technologies and concepts
such as Cyber–Physical Systems, Internet of Things, Blockchain, Additive Manufacturing,
and AI have been identified as the core technologies of Industry 4.0 [26].

AI is one of the key components of Industry 4.0 that has the potential to improve
industrial processes by reducing maintenance costs, avoiding equipment failures, and
improving business operations [1]. AI is an overarching term that encompasses a wide
range of fields, such as ML, computer vision, natural language processing, planning, and
expert systems. ML methods have begun to find applications in manufacturing systems
such as automated visual inspections, fault detection, and maintenance; they have also
established strong theoretical foundations [27]. However, their black-box characteristics
and increasing requirements for transparency constitute significant barriers to their adop-
tion in manufacturing [28]. On the one hand, ML models are faced with acceptance risks
in safety-critical decision making [10]. On the other hand, by nature, some of the tasks in
manufacturing domains, such as reliability assessment, are focused on describing and test-
ing causal theories about the system rather than predictive models based on observational
data alone [29]. Notably, these factors and the previously mentioned limiting aspects of
traditional ML can be addressed through causal discovery, which goes beyond statistical
dependency and focuses on cause-and-effect relationships [30].
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An advantage of having knowledge about causal relationships rather than statistical
associations is that the former enables the prediction of the effects of actions that perturb
the observed system [31] and can drive a knowledge discovery process in the context
of detection of underlying driving forces in a manufacturing process. Furthermore, the
development of new data-driven causal discovery algorithms enables the utilization of vast
amounts of collected manufacturing data [32–34].

Traditionally, there have been several different approaches to causal discovery. The
gold standard of causal discovery has typically been to perform planned or randomized
experiments [35]. However, there are many practical considerations that limit the applica-
bility of such experiments in manufacturing, especially in scenarios where process stability
is crucial. Causality has also been the focus of the control theory and system dynamics [36].
In the engineering domain, a plethora of methodologies for causality analysis and root
cause analysis have been developed, including Fault Tree Analysis, Failure Modes and
Effects Analysis, 5Why, and the Fishbone diagram. However, these methods are knowledge
driven and, as such, introduce bias. Thus, they often require knowledge of possible failures,
are difficult to run in a live system, and do not utilize the vast amounts of available manu-
facturing data. Furthermore, with the development of more personalized and customizable
products at scale and with highly complex production systems and production processes,
knowledge- and domain-driven causality analyses become unfeasible. Hence, significant
research efforts have been focused on developing generic algorithms for causal discovery
from observational data [30].

Causal discovery is concerned with the problem of identifying causal relationships
from data, that is, identifying as much as possible the causal structure given statistical
quantities, such as a probability distribution or its features [37]. Other than causal discovery,
in the context of traditional causality research, related terms can often be found in the
literature. These include causal modeling, causal inquiry, causal (structure) learning,
causal inferences, causal effect, and causal mining. According to the literature [21,37,38],
three key terms (problems) are distinguished: (1) causal discovery; (2) causal inference;
and (3) statistical inference. All mentioned terms can be classified under one of these
three categories. Causal discovery is focused on learning the causal structure; causal
inference assumes a complete or partially known causal structure and is concerned with
the identification and estimation of causal effects; and statistical inference is concerned
with the inference from the data to the generating distribution or properties of generating
distribution [37].

Causal discovery aims to identify a causal structure, namely, the causal relationships
between the observed variables. Generally, this problem can be defined as finding the
structure of a set of variables in which some pairs of these variables are somehow related.
Graphs are practical representations of such problems; hence, the results of causal discovery
are most commonly represented as causal graphs. A previous study [31] defined causal
graph G as a structure that contains variables X1, . . . , Xp as nodes, and a directed edge
from Xi to Xj if and only if Xi is a direct cause of Xj with respect to X1, . . . , Xp.

Often, in causal discovery literature, this definition contains a stronger assumption that
requires this causal graph to be acyclic, leading to a structure called Directed Acyclic Graph
(DAG). In the case of two variables X and Y, there are several possible causal relationships
between them, as depicted in Figure 1. In Figure 1a, variable X causes variable Y, while
in Figure 1b, variable Y causes variable X. This structure is also referred to as a “chain.”
Figure 1c shows the graphical representation of the absence of a causal relationship between
variables X and Y, while Figure 1d shows a feedback relationship wherein X causes Y and Y
causes X. Figure 1e shows the hidden confounding variable Z that explains the dependence
between variables X and Y. This structure is also known as a “fork”. Finally, Figure 1f
shows a structure referred to as a “collider” wherein both variables X and Y cause Z, but
there is no causal effect or association between variables X and Y.
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Figure 1. Examples of causal relationships. (a) and (b) show causal structure referred to as a “chain”. 
In (c) absence of causal relationship between the variables is depicted. (d) shows feedback relation-
ship. Causal structure referred to as a “fork” is depicted in (e) while (f) shows the structure referred 
to as a “collider”. 

A graphical representation of a causal structure facilitates the development of differ-
ent evaluation metrics for learning causal relations. Two approaches to evaluation can be 
found in the literature: distances between the learned causal graph and the ground truth 
and accuracy of discovered causal relations. The first approach is focused on measures 
such as the Frobenius norm [39] and structural Hamming distance (SHD) [40], relying on 
counting the changes needed for the learned graph, so it becomes ground truth. By con-
trast, methods that rely on the accuracy of discovered causal relationships are premised 
on the fact that the discovery of a causal relationship can be interpreted as a binary clas-
sification (i.e., a causal relationship between two nodes exists or a causal relationship be-
tween two nodes does not exist). Hence, this group contains traditional classification ac-
curacy measures, such as precision, recall, and false-positive rate, which can be used to 
create receiver operating characteristic (ROC) curves [41]. 

Causal discovery methods are typically categorized into four groups based on the 
underlying mechanism used for detecting causality. These are constraint-based methods, 
score-based methods, hybrid models, and methods based on functional causal models 
[21,38]. Furthermore, in the context of time-series data, several other methods can be iden-
tified, particularly methods based on Granger causality and conditional independence, as 
well as methods based on structural equation models and deep learning [22]. 

In practice, the development of generalized causal discovery methods requires tack-
ling the challenges that come with real-world datasets and problems such as non-station-
arity or heterogeneity of data. To address these problems, researchers have developed 
different assumptions that are required for different causal discovery methods to work. 
Some of these assumptions are causal Markov assumption, faithfulness assumption, Mar-
kov equivalence classes, and distribution equivalence (see [35] and [21] for more details). 

Notably, despite these challenges and assumptions, causal discovery has been suc-
cessfully applied in several manufacturing use cases. However, the true potential of causal 
discovery in manufacturing is still vague due to the lack of structured reviews of the field. 

3. Methodology 
The goal of this literature review is to investigate the current developments and state 
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Figure 1. Examples of causal relationships. (a,b) show causal structure referred to as a “chain”.
In (c) absence of causal relationship between the variables is depicted. (d) shows feedback relationship.
Causal structure referred to as a “fork” is depicted in (e) while (f) shows the structure referred to
as a “collider”.

A graphical representation of a causal structure facilitates the development of different
evaluation metrics for learning causal relations. Two approaches to evaluation can be found
in the literature: distances between the learned causal graph and the ground truth and
accuracy of discovered causal relations. The first approach is focused on measures such as
the Frobenius norm [39] and structural Hamming distance (SHD) [40], relying on counting
the changes needed for the learned graph, so it becomes ground truth. By contrast, methods
that rely on the accuracy of discovered causal relationships are premised on the fact that the
discovery of a causal relationship can be interpreted as a binary classification (i.e., a causal
relationship between two nodes exists or a causal relationship between two nodes does
not exist). Hence, this group contains traditional classification accuracy measures, such
as precision, recall, and false-positive rate, which can be used to create receiver operating
characteristic (ROC) curves [41].

Causal discovery methods are typically categorized into four groups based on the un-
derlying mechanism used for detecting causality. These are constraint-based methods, score-
based methods, hybrid models, and methods based on functional causal models [21,38].
Furthermore, in the context of time-series data, several other methods can be identified,
particularly methods based on Granger causality and conditional independence, as well as
methods based on structural equation models and deep learning [22].

In practice, the development of generalized causal discovery methods requires tackling
the challenges that come with real-world datasets and problems such as non-stationarity or
heterogeneity of data. To address these problems, researchers have developed different
assumptions that are required for different causal discovery methods to work. Some
of these assumptions are causal Markov assumption, faithfulness assumption, Markov
equivalence classes, and distribution equivalence (see [35] and [21] for more details).

Notably, despite these challenges and assumptions, causal discovery has been success-
fully applied in several manufacturing use cases. However, the true potential of causal
discovery in manufacturing is still vague due to the lack of structured reviews of the field.



J. Manuf. Mater. Process. 2022, 6, 10 5 of 17

3. Methodology

The goal of this literature review is to investigate the current developments and
state of research on causal discovery in manufacturing. Moreover, this review aims to
identify the motivations, common application scenarios and approaches, as well as impacts
and common challenges of causal discovery implementation in manufacturing. For this
purpose, a structured literature review (SLR), as described by Webster and Watson [42],
was undertaken. The initial body of literature was acquired from the Scopus database of
scientific literature. Two key limitation factors were used for conducting the initial search,
namely, keywords and research domains (conferences and journals). All scientific works
published until the end of 2020 were considered in this review.

With regard to the keywords, the authors wanted to focus on data-driven causal
discovery in Industry 4.0 scenarios. Hence, two main keyword groups were used. The
first group of keywords aimed to capture the causal discovery focus of the literature, while
the second group focused on manufacturing-related problems. As stated in the previous
Section, different causality-related terms were used interchangeably in the literature, so
several keywords alongside “causal discovery” were utilized (e.g., causal structure, causal
inference, causal modeling, causal analysis, etc.). The second group of keywords focused
on the manufacturing-related context in the literature, including manufacturing, industrial,
production, fault detection, and process control. Due to active research of causal discovery
in other fields, such as medicine, economy, social sciences, and biology, several keywords
were used as exclusion criteria. Keywords such as “health”, “FMRI”, and “market uncer-
tainty” were used to exclude literature that did not focus on the industrial applications of
causal discovery.

With regard to publication outlets, due to the interdisciplinary nature of research
within the manufacturing domain, no specific conferences and journals were selected as
they were abstracted to their respective subject areas. Literature searches were restricted to
subject areas of engineering, computer science, mathematics, and decision sciences. These
subject areas were selected because they encompass scientific work around the topic of
causal discovery in manufacturing. A total of 160 publication outlets were aggregated with
these subject areas. Only full papers (i.e., conference papers and journals) published and
written in English were added, resulting in a total of 321 papers.

To identify the relevant papers that focused on causal discovery in manufacturing, an
abstract and conclusion scan was performed on the previously collected literature. To detect
the out-of-scope literature, three criteria that a manuscript should satisfy were formulated.
First, the literature had to be focused on the application of causal discovery method, the
development of a causal discovery method, or the development of a causal discovery tool.
Second, the literature had to be focused on a manufacturing process or used manufacturing
data for evaluation to be considered for further analysis. Finally, the methods for causal
discovery presented in the literature should be data driven. Literature focused on tradi-
tional knowledge-driven and model-driven approaches or other engineering approaches
of detecting causal structure are beyond the scope of this literature review. These criteria
were applied to the 321 papers identified in the previous steps. Additionally, backward
and forward searches were conducted [42] using the Google Scholar platform to identify
additional studies. Finally, 60 papers were found to be relevant for qualitative content
analysis [43]. These papers were analyzed in detail, providing a good overview and insight
into the current state of research. However, when the literature was scrutinized in detail,
some papers that were beyond the scope of this research were identified.

A total of 17 papers were excluded due to reasons such as focusing on scenarios
that were not related to manufacturing [44], using previously developed causal discovery
models [45], or applying model-driven approaches to build a causal structure [46]. Finally,
43 papers were analyzed, interpreted, and summarized in a concept-centric way [42].
Figure 2 depicts the overall procedure applied.
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Through in-depth content analysis, the research papers were coded using their topics
and focus areas. Metadata were extracted from the respective papers, which included the
application tasks, initiatives for research, application domains, extents of application, data
properties, and limitations. During the analysis, common topics, application tasks, and
application domains emerged. These were used as the bases for structuring the literature
groups with the same focus (e.g., focus on fault detection, focus on root cause analysis, etc.).
Within each group, key characteristics such as motivation, methods, data characteristics,
and application cases of causal discovery were identified. These characteristics, together
with other insights, are summarized in the next section.

4. Results

In the following subsections, the results of the literature review are discussed. Through
an in-depth analysis of the literature identified using the previously described process, sev-
eral key application areas were established. The identified application areas utilized causal
discovery in a similar fashion and focused on solving similar tasks. Four application areas
were identified and discussed in their respective subsections: (1) fault detection, analysis,
and management; (2) root cause analysis; (3) causality as a facilitator; and (4) domain and
conceptual work. For each of the application areas mentioned above, four major aspects of
causal discovery in the industrial context were identified: motivation, application, methods
and concepts, and impacts and challenges. The respective application areas are introduced
and analyzed through these aspects, with each representing a subsection. Motivation to
use causal discovery in this specific application area gives an introduction of the reasons
for the utilization of such methods over traditional ML or model-driven approaches. The
Application subsection presents the tasks and use cases of causal discovery methods and
how they are applied. The Methods and concepts subsection introduces the algorithms and
domain concepts found in the literature, focusing on the previously mentioned application
area. Finally, the Impacts and challenges subsection provides insights on the most signifi-
cant effects of the utilization of causal discovery methods, together with the challenges of
implementing such methods, found in the reviewed literature.

4.1. Fault Detection, Analysis, and Management

Motivation: Causal discovery can facilitate the detection of the generative mechanisms
of an underlying system. Knowledge of these mechanisms is especially important in
complex production scenarios, where building a first-principle model (physical, chemical,



J. Manuf. Mater. Process. 2022, 6, 10 7 of 17

mathematical, etc.) representation can be difficult or even impossible due to the high
amount of participating components and the nonlinear and dynamic nature of the relation-
ships. This is especially prominent in the process monitoring domain, where the occurrence
of a disturbance or the process fault can propagate to other units through process and
feedback flows. The collected historical process data provide a great opportunity for the
application of data-driven methods, as they have the ability to learn and capture complex,
nonlinear process dynamics that are otherwise difficult to learn for humans. However,
in these scenarios, traditional ML approaches that are based on association (correlation)
are not enough to detect directionality and develop propagation paths that impact the
overall control performance [47]. According to [48], a complete procedure of process moni-
toring involves four main steps: fault detection, fault identification, fault diagnosis, and
process recovery.

Application: The task of fault detection entails determining when an undesired pro-
cess behavior has occurred and to go one step further by focusing on the identification
of the monitored variable most relevant to this process behavior. However, alarm floods
constitute one of the commonly occurring obstacles that hinder successful fault detection
and identification. In [49], the authors demonstrated the successful application of causal
discovery methods in the analysis and reduction of alarm floods from the process data
in a bottle-filling module. Rodrigo et al. (2016) combined alarm log data, process data,
and connectivity information to improve the accuracy of the alarm flood reduction in an
ethylene plant [50]. Another perspective on alarm flooding was presented in a Dimethyl-
formamide recovery plant [51], where causal discovery methods were extended with a
similarity measure to reduce the number of nuisance alarms effectively. In addition, Hund
and Schroeder (2020) focused on the task of reliability assessment through causal discovery
in a battery performance manufacturing scenario [29].

Fault diagnosis in process monitoring entails determining which fault occurred
(i.e., the root cause of the observed out-of-control status) and provides essential input
to the process recovery [48]. Plant-wide disturbance is one of the contexts wherein such
steps are necessary. In the literature, online and offline fault diagnosis types are discussed in
terms of the temporal perspective and process operator engagement. In online applications,
the point of being knowledgeable of the causal structure is to reduce the reaction time
by (1) providing narrowed and focused information about the causes or (2) providing
the reasoning for the underlying system conditions [52]. The former finds application in
providing causes for rapidly degrading system components [53] or sub-systems where
a fault has occurred [54], among others. Meanwhile, offline applications focus on the
impacts of production attributes on fault events so that the process can be designed in such
a way that these faults are prevented in future operations. Offline fault diagnosis has been
applied in the analysis of heating–cooling device failure [55], hot strip mill processes [56],
or plant-wide oscillations in chemical production facilities [47,57,58]. One of the common
tasks in fault diagnosis is root cause analysis, but due to the extensive volume of literature
in this area, these results will be discussed separately in Section 4.2.

Methods and concepts: In the area of fault detection, analysis, and management, no
best practice approach or method could be identified. A previous study [49] compared the
performance of three methods in learning the causal structure of the alarm flood in a bottle-
filling module, namely, Grow Shrink, Hill-Climbing, and Max-Min Hill-Climbing [49].
Rodrigo et al. (2016) employed transfer entropy in the alarm log, process, and connec-
tivity data in one of the steps of their general approach for alarm flood reduction [50].
Furthermore, in [51], the authors based their data similarity analysis approach on Granger
causality, which was also used in [52]. Bayesian networks saw application in reliability
management [53] and were one of the methods evaluated by Yadav et al. (2017) alongside
association rule mining, direct estimation, and propensity score-matching methods for
the analysis of rare events [55]. In [54,57], Kernel Density Estimation was applied for the
detection of causal structure in their framework for distributed system monitoring and
fault detection. Meanwhile, the Structural Causal Modeling (SCM) framework was used
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for battery performance and reliability assessment in the works of Hund and Schroeder
(2020) [29].

Impacts and challenges: The impact of causal discovery is primarily reported in the
context of process improvement, which was identified as one of the key initiatives behind
the application of causal discovery methods within the literature that focused on fault
detection, analysis, and management. Rather than using smaller use case examples and
numerical studies, most of the literature focusing on fault detection, analysis, and man-
agement featured case studies that focused on a deep understanding of process behavior
or the development of causality-based or causality-enhanced tools to improve process
operation. Out of the reviewed literature, only two articles used industrial benchmark
datasets in their evaluation [47,52]. In this regard, it can be concluded that in the transition
from model-driven methods to data-driven methods, the domain experts in manufacturing
are the ones primarily utilizing causal discovery methods. This is apparent in view of the
disadvantages of traditional, associational, or knowledge-based models. Some of these
disadvantages were noted in the literature: inability to deduce the cause-and-effect relation-
ship from the correlation [47,49,55], poor performance in imbalanced data scenarios [49,55],
or relying too much on the domain input [49,51]. On the other hand, some authors [47,52]
focused their efforts on the intrinsic challenges of industrial data, such as nonstationarity
and multicollinearity. Overall, from the analyzed literature in this application area, it is
evident that causal discovery applications are scattered, with no systematic application or
integration into continuous process improvement.

4.2. Root Cause Analysis

Motivation: Industrial process are rapidly developing, and from the Industry 4.0
perspective, they are usually composed of multiple process units and a large number of
feedback control loops. In such complex systems, process units are strongly interconnected.
Thus, undesired conditions in one unit can potentially have plant-wide effects. These
conditions deteriorate the product quality, increase operational costs, and can lead to
hazardous situations [59]. In these scenarios, effective root cause analysis of these undesired
conditions is crucial for restoring the process to its normal operating condition in a timely
manner [32]. Finding a true propagation path of these undesired conditions (faults) is a
major challenge. Existing research shows two major approaches for root cause analysis:
traditional knowledge-based (also model-based and analytical model-based) approaches
and data-driven (ML) approaches [32–34]. Data-driven approaches do not depend on the
maturity and the extent of the knowledge base or the experience of the domain experts;
they can also capture complex process dynamics, a task that is, in some cases, not possible
with the analytical approaches. Data-driven approaches such as causal discovery can
augment the research on cause-and-effect relationships and, through causal maps, provide
an effective way to localize root causes and guide further investigations.

Application: Due to their ability to detect causal direction, causal discovery methods
are especially useful in manufacturing applications of root cause analysis. Several ap-
proaches have focused on combining process topology and connectivity information to
improve accuracy and reduce the computational load of root cause analysis in industrial
board and board machine case studies [59–63]. Other studies demonstrated the applica-
tion of causal discovery methods in the detection of disturbance propagation paths in
fluid catalytic cracking units [64], mineral concentrator plants [65], and semiconductor
production facilities [66]. Kühnert and Beyerer (2014) evaluated several data-driven causal
discovery approaches for root cause analysis in chemical-stirred tank reactor and laboratory
plant case studies [67]. The aforementioned case studies were done in laboratory plants
as they bring the benefits of knowing the ground truth of the process and enable precise
measurements. Similarly, several other studies focused on benchmark data to verify new
methods for finding the propagation paths and root causes. Tennessee-Eastman process
control data [68] were commonly found, comprising the de facto, standard dataset for the
evaluation of root cause analysis methods. This dataset was developed for the evaluation
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of process control technology and provides established ground truth and observational
data from an industrial process. Tennessee-Eastman process data have been used for the
evaluation of methods developed in several studies [32–34,69–71].

Methods and concepts: From the perspective of methods and approaches, the literature
on the application of causal discovery methods in the context of root cause analysis for pro-
cess improvement focused on established methods such as transfer entropy [59,60,65,70–72],
Granger causality [13,32,61,62,67], or Bayesian networks [34]. Aside from the application of
existing methods, several studies have focused on the improvement of current approaches
for data-driven root cause analysis. Two main improvement directions can be identified: al-
gorithmic improvements and improvements through additional information. Algorithmic
improvements are focused on applications of principal component analysis [64], extension
to multivariate scenarios [32], or improvements in the causality analysis models [33,69,71].
On the contrary, the latter approaches focus on the integration of Granger causality and
transfer entropy approaches with process schematic data in adjacency (connectivity) matrix
form [59–63]. Modern approaches, such as deep learning combined with graph processing
techniques, have been applied in the context of root cause analysis in [66].

Impacts and challenges: In root cause analysis use cases, the impact of causal discovery
is significant as based on the nature of the task, it relies on the detection of cause-and-effect
relationships. This can also be deduced from the substantial share of literature focusing
on algorithmic improvements of already established methods. The aforementioned fault
detection, analysis, and management literature focused on general process improvements
and mostly consisted of larger case studies that delve into different aspects of the production
processes or finished products. However, in root cause analysis, a commonly identified
characteristic in the literature is that the case studies and use cases are based on already
well-established and known benchmark data and are designed to test the applicability of
the developed approaches, methods, and designs. This indicates that causal discovery
methods found usage in root cause analysis, yet current efforts are not focusing on the
evaluation of these methods in production scenarios but are addressing the recognized
challenges of existing approaches. Some of the existing challenges found in the literature
are data stationarity [32,59–62,69], distribution assumptions [34,71], small datasets [71],
nonlinearity [33,69], computational time [59,60,64], scaling the analysis process [60], or
inclusion of prior knowledge [59,67]. The lack of application of root cause analysis in
real production scenarios can be associated with the mentioned challenges along with the
overall complexity in the application of these methods. The complexity of the application
of these methods can be addressed through user guidance in the verification of specific
method assumptions (distribution, scale, stationarity, etc.), inclusion of prior knowledge,
and overall analysis process, among others.

4.3. Causality as a Facilitator

Motivation: Causal discovery or knowledge of the cause-and-effect relationships can
play a supporting role in a multi-stage approach in an industrial setting. In this context,
causality is used in a supporting role to improve other data-driven processes (e.g., ac-
ceptance of ML models or as a baseline for the optimization of the production process).
Furthermore, causality can provide new insights and increase the transparency of modern
ML (often black-box) approaches. The latter has the potential of increasing their acceptance,
especially in mission-critical or regulated-use cases. Many different applications of causal
discovery in a facilitator role were identified in the literature. Some of the most prominent
ones are the use of causal discovery in improving some characteristics of existing ML
models or improving the acceptance of ML models overall.

Application: The application of causal discovery for the improvement of existing ML
models in scheduling scenarios was demonstrated in [73]. In their work, the authors
built a causal model of a coke oven gas to detect the production variables with the most
effects on the final outcome. This multi-step optimization framework built on this causal
model showed better accuracy than human operators with varying levels of experience.



J. Manuf. Mater. Process. 2022, 6, 10 10 of 17

Furthermore, the authors [74] showed how causality could be used to provide causal input
for a prediction model. The causal model is built from observational alarm data, which are
used to find the different paths that an industrial alarm can propagate. These propagation
paths are then fed into a prediction model and finally applied in a fault rule mining context.

Understanding the reasoning behind the predictions made from ML models is crucial
for their acceptance, especially in industrial scenarios [75]. This issue was addressed by
Vukovic et al. (2020) [4] by focusing on improving the acceptance of ML by means of
visual analytics and forecasting model analysis. In their approach, the authors developed a
causal model through interviews with domain experts. Another approach was presented
in [76], where artificial neural network-based causal analysis was conducted to improve
transparency and discover dominant design variables before the optimization process.
Predictions can also be made from the quantification of the relationship between two
variables. This quantification is evident both from impact and direction determined through
causal discovery. Based on this, Chen et al. (2018) [77] applied network parameter learning
and evidence inference technique for transparent alarm prediction from the causal model
in the context of industrial process monitoring. Another group of authors [30] applied
causal modeling for knowledge discovery and used these insights alongside engineering
knowledge to facilitate effective process control. In their work, the authors developed
an approach for combining both observational data-driven and domain-driven causal
discovery processes. Even though most of the identified applications base their approaches
either on observational, process data or, as in some of the previous examples, rely on
domain expert input, in the case of Du et al. (2009) [78], process data were not used at
all. The authors based their complete causality analysis on domain expertise through
data collected from a questionnaire, which enables transparent knowledge discovery and
causal inference.

Besides improving the characteristics of ML models and their acceptance, causal
discovery has also been used as an inference model. A previous study [79] featured the
applications of causal discovery in wireless sensor networks, where a causal inference
model was built with a three-layer Bayesian network. This network was part of a larger
network diagnostic model in a fault diagnosis agent architecture. Furthermore, optimal
sensor allocation in wireless sensor networks was a central topic discussed by Jing and
Jionghua (2008) [80]. In their approach, causal discovery was used to define a baseline causal
structure of a manufacturing process which was later used in determining which physical
variables should be sensed to minimize total sensing cost and satisfy the detectability
requirement. Moreover, John et al. (2019) made causal discovery an integral part of their
framework, where it was used to improve both the performance and acceptance of ML
models [81]. First, several causal discovery methods were applied to improve long-term
predictions through the identification of parameters that are causally related to the target
variable and, second, the system variables with the most impacts on the system performance
were identified for further optimization.

Methods and concepts: In the literature focusing on causality as a facilitator, Bayesian
networks were identified as the most commonly used approach [30,78–81] for modeling
causality. The application of Bayesian networks in the context of improving acceptance is
expected due to it being a graphical model and a transparent representation of a proba-
bilistic model. However, some authors applied empirical approaches and traditional ML
approaches for detecting causality, such as ML model analysis [76], causal modeling based
on domain knowledge [4], LASSO, and relative importance-based methods [81]. A previous
study [77] developed a novel multivariate causality model, while Jin et al. (2018) applied
the average causal effect method combined with Least Square Support Vector Machine and
Particle Swarm Optimization to optimize scheduling in a coke oven gas system [73].

Impacts and challenges: In their supporting roles, there are two major impacting aspects
of causal discovery. The first is observed through their utilization in contexts where
knowledge of causal mechanisms is necessary for the utilization of other data-driven
approaches. This is evident in an approach presented in [80], where a causal model was
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used as a ground truth for the application of optimization algorithms for sensor allocation,
or in [77], where a causal model was used for the transparent prediction of alarms. The
second aspect is focused on the utilization of causal discovery methods for the improvement
of acceptance of traditional data-driven approaches (i.e., achieving FAT AI). Some examples
of such applications are given in [4] and [81]. This aspect is also apparent in empirical
causal discovery approaches that were applied to gain insights of the production process
through ML [4,30,76]. In these application scenarios, utilizing causal explanations could
serve as a starting point for the integration of transparency of traditional ML and domain
knowledge that could be used to gain causal insights. The challenges encountered in these
use cases were mostly focused on missing efficient causal discovery algorithms that scale
well, performance optimization procedures instead of exhaustive search [76,77], and the
need for significant preprocessing and verification of data before the causal discovery
approaches can be utilized [30,80].

4.4. Domain and Conceptual Work

Motivation: Transferring causal discovery methods to manufacturing and generally
applying newly developed methods from a purely conceptual environment into practice are
highly demanding endeavors. Establishing numerical examples and simulations, such as
the ones mentioned in Section 4.2, facilitated the development of new algorithmic solutions.
However, these approaches often come with a set of assumptions that do not match the real-
life complexity in the industry. Some of the common assumptions found in the literature are
data stationarity [32,52,59–62,69], normal distribution [34,71], linear relationships [33,69],
causal sufficiency [30], and faithfulness [9].

Manufacturing data are predominantly collected through industrial sensor systems
that are prone to transmit inaccurate readings. Other than sensor noise, anomalies in
manufacturing data can occur from communication errors, process disturbances, instru-
ment degradation, among others. [82]. As a consequence, the aforementioned assumptions
cannot be validly made. The presence of confounding variables due to unmeasured pro-
cess variables implies that the causal sufficiency assumption is broken. Furthermore, in a
manufacturing process that consists of complex physical or chemical processes, dominant
disturbances may not follow a well-defined probability distribution [68], and a linear rela-
tionship between variables cannot be assumed. As these assumptions cannot always be
made, it is necessary to develop robust causal discovery approaches that scale well [21].

Application: To address some of these problems, some authors focused on algorithmic
improvements and the development of new methods, such as hybrid models based on
Bayesian networks and evidential reasoning rule models. These bodies of literature aimed
to bridge the gap between purely conceptual work and application studies through the
development of methods that are robust enough to be applied in manufacturing. Several
families of causal discovery methods have attracted research focus: graphical models,
information theory-based models, and other approaches.

Methods and concepts: In the family of graphical models, some authors [83] developed
a new data-driven approximate causal inference model using the evidential reasoning
rule which generalizes Bayesian inference. Furthermore, the notion of Soft Intervention
was introduced in the work of Kuehnert et al. (2011) [9], where a hybrid (constraint- and
score-based) model based on a Bayesian network was developed to improve the accuracy
of the causal model. Another large family of causal discovery approaches comprises
information theory-based approaches. As discussed in the previous sections, one of the
most prominent methods in this group is transfer entropy. Naghoosi et al. (2013) [84] based
their approach for causality analysis on transfer entropy with the additional application
of mutual information to reduce the computational complexity of the naïve approach.
Other approaches found in the literature focused on data stationarity and exogenous
variables. A previous study [85] made use of system identification techniques to improve
causality detection in contexts in which not all variables were known. The benefits of system
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identification techniques were evaluated using routine operating data from a thermoelectric
power plant.

5. Research Agenda for Causal Discovery in Manufacturing

Throughout the analysis and synthesis of previous literature, several key areas for
further research were identified. These key areas of the research agenda are based on
the different challenges observed in the current state-of-the-art and questions raised by
several authors.

Integration of causality in continuous process improvement was identified as one of the key
observations from the literature focusing on fault detection and management and causality
in a facilitator role (Sections 4.1 and 4.3). These findings imply that causal discovery is
used in a scattered way in some specific, small-use cases. It is evident from the analyzed
literature that there is a lack of management of causal discovery in process improvement.
At the moment, causal discovery is mostly used on-demand for detection and analysis.
Hence, further studies should aim to tackle the topic of systematic integration of causal
discovery in continuous process improvement.

User guidance is another promising topic requiring more attention in future
research [49,83]. This is especially prominent in root cause analysis applications of causal
discovery (Section 4.2). It was identified that such applications require in-depth knowledge
of data-processing techniques, statistics, and causal discovery methods in general. Tasks
such as verifying specific assumptions, data distribution, and selecting appropriate causal
discovery methods are limiting factors in the adoption of these methods by domain experts.
Future work needs to be carried out to establish whether user guidance might be the
catalyst for the widespread adoption of these methods in industrial scenarios.

In the reduction of adoption barriers, following the notion of user guidance, other ap-
proaches can be taken to reduce the adoption barriers of causal discovery in manufacturing.
Integration of prior knowledge was utilized in several papers to increase the accuracy
and general performance of causal discovery methods. However, the integration of prior
knowledge can also be expanded to the role of one measure to reduce the adoption barriers,
as it can serve as a contact point between computer scientists and domain experts [56,67].
In-depth analysis of an industrial process through causal discovery requires resources
and, as indicated in Sections 4.1 and 4.3, takes time. Causal explanations in the domain of
explainable AI (xAI) are not causality per se (interpretation of probabilistic ML models) but
can lead to causal insight when integrated with domain knowledge. Hence, they can serve
as a lightweight causality approach in the reduction of adoption barriers of AI in general
and as the initial step in efforts to enhance the acceptance of data-driven approaches in
manufacturing. Of course, xAI does not imply causation but can be used alongside an
in-depth causality analysis of a system.

Achieving FAT AI is another area of research requiring further attention. As indicated
in Section 4.3, it is evident that knowing the causal relationships in a system can increase
transparency, accountability, and fairness in algorithmic decision making. At the moment,
significant research efforts are focused on xAI [86] due to the rising requirements for the
increased transparency of black-box models. However, as stated in the previous sections
(e.g., Sections 4.1 and 4.2), in (mission-) critical scenarios or other sensitive cases, in-depth
evidence and a general understanding of the process are necessary. It is recommended
that future research should be undertaken to improve understanding of the distinction and
interplay between lightweight xAI approaches and causal discovery-based approaches.
Furthermore, causal explanations comprise another area of research whose importance is
discussed in Section 4.3.

Tackling the requirements of real industrial settings is a final research area that is postu-
lated to be a focus of future work. As indicated in Sections 4.2 and 4.4, a significant number
of causal discovery methods rely on certain assumptions. These assumptions are often
not valid in real-world industrial scenarios, with low data quality, messy data collection
processes, or complex and interdependent processes. Therefore, further algorithmic im-
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provements are needed to customize the current method assumptions and pave the way
for the widespread adoption of causal discovery methods in practice [32,56,60,77].

6. Conclusions

In the context of Industry 4.0, ever-increasing amounts of data are collected and
analyzed. Companies use this opportunity to harness the benefits of advanced data an-
alytics and different data-driven methods. Compared with traditional knowledge- or
model-driven methods, ML methods, in particular, provide numerous benefits. Raising
the complexity of these methods increases their predictive performance, but it also hinders
their acceptance in industrial scenarios where fairness, accountability, and transparency
requirements are crucial. Causal discovery aims to address these challenges and other
previously discussed bottlenecks, finally contributing to the adoption of the Industry 4.0
paradigm as a whole.

In this paper, a comprehensive structured literature review was conducted. Our key
contributions are as follows: (1) we highlighted key areas of application of causal discovery
in manufacturing; (2) we outlined the most significant aspects of each application area of
causal discovery in manufacturing; and (3) based on the in-depth analysis of the literature,
a research agenda was proposed.

The identified key areas of application are fault detection, analysis and management,
root cause analysis, causality in a facilitator role, and domain and conceptual work. For
each of these areas, common application scenarios, methods, and challenges were pre-
sented. Additionally, the application challenges of causal discovery in manufacturing
were identified.

Compared with other areas of research, such as medicine, economy, earth sciences,
and social sciences, where it has an established role in scientific work, manufacturing
has not identified the full potential of causal discovery. This was evident from the key
takeaways from the literature. The key takeaways from the literature underscored that
causality should be integrated into continuous process improvement procedures, as it is
currently on the level of on-demand, scattered use. Furthermore, a user guidance topic
was proposed to make it easier for domain experts to apply causal discovery in various
domains. Further research on the reduction of adoption barriers and the achievement of
FAT AI was proposed to augment the possibility of widespread adoption. Finally, several
authors indicated that algorithmic improvements are necessary, as some of the presented
assumptions cannot be made in the current complex production environments.
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