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Abstract: Manufacturing companies are exposed to increased complexity and competition. To stay
competitive, companies need to minimize the total cost of quality while ensuring high transparency
about process–product relationships within the manufacturing system. In this context, the development
of technologies such as advanced analytics and cyber physical production systems offer a promising
approach. This paper discusses and defines essential elements of virtual quality gates in the context
of manufacturing systems. To support the planning and implementation of virtual quality gates,
a morphological box is developed which can be used to identify and derive an individual approach for a
virtual quality gate based on the specific characteristics and requirements of the respective manufacturing
system. Moreover, the framework is exemplified by three case studies from various industries and
resulting potential are discussed.

Keywords: virtual quality gates; cyber physical production systems; quality management;
quality prediction; quality inspection; machine learning

1. Introduction

Manufacturing companies need to increase their productivity by ensuring high-quality standards,
low-cost and short lead times to stay competitive. In this environment, companies have to ensure a
high product quality to meet customers’ demands [1,2]. In this context, quality can be defined as a
set of characteristics of a unit (e.g., product or process) regarding their suitability, to meet specified
and presupposed requirements [3]. Therefore, both product and process quality need to be addressed
to achieve the required product quality. For quality inspection, a distinction can be made between
measurement technology on the product and measurement technology on the process to meet the
quality requirements [4].

In general, manufacturing companies try to improve or maintain a high quality while maximizing
the efficiency of the overall system. Figure 1 shows the challenges of finding an optimal trade-off

between effort for error prevention and resulting costs in case of occurring errors. Manufacturing with
a minimum amount of quality errors, even toward “zero-defect” production, is of course a promising
vision to achieve. However, it requires high efforts—e.g., for physical inspection of product properties
with high (temporal and spatial) resolutions and establishment of adaptive control regimes based
on defined quality gates. Furthermore, high product variants lead to an increased complexity of
quality inspection planning and operation. Consequently, with increasing error prevention, the cost of
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prevention and appraisal increase significantly [5]. Therefore, strategies that allow a high transparency
of product and process quality along the process chain while still keeping a reasonable effort are
very promising.
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Figure 1. Trade-off between error prevention and cost (adapted from [1]).

To decrease the total cost related to quality measurements and reduce rework and scrap, it is
necessary to consider the complete process chain instead of single and isolated processes. Therefore, it is
important to understand dynamics and interdependencies within the process chain. Here, especially in
the context of product quality, transparency und understanding of process–product relationships,
which describe interactions and the impact of the manufacturing processes on the resulting intermediate
product features and vice versa, are of great importance. Moreover, to derive proper quality
management strategies, knowledge about the propagation and the detection of intermediate product
feature changes along manufacturing processes is essential. Therefore, the design of inspection
processes is an important task in the planning and operation of manufacturing systems with regard to
product and process quality.

Digitalization is a major trend in manufacturing which creates new opportunities for advanced
quality management (QM). There are already numerous QM methods, tools and technologies that have
already been implemented or are in the process of implementation.

To overcome the limitations of physical measurements within the quality inspection such as
non-value adding process times for inspection, accuracy, flexibility and related efforts, virtual quality
gates can be developed based on digital methods, tools and technologies [6]. Therefore, existing or
easy-to-obtain data from the physical production (e.g., shop floor) are used for a valid virtual model to
predict the current product and process properties and thus are the basis for advanced QM and the
improvement of the quality while maintaining a high transparency with low cost at the same time.

Against this background, central elements and characteristics of virtual quality gates are discussed
and defined. The paper is structured as follows: Section 2 gives insights on the theoretical background
of cyber physical systems and quality gates. Section 3 discusses applications of virtual quality gates
in manufacturing and concludes with derived research demands for virtual quality gates. Section 4
presents the theoretical framework for the design and implementation of virtual quality gates. Section 5
presents three case studies with an exemplary application of the aforementioned framework in
lithium-ion battery cell manufacturing, aluminum die casting and printed circuit board production.
Section 6 discusses the potential and challenges of virtual quality gates (VQGs) while Section 7 gives
an outlook on further research demand.
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2. Theoretical Background

2.1. Cyber Physical Production Systems

The broad term cyber physical system (CPS) refers to a feedback loop interaction of the physical
world with the cyber world of embedded computers and networks that monitor and control a physical
process [7]. It further incorporates the possibility of human and machine interactions [8]. A cyber
physical production system (CPPS) is a special application of the CPS in the area of manufacturing
and is strongly interrelated with the term of industry 4.0 [9,10]. It enables the use of various virtual
applications (e.g., simulation, data analysis, etc.) on different levels of manufacturing (e.g., product,
process, process chain, etc.) for different purposes (e.g., predictive maintenance, quality control,
energy efficiency, etc.) [11]. A CPPS generally consists of four major elements, as presented in
Figure 2: I. physical world, II. data acquisition, III. cyber world and IV. decision support/control [9,11].
Even though, other definitions and architectures of a CPPS exist, such as the five-level CPS, CPPS for
quality prediction and operation control, digital twin-based CPPS, etc., the main elements remain the
same in a certain abstraction and with a different differentiation focus [12–14]. Although decision
making in manufacturing has become more automated through the application of CPPSs, the human
still stays in the loop to derive recommendations for the adaption of operation and planning to improve
processes. Besides the efficient operation of a manufacturing system through a CPPS, the human
plays a vital role in creating and managing the CPPS. Ultimately, the human non-value adding and
time-consuming work such as manual sensing and analysis could be substituted step-by-step by
valuable creative work [15,16].
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In recent years, several successful use cases for CPPSs have been developed and demonstrated for
various production purposes, often resulting in active decision support for the human. In the field
of production planning and control, contributions focus on the prediction of machine faults [17,18]
and throughput bottlenecks [19] for an active scheduling of processes to increase the production
output of the manufacturing system. Closely related to this, predictive maintenance applications
support in wear monitoring—e.g., health state of tool [20]. Furthermore, several contributions address
the potential of CPPS in sustainable manufacturing. In [21], an online and offline approach for
energy-oriented decision support in the energy-intensive production of battery cells is presented.
The contribution benchmarks a collection of machine learning methods (e.g., Lasso-Lars Regression
and Random Forest) for electrical power prediction across the whole value chain covering different
levels of production—i.e., machines, process chain and technical building services. An approach at the
machine level for remote laser welding of a car back door is proposed in [22]. The neural network-based
approach considers machine specifications as well as variations of process parameters to estimate the
process steps’ energy consumption. Another promising field of CPPSs are virtual quality gates that
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enable a prediction and control of product and process quality, which offers significant potential for
increased economic and environmental performances of manufacturing systems. Virtual quality gates
and previous work in this field are introduced hereafter.

2.2. Quality Gates

2.2.1. Quality Management

Quality is a determining factor in the manufacturing environment today. It can directly affect
the productivity and economy of a production, especially in the case of mass production. The term
quality is defined as, “ . . . the degree to which a set of inherent characteristics or features of an object
fulfils requirements” [3]. The inherent characteristics or features are set within a quality management
system (QMS). In general, a QMS, as depicted in Figure 3, consists of four main components or phases:
(1) quality planning, (2) quality assurance, (3) quality control and (4) quality improvements [3].
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Figure 3. Overview of the main components of a Quality Management System.

Within the phase of quality planning, certain quality objectives to be achieved are set and
operational processes, to prove these quality objectives, are put into place. This is followed by the
phase of quality assurance, which focuses on providing confidence that certain quality requirements,
such as a quality attributes, are fulfilled. The proof that those set quality requirements are met is given
throughout the process of quality control and improvements [3].

2.2.2. Quality Inspection and Virtual Quality Gates

Traditionally, quality control in the manufacturing environment is often performed offline,
after the completion of an intermediate product. This can be achieved by measuring certain quality
attributes defined within the quality requirements of this intermediate product or process requirements
(e.g., process capability) [23]. Here, the concept of quality gates (QGs) has been introduced in the
past. The idea of this concept is to systematically divide a defined manufacturing chain into different
quality-relevant decision points. Along these QGs, the perceived quality of the object is inspected,
securing that defined quality attributes are met before allowing any further progress [24]. Figure 4
gives an overview of the QG concept within manufacturing systems.

The aim of manufacturing processes is to transform raw material into final products by
value adding to meet the customers’ requirements. This value adding consists of the physical
transformation of the products (e.g., transforming geometry, aggregate state, and chemical composition).
Consequently, product states with their respective features change with every process step [24,25].
At each QG, the current product states are measured with specific technologies such as vision inspection
at certain observation points within the process chain. An intermediate product state (IPS) characterizes
an intermediate product at a certain observation point along the manufacturing process chain by
a combination of intermediate product features (IPFs) [24]. An IPF is defined as a quantitative
(e.g., temperature) or qualitative (e.g., material composition) description of the product itself as well
as definable and deterministic measurements [26,27]. At a QG, the IPS with its measured IPF is
checked against previously defined target values and classifies them—for example, as good or bad
products. Moreover, the process quality of a production process can be measured by analyzing certain
process parameters (PPs). Here, the process capability can be assessed or a certain PP can be evaluated
regarding its position within a predefined process window.
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Within a manufacturing system, different relationships or dependencies between PPs and
IPFs can occur. Regarding the IPF and PP, bi-directional relations between IPF and PP may exist.
However, a forward relation can appear between a PP and successor IPF at certain observations.
Forward relations can also occur between two following IPFs or between random IPFs. Due to the
direct influence of PPs on IPFs and vice versa, the consideration of the process quality besides the
consideration of the product quality is of great importance for the overall quality.

Basically, QG can be characterized and designed based on the inspection tasks performed. These tasks
are provided by an inspection plan. Based on [28,29], inspection plans include the following specifications:

• relevant inspection characteristics (what)
• inspection point (when)
• inspection type (how)
• inspection extend (how much)
• inspection place (where)
• inspection personnel (who)
• inspection equipment (whereby)

The identification of inspection characteristic is based on, e.g., design drawings, working plan
or technical terms of delivery. These inspection characteristics can, for example, be displayed by
geometry (length) or physical (material composition) properties of the respective product. The process
to identify characteristics is defined by an assessment of inspection necessity [29]. The inspection
point can typically be divided into “incoming inspection”, “intermediate inspection” and “end-of-line
inspection” [28–30]. The inspection type is differentiated into two forms. Qualitative inspection results
refer to attributive values such as “good/bad” or “yes/no”. However, quantitative inspection is based
on measured IPF such as length or height. Therefore, these results are more detailed and can be used
for further analysis and modeling. The inspection extend defines the share or amount of parts that
are inspected. With full inspection, 100% of all parts are subject to inspection and it is usually used
for security sensitive products with high costs [30]. A sample inspection is performed according to
predefined external or internal standards. The sample sizes need to be sufficient to assess the respective
quality of the products. No inspection is used when no further inspection is needed—for example, if the
product confirmation is already evident (e.g., product requirements are fulfilled) [28]. The inspection
place is, e.g., dependent on the specific inspection characteristics, the inspection equipment and the
manufacturing system characteristics. A manual inspection can be either performed directly during the
process (inline inspection) or at special inspection locations (offline inspection). Otherwise, the product
just passes through a QG where inspectors perform further tests. Alternatively, automated inspection
stations such as a QG process the measured data. This can then be used for, e.g., the adjustment of
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manufacturing processes [28]. The inspection personnel are determined by the respective inspection
place and equipment. For example, complex inspection stations and equipment can only be operated
by qualified employees [30]. The main selection criteria for inspection equipment are the capability of
inspection devices in terms of measurement accuracy and the necessary tolerances of the inspection
characteristics. Furthermore, additional factors such as necessary investments, inspection times or
required training for the inspector must be taken into account [4,28].

Advancements towards digitalization over the past decade have made it possible to indirectly
measure or infer the quality of a product during manufacturing processes by simulations, soft sensors
or data-driven models. These developments allow the design and implementation of virtual quality
gates (VQGs). In this context, VQG can be understood as an addition or substitution of traditional QG.
Moreover, VQG can improve inspection processes by reducing testing times and increasing the accuracy
and flexibility of the inspection technology through the almost real-time processing. According to [31],
four different quality-related tasks can be identified:

� Quality description
� Quality prediction
� Quality classification
� Parameter optimization

3. State of Art and Research

3.1. Applications of Virtual Quality Gates in Manufacturing

A review of the literature shows that several approaches contribute to the concept of VQGs
(see Table 1). The identified approaches are classified by two criteria: (i) the considered scope of inspection
(i.e., single process vs. process chain VQGs) and (ii) the deployed data source—i.e., the independent
variables, as inputs for the cyber world. Manufacturing process data from a single process
(e.g., melting temperature in degrees Celsius at a discrete time in an extrusion process) is used by [32–34].
Several authors show approaches on a single process that rely on continuous value series from the
process, such as temperature sensor data within a metal casting mold. These approaches require data
preprocessing to be suitable for data-driven methods; however, they facilitate the extraction of large
quantities of representative features [13,35,36]. VQG approaches that capture the effects of process
chains on the IPF or final product properties (FPPs) are proposed by [37,38] (i.e., discrete process data)
and [39] (i.e., value series). In contrast to process data (and external factors), several VQG approaches
rely on product data—i.e., design parameters and/or IPF. A single process level [40] uses histogram-
and shape-based features of pictures gathered from an optical sensor for defect detection via a random
forest classifier in composite parts manufacturing. A deep neural network approach for the prediction
of shear angles for a composite draping process based on finite element simulations is shown in [41].
Likewise, [42] proposes a combination of finite element simulation with machine learning for creating a
VQG with detailed spatial quality characteristics exemplified by an overmolded thermoplastic composite.
Finally, at the process chain level, the use of product data to predict the product quality in downstream
processes is shown by [25,43–45].
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Table 1. Exemplary applications in the field of virtual quality gates (VQGs).

Data Source Single Process VQG Process Chain VQG

Process data (and external factors)—
i.e., process parameters; state variables;

ambient conditions; superior system data

Discrete
Garcia et al. 2019 [32]
Tercan et al. 2019 [33]

Gellrich et al. 2019 [34]

Kao et al. 2017 [37]
Arif et al. 2013 [38]

Value series
Gao et al. 2014 [35]
Lee et al. 2018 [13]

Wang et al. 2017 [36]
Lieber et al. 2013 [39]

Product data—
i.e., design parameters; intermediate

product features

Zambal et al. 2018 [40]
Pfrommer et al. 2018 [41]
Hürkamp et al. 2020 [42]

Schmitt et al. 2020 [43]
Filz et al. 2020 [25]

Thiede et al. 2019 [44]
Turetskyy et al. 2020 [45]

The results of the literature analysis show that no unified framework for the design and
implementation of VQG exists. To fill the gap, a morphological box was developed which can
be used to identify and derive an individual approach for a virtual quality gate based on the specific
characteristics and requirements.

3.2. Objectives and Fields of Action

As indicated before, VQGs bear significant potential to improve the QM and can strongly
contribute towards zero-defect strategies in manufacturing. With higher quality-related transparency
and potential inline use, VQGs can significantly reduce occurring errors in manufacturing systems
while—through utilizing existing or relatively easy-to-obtain data—keeping additional efforts at a
reasonable level. There are different fields of action that can be addressed through VQGs [25,34,42–44]:

• Fast and comprehensive quality estimation of parts: as a primary function, VQGs allow a
part-specific estimation of one or multiple (intermediate or final) properties of a product and,
thus, a well-based decision can be made if it is within the required technical specifications. Due to
the nature of quality control, a broad coverage of products (100% inspection) without additional
process time can be achieved. VQGs could also be applied where physical measurements are
hardly possible due to technical or spatial restrictions in the manufacturing systems.

• Inline process control: based on the individual part quality estimations and the fast processing
models, an inline control of processes is possible while potentially also taking into account effects
from previous steps of the process chain.

• Process chain control: related to the previous point, reliable information regarding the status of
individual parts also allows an extended usage in later process steps. One obvious point is to
avoid further processing of potentially bad parts. However, the dynamic derivation of corrective
actions to bring them back into the specifications is also possible—e.g., the adaption of later
processes or selective assembly of matching parts.

• Process parameter adaption: the underlying models bring together different influencing factors
and give clear indication regarding their individual relevance/criticality for a successful production
process. Therewith, the identification and adaption of critical parameters or other influencing
factors allow the derivation of further quality and general production improvement strategies
from a more strategic perspective as well.

• Advanced tracking and tracing: the gathered information and estimated properties create an
individual fingerprint of products. Together with an appropriate IT infrastructure (e.g., for part
identification), advanced opportunities are given for tracing potential root causes of failures over
the later value chain or even in later states of the product life cycle.
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4. Framework of Virtual Quality Gate Design and Implementation

4.1. Technical Framework of Virtual Quality Gates

In the following, the developed technical framework for a virtual quality gate is presented in
Figure 5, based on the CPPS framework, as explained in Section 2.1. The framework covers four
major levels: I. physical world, II. data acquisition, III. cyber world and IV. decision support/control.
Each level can be divided into different characteristics that need to be defined for implementing a VQG.
Therefore, the physical world explains which information is required in order to assess and understand
the current situation (understanding of production type and inspection). Data acquisition gives insights
into the characteristics that need to be defined regarding data gathering in order to obtain needed data
for the VQG from available data sources. In the cyber world, modeling approaches are explained that
can be utilized to obtain desired product characteristics from acquired data. Decision support gives
insights into how derived product characteristics are used to enable decision support or even direct
production control.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 8 of 21 
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4.2. Physical World

The physical world reflects the actual design and characteristics of the respective “real”
manufacturing system. With a focus on QM, performance criteria such as the error rate or pseudo-error
rate as well as mean rework time arise. These indicators are the basis for analysis and improvement
purposes. Moreover, state variables such as normal force or power demand describe the system
behavior. In addition, the system behavior is also affected by internal influences such as special room
conditions (e.g., temperature or humidity) or external influences such as properties of incoming material
(e.g., tolerances). However, design and control parameters such as feed, cutting speed or specific
machine characteristics actively influence the manufacturing system behavior. These variables and
parameters serve as the basis for quality control by creating a link between the requirements from product
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design and actual production as they provide, e.g. inspection characteristics. Furthermore, within the
physical world the amount of machines and processes, the age of machines, cycle times and mean lead
times are defined. Moreover, the product variants to be produced are specified.

Next to the mentioned quantitative characteristics, the physical world also defines the production
type of the designed system (e.g., discrete or continuous processes). Moreover, through its design,
inspection equipment and places are derived.

4.3. Data Acquisition

In order to obtain and to store the needed or desired data for a VQG, its source and type need to
be specified, its accessibility needs to be determined—i.e., how this data can be obtained—and a data
storage solution needs to be derived. The first two attributes (data source and data format) are mostly
defined by the information from the previous phase—physical world. Data accessibility is usually
dependent on the data source and the data storage needs to be derived based on the intended usage
(cyber world).

Various data sources exist in production; some of them are spreadsheets, lab protocols or data files
in general (e.g., excel files, word files, image files, etc.), control software (Supervisory Control and Data
Acquisition (SCADA)), planning and design software (e.g., Enterprise and Resource Planning (ERP),
Computer Aided Design (CAD), etc.), process automation (e.g., Computerized Numerical Control
(CNC), Programmable Logic Control (PLC), etc.), sensors, etc. In the specified source, the data are
usually available in a certain format—e.g., single value, time series, spatial data, image data, etc.

Based on the information of the data source and the data format, data accessibility is reviewed and
evaluated with regard to intended usage in the cyber world. In the context of VQGs, quality-related
data are of the highest importance. These data are either acquired inline of the production chain
or through offline inspection of an intermediate product. The data can be stored in files which can
be acquired either manually, by uploading through graphical user interfaces (GUIs) or by using
an extraction transformation and loading process (ETL) if their directory is defined and accessible.
Data stored in software applications can be, e.g., accessed through the application’s database via queries.
Continuously running applications (SCADA, ERP, PLC, etc.) could have standardized communication
protocols (e.g., open platform communication unified architecture (OPC-UA), ModBus, PROFINET,
PROFIBUS, etc.) that can be accessed and used to acquire data. Sensors might also have communication
protocols, or can be read out via analogue or digital signals. More often, sensors are read out by small
Internet of things (IoT) devices and can make-up a whole IoT device network.

The choice of data management, if entirely needed, is also made with regard to the cyber world and
the intended application. Since the IoT devices become more and more durable and performant, they also
can be used for data management, allowing to store small amounts of data either decentralized or on the
edge. Furthermore, the data can be stored centralized, either on premise, if the IT support is guaranteed,
or on the cloud. For data management, various technologies exist for on premise or cloud data storage
(e.g., Hadoop distributed file system (HDFS), MySQL, MongoDB, Amazon web services (AWSs), etc.).

4.4. Cyber World

Within a VQG, the main target of the cyber world is to analyze or predict the properties of the
physical product. The modeled properties can be, on the one hand, IPFs for intermediate products or,
on the other hand, FPPs for the final product. Another central task of the cyber world is to transform
the quality prediction into knowledge that is used for automated process control or, most commonly,
transmitted to the operator as decision support—e.g., in terms of an assistance system. Possible options
to deliver appropriate decision support are, for example, user-friendly, interactive and easy-to-interpret
model-based visualizations (e.g., localized failures and failure information within a three-dimensional
product plot) or the simulation of effects of downstream processes on the product quality to derive action
plans on product routing or process control. For modeling the cyber world of a VQG, four approaches
can be distinguished:
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• Data Mining
• Simulation
• Hybrid Modeling
• Visual Analytics

As shown within the literature review (see Section 3.1), several approaches draw on data mining
for virtual quality inspection. Through data-driven modeling, i.e., machine and deep learning,
transparency towards process–product relationships can be achieved and trained models can be
applied for quality prediction. According to their purpose, data-driven modeling can be divided into
two general categories: (1) supervised learning and (2) unsupervised learning [46]. The first one,
most commonly used in quality prediction, requires labeled samples that are, for instance, acquired by
product inspection—e.g., non-destructive X-ray inspection or destructive tensile testing. The second
category, unsupervised learning, does not require labeled quality data. This type of learning tries to
find patterns or trends within process data or product data (i.e., IPF or FPP). The patterns can be used
as a starting point for further data analysis [39]. Secondly, simulation approaches can be used to model
the cyber world of a VQG—e.g., physics-based and numerical modeling as well as discrete event and
agent-based simulations [47]. For example, through the finite element method several IPFs can be
modeled based on process and material parameters [40]. However, these approaches come with the
drawback of a time-consuming computation for complex parts. First, approaches address this drawback
by hybrid modeling through building data-driven surrogate models of finite element simulations that
appropriately capture the simulated characteristics and are additionally real-time capable [41,42,48].
These approaches for building an online VQG through combining data-driven modeling and simulation
illustrate the key idea of hybrid modeling which to entails the combination of more than one modeling
paradigm. Lastly, visual analytics can be applied to a VQG, as a single modeling approach or as
a hybrid modeling approach in conjunction with machine learning or simulation. In this context,
an example could be the visualization and analysis of clustering-based IPF propagation along a process
chain through a Sankey diagram (see case study III, Section 5.3). Furthermore, an approach with a
specified loop for knowledge discovery, covering the four elements of data, visualization, models and
knowledge and defining visual analytics as a combination of automated analysis techniques with
interactive visualizations for effective understanding, reasoning and decision making on the basis of
very large and complex data sets is presented in [49]. A survey on the state-of-the-art methods with
regard to available commercial visual analytics software was performed by [50]. By the emphasis on
interactivity within visual analytics, the analyst stays in charge of the uncovering process and product
quality issues that can be directly found within the raw process and product data or constructed by
model-based process–product relationships.

4.5. Decision Support

The decision support ensures the feedback loop from the cyber world back into the physical
world while involving the human. This feedback loop contains information derived from the VQG
regarding the product and process quality. Here, the focus is on decision support in the sense of more
precise feedback and not on the control of machines or individual components. This evaluation and
processing of derived information and knowledge can be subdivided into the following characteristics:
product scale, application scale, level of insight, and level of decision support.

The product scale and application scale evaluate the information defining the characteristic of the
product addressed and the quantification of product information. The product scale characterizes the
information derived by the VQG regarding the product in terms of the IPFs and FPPs. These values
can represent the suitability of the previous process and the resulting intermediate product.

The application scale characterizes the applicability of the information derived by the VQG on the
quantified amount of products/intermediate products. It provides information regarding the question
on whether the tracked information concerns a single product, several products, the whole product
batch or refers to a product in continuous production.
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The level of insight characterizes the maturity of the derived information from the quality
gate based on the data analytics’ maturity [51]. It can therefore be either diagnostic, descriptive,
predictive or prescriptive. In the context of VQGs, diagnostic relates to the obtained information that
only characterizes the product. Descriptive defines information additional to product characteristics and
also describes why the product characteristics are the way they are. The feature predictive defines the
derived information provided by the VQG and allows a prediction of future events—e.g., describing the
performance of the final product based on its IPFs. Prescriptive means that the provided information
already directly addresses the improvement of the current situation or the product. The level of
decision support defines the level of abstraction on which the obtained information is used to improve
the current situation—e.g., the physical world. These levels of abstraction range from sole information
output, visualization of the obtained information, indirect control or the direct control to improve the
quality (e.g., process adaption).

4.6. Morphological Analysis

To better understand what different functions are required when developing a quality and
especially a VQG, a morphological analysis is performed. By this analysis, the complexity of how to
design a suitable quality inspection is decomposed based on a morphological box. Within this context,
a morphological box is a tool to generate possible solutions for complex problems by breaking the
problem down into its essential parameters or dimensions (here, functions and principles of a VQG),
as defined in Section 2 [52]. The morphological box for the design of VQG is shown in Figure 6.
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Figure 6. Morphological box for the design of VQGs.

To further decompose the possible solution as well as the existing design space, characteristics (A–T)
were identified and assigned to the different elements (I–IV). Within this scope, important characteristics
of the inspection planning and CPPS were taken into account based on the findings of Sections 2 and 3.
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In addition to the basic characteristics of inspection planning, an additional focus was put on the
design of the virtual elements such as data mining or data management in the context of CPPSs.

To depict the characteristics in more detail, different possible functions are assigned to each
characteristic. These functions can, e.g., be possible methods, tools and technologies of the characteristic.
By combining functions of different characteristics and levels, a path identifying a VQG is given.
Therefore, with the help of a morphological box, a high variety of different possible solutions solving a
comparable issue can be identified.

5. Case Studies

5.1. Case Study I: VQG in the Manufacturing Chain of Lithium-Ion Battery Cells

Future mobility concepts highly rely on electrically powered vehicles, with the current state-of-the-art
energy storage technology being the Lithium-ion battery (LIB) [53]. Its complex manufacturing chain can
be subdivided into batch or semi-continuous processes—e.g., electrode production, single unit processes,
such as cell production and cell conditioning, formation and aging, covering converging and diverging
material flows. This process chain is depicted in Figure 7.
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The costs of LIB cells are dominated by the costs of the raw material. This dominance leads to the
overall costs being highly sensitivity to possible production errors [53]. Scrap rates reported in research
and industry are still as high as 40% [51]. Different QM approaches have been pursued to ensure
a “higher quality” as well as lowering economic and environmental impacts [54]. Some concepts
strive towards analyzing the perceived quality of different intermediate products, predicting the future
quality of the later produced battery cell and deriving counteractions, if the perceived quality does
not match the targeted quality range [55]. The abovementioned approach has been pursued at the
Battery LabFactory Braunschweig (BLB) to develop a VQG approach. The BLB is a research center
of the Technische Universität Braunschweig dedicated to facilitate interdisciplinary research for the
development of production processes as well as diagnosis and simulation for current lithium-ion
batteries and future battery technologies.

In the following, the VQG concept, as depicted in Figure 8a, for the manufacturing of LIB cells is
put into the context of the framework described in Section 3.2. The overarching goal is to evaluate the
quality of the intermediate products based on their influence of the obtained IPF on the final product
properties (FPPs) of the LIB cell. Each VQG is defined by a target value (TV) as a desired IPF and
a tolerance range, which are used to predict a value as well as a potential range for the latter FPP.
With each new obtained IPF, the calculated range for the FPPs is decreased and the potential FPP value
is estimated. With this, an insight into the quality of the produced intermediate product (IP) is given
and the decision making in terms of QM is supported.

The physical world of the presented VQG approach focuses on the entire manufacturing chain,
as depicted in Figure 8, and represents a gate-to-gate approach. Offline and inline inspection are
performed along the entire chain to evaluate the perceived quality of each IP and tracked through a
traceability system to enable the seamless tracing of all allocated data to a specific product identification.
The data acquisition is enabled by a combination of manual and automatic data acquisition techniques.
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With the manual data acquisition, the data are acquired from offline sources, such as test beds,
which generate files that can be uploaded into a database on premise through a designed front-end.
The automated data acquisition acquires sensor and production machines’ data via standardized
communication protocols (e.g., OPC-UA, PROFINET) and transmit it to an industrial acquisition
system (SCADA) or directly to a database—e.g., via Node.js. The data format represents process
parameters, state variables and ambiance conditions (e.g., temperature, humidity) as time series
as well as presenting intermediate product features and final product properties as single values.
Through a tracking and tracing system, the operational data of each production or single product
are acquired. These data cover the five dimensions—when, where, who, what and why—to enable a
unique traceability of all intermediate and final products along the manufacturing chain. The first two
dimensions are acquired automatically by defining thresholds in the power load of each process to
detect the processing state. The missing three dimensions are acquired through a web interface at each
process step. To cover a possible information loss during the cutting of an electrode coil into single
sheet, a data matrix code (DMC) is imprinted onto the current collector and scanned during the cell
assembly process, allowing to track a single electrode inside a LIB cell.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 13 of 21 
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Within the cyber world, a data mining-based approach for the VQG is pursued. Here, feature selection
and modeling phases are deployed. First, the IPF and FPP data are preprocessed and cleansed. Data sets
with a high amount of missing values are removed. The data are then min-max-scaled between 0 and
1 and the data sets with constant values and a low variance are removed. Next, co-correlated IPFs are
removed. Then, the recursive feature elimination algorithm is used to choose 15 IPFs with the highest
influence on selected FPPs. This data set is then put into relation by computing a quantitative relation
based on Lasso-Lars regression, Random Forest and ANN models. To predict the future FPP values based
on the quality gate with target values and tolerances the ANN model is used.

The model for the VQG is deployed in Python by accessing the relevant database of the IPF
and FPP and can automatically be executed or on demand by implementing the script into a docker.
Whenever an IPF is measured and the acquired data set is uploaded, the VQG model calculates the
target FPP and its uncertainty. This process is depicted in Figure 8b [45].

The data-driven VQG approach provides decision support for the process expert and the
production manager. Possible derived suggestions can be a readjustment of the next processing steps
(new TV and tolerances for IPFs) in order to meet the requirement for the FPPs or not to continue the
processing of the current IP in order to save energy and costs. Hereby, an early detection of possible
faults is enabled to improve future process control. The decision support can be visualized on a mobile
device at each processing step as well as in a production control dashboard.
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5.2. Case Study II: VQG in Aluminum Die Casting

Casting processes are very complex in nature and are characterized by a high variability and
non-linearity, phase conversions and interactions between process parameters and their environment.
Due to these characteristics as well as missing direct feedback for the worker on the current casting
performance, i.e., time delay of several minutes between casting and quality inspection, a data-driven
VQG for active decision-support can serve as a viable approach. Several improvements and insights can
be obtained throughout the VQG concept, such as need-based work instructions, less non-value adding
activities, reduced manual inspection efforts (e.g., confident likelihood of no failure) and transparency
towards stable process settings, critical state variables as well as cause–effect relationships.

In the following, a VQG concept for the aluminum die casting of automotive components is
depicted. The VQG targets data-driven decision support for stable process settings. Aluminum die
casting can be divided into hot and cold areas. Cold areas encompass the machining of the casted
parts, quality inspections (e.g., X-ray inspection and crack test) as well as part assembly. The casting
part quality is to the greatest extent determined within the hot areas, such as melting, casting and heat
treatment. Hence, the physical world of the presented VQG focuses on single process step casting,
which encompasses the following substeps: A crucible with molten aluminum is positioned at the
casting line. Using a robot-guided ladle, the molten aluminum is poured from the crucible, transferred to
one of the casting pitches and poured in the mold. Inside the actively cooled mold, the aluminum
solidifies until the raw component can be removed automatically by a robot. The part is passed into a
cooling basin, followed by the separation of a sprue and riser system and, finally, a non-destructive
visual and X-ray quality inspection is conducted. Due to the components safety requirements, a full
inspection of each part is pursued, delivering an extensively labeled training data set.

As data types within data acquisition process parameters (e.g., hardening time), state variables
(e.g., mold temperature) as well as the final product properties, binary classification in good parts
(OK) and defects (NOK) is considered. The measurement of process parameters and state variables
is part-specific and carried out at discrete times (e.g., mold temperature at casting start). In total,
the modeling comprises 23 independent features and a binary target variable. For tracking and
tracing, a part-specific unique identifier is created and its data protocol is updated at the master PLC
throughout the process chain from crucible placement until cooling. Before cooling, a DMC is printed
on the casted part containing the unique identifier. The code can be read at all downstream processes
(e.g., X-ray inspection), which enables the fusion of process data with quality data. The two data
sources, PLC and X-ray inspection station, are accessed via OPC-UA and data management is carried
out on-premise within an industrial cloud solution.

Within the cyber world, a hybrid approach in terms of data mining (i.e., class association
rules mining) and visual analytics is pursued. The acquired raw data require some preprocessing
steps. Most importantly, discretization and balancing—e.g., random under-sampling, are performed.
For class association rule mining, the a-priori algorithm of the R package is used in conjunction with
a fixed right-hand side (i.e., binary product quality). Depending on the defined model parameters,
e.g., minimum threshold for confidence and support, shallow or more complex rules are extracted.
These rules are further analyzed through a graph-based visual analytics approach—see Figure 9a.
The plot reveals 800 rules that can be allocated to three clusters: the top left cluster represents
stable process parameters; the bottom right encompasses process parameters with a higher error
induction, and lastly one cluster covers parameters with ambiguous allocations to the distinct ones.
Additionally, the plot characteristics, such as the hue—i.e., the darker the color, the higher the lift value
of a rule—and positioning—e.g., close position to a class highlights strong dependency—support the
analyst in interpretation.
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Figure 9. VQG build through a hybrid data mining and visual analytics approach for casting of
aluminum components: (a) graph-based visualization of class association rules plotted with the
R-extension arulesViz; (b) interactive sensitivity analysis of features on the expected defects (NOK)
ratio within Qlik Sense Desktop; (c) expected cumulative effect on NOK ratio reduction through several
identified overlaying measures.

The VQG delivers operational and tactical decision support on measures for stable process
parameters and state variables on a continuous range, e.g., hardening time, less than the specific
value of the threshold. These measures deviate from the identified set of most influential rules and
can be interactively analyzed within a business intelligence tool (e.g., Qlik), as shown in Figure 9b,
for the feature hardening time. These tools allow the analyst to examine the influence and sensitivity
of parameters on the NOK ratio as well as cumulative effects through overlaying filters. Figure 9c
shows the effect on the NOK ratio (orange line) caused by cumulative measures. Within this use
case based on the ten most influential measures, a significant reduction in the NOK ratio is indicated.
However, only a small share of the whole data set is manufactured under the identified conditions yet
(blue bars). The identified measures need to be validated and can serve as key variables for an online
process monitoring and control.

5.3. Case Study III: VQG in Printed Circuit Board Production

This case study covers the printed circuit board (PCB) assembly in electronic production.
Observed defects are often a combination of effects from several processes. To improve the overall
quality and reduce scrap and rework, it is necessary to consider the complete process chain instead of
single and isolated processes. Therefore, it is important to understand dynamics and interdependencies
within the manufacturing system. To derive proper QM strategies, knowledge about the propagation
and the detection of IPF changes along the process chain is essential [26,27].

Within this case study, different intermediate product states based on IPF are defined.
Moreover, by using machine learning algorithms, intermediate product states with similar IPF
are assigned to product classes. By visualizing the propagation of these classes through the complete
manufacturing system, the process and product quality transparency can be improved. In addition,
the concept is supposed to allow the analysis of interactions and the product state propagation within
the manufacturing system.

The physical world of the following case study focusses on the printed circuit board (PCB)
assembly in electronic production. The PCB production line adopted for this case study focusses on
surface-mounted technology (SMT). Here, the individual components are placed on the surface of the
PCB and soldered conductively. During the printing process, soldering paste is dispersed onto the
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surface of the PCB. This is followed by the solder paste inspection (SPI). To ensure a reliable connection
of the components, a defined amount of solder paste is needed and variations in the solder paste
volume have to be minimized. The products are then inserted into the pick and place (P&P) machine.
The P&P machine places the individual components on the liquid solder in several sequential steps.
After placing all components on the board, the PCB pass through a reflow oven in which the solder is
melted and the connection pins are firmly soldered to the PCB. The automated optical inspection (AOI)
checks the PCB after the reflow oven as a final examination at the end of line. All PCBs are checked
100% (full inspection and non-destructive) at the two considered physical inspection stations, SPI and
AOI, and deliver the underlying data basis.

Within data acquisition, data types such as integer and float are measured. These are, in particular,
values from the inspection process such as solder height or angle of a component on the PCB.
Moreover, intermediate product properties results are considered at each inspection station in terms
of binary classification in good parts (OK) and defects (NOK). The inspection data are accessed by a
MES that is connected to the machines via different protocols such as UPC-UA or MQTT. The data
are managed in a structured database within a cloud solution. The tracking and tracing is based on a
unique barcode that is assigned to each PCB. Moreover, a DMC is lasered into the PCB surface for
identification purposes. All data are directly assigned to the barcode, which enables a clear assignment
of data to the respective product.

Within the cyber world, a data-driven visual analytics approach is chosen using unsupervised
machine learning, which is proposed in Figure 10.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 16 of 21 
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Figure 10. Framework for data-based analysis of product state propagation through the eyes of visual
analytics (adopted from [49]).

To analyze the propagation of different products along the manufacturing process chain, IPFs are
clustered to define intermediate product classes (IPCs). The approach draws on clustering methods that
need less parameterization effort and supports the resulting models’ interplay with visualizations for
model analysis and knowledge building. Here, in particular, one promising approach is density-based
clustering. This type of clustering separates areas with a high density of data points from areas low
in density. In the next step, areas with high density are assigned to a cluster, whereas areas with
low density are excluded as so-called noise. In order to be able to make a clear distinction between
the two categories, a threshold for the minimum density within a cluster has to be defined [56,57].
The most common density-based algorithm is Density-Based Spatial Clustering of Applications with
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Noise (DBSCAN) which is also the underlying algorithm applied in this case study. The inspection
results of SPI and AOI are treated as two different observations. Hence, the observation specific data
are clustered separately. To build an appropriate clustering model, an iterative parameter refinement
is performed.

This approach delivers operational and tactical decision support by describing the propagation
and analyzing interdependencies of the IPC within the manufacturing process chain of PCB assembly.
Therefore, it is important to visualize existing IPC flows within the system. To gain even more insight
into the characteristics of IPCs within electronic manufacturing process chains, the propagation from
the inspection stations SPI to AOI is exemplarily shown by a Sankey diagram in Figure 11.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 17 of 21 
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Figure 11. Resulting Sankey diagram exemplarily showing the propagation of product state classes
from solder paste inspection (SPI) to automated optical inspection (AOI).

The developed framework offers a structured approach to analyze the propagation of IPCs
along the manufacturing process chain. Based on this, the behavior of different products within a
manufacturing system can be tracked and specific control strategies can be derived. The approach is
iterative with multiple visualizations in order to achieve valid model parameters.

6. Conclusions

The results of this paper show a guided framework for the design and implementation of VQGs to
improve the quality in the manufacturing system while maintaining high transparency regarding the
product and process quality with a low cost at the same time. Within the framework, the individual
characteristics of the VQG are assigned to the four levels of the CPPS. Moreover, different possible
functions are linked to each characteristic. To ensure accessibility and applicability and to support the
design and implementation of VQGs, the framework is based on a morphological box.

In order to illustrate the design and implementation options, three different case studies were
introduced in this paper to discuss the implementation and use of VQGs. Figure 12 gives an overview
of different VQG specifications based on case studies I to III, discussed in Section 5. The different case
studies are characterized by their specification for the different levels of the CPPS.
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The case studies discussed in this paper clearly show that the developed framework can be
used to implement VQGs in numerous ways. Moreover, all three examples show applications in
different industrial sectors with different hardware and software components (e.g., data format and
data sources). Furthermore, with the help of the presented framework, physical inspection equipment
can be substituted resulting in reduced quality costs and the transparency of product quality in the
manufacturing system can be increased by acquiring and modeling respective data within a CPPS.
With focus on the implementation of VQGs, the logical structure of the morphological box provides
a structured decision support to select from different possible functions and combines those to an
individual VQG solution. Moreover, an extension of the morphological box, e.g., by new technologies,
is supported and thus a high flexibility is given.

7. Outlook

Further research directions will result in a detailed assessment of VQGs within manufacturing
systems by an economic and ecological quantification of their potential to minimize the total
cost of quality by optimizing the trade-off between error cost and cost of error prevention.
Moreover, further research is needed to define product-specific inspection strategies that are performed
flexibly within the manufacturing system based on VQGs. An increased amount of data in the
manufacturing environment leverage the application fields of VQG. Therefore, new data-based
prediction models and pipelines need to be developed to increase the accuracy and applicability
of those technologies in the manufacturing context to foster the transformation towards future
production systems. Especially in this context, further research needs to focus on generalizing
(e.g., quality prediction) models to deploy developed solutions across different industries. Especially in
this context, the potential and challenges of, e.g., transfer learning in the manufacturing context,
must be evaluated. Since VQGs are based on diverse data sources, the trustworthiness of these data
is of high importance, especially in the field of quality control. Here, further research to ensure the
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trustworthiness of manufacturing data and to leverage the field of data security especially within the
manufacturing environment can be addressed.
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