On the Performance and Recyclability of a Green Composite Based on AESO Resin
Abstract
:1. Introduction
2. Experimentation
2.1. Materials and Methods
2.2. Testing Procedures
2.2.1. Chemical Characterization
2.2.2. Physical Characterization
2.2.3. Mechanical Characterization
2.3. Recyclability
3. Results and Discussion
3.1. Chemical Characterization
3.2. Physical Characterization
3.3. Mechanical Characterization
3.4. Recyclability
3.5. Virgin and Second-Life Composites
3.5.1. Physical Characterization
3.5.2. Mechanical Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bailleul, J.; Gillet, A.; Mantaux, O. Recovery and reuse of discontinuous carbon fibres by solvolysis: Realignment and properties of remanufactured materials. Compos. Sci. Technol. J. 2017, 139, 99–108. [Google Scholar]
- Hughes, M. Applications. In Green Composites: Polymer Composites and the Environment; Baillie, C., Ed.; Woodhead: Cambridge, UK, 2004; pp. 233–251. [Google Scholar]
- Fleischer, J.; Teti, R.; Lanza, G.; Mativenga, P.; Möhring, H.; Caggiano, A. Composite materials parts manufacturing. CIRP Ann. 2018, 67, 603–626. [Google Scholar] [CrossRef]
- Hodzic, A. Re-use, recycling and degradation of composites. In Green Composites: Polymer Composites and the Environment; Baillie, C., Ed.; Woodhead: Cambridge, UK, 2004; pp. 252–271. [Google Scholar]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef] [Green Version]
- Tchana Toffe, G.; Oluwarotimi Ismail, S.; Montalvão, D.; Knight, J.; Ren, G. A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites. J. Manuf. Mater. Process. 2019, 3, 92. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, L.C. Natural Fibers: The New Fashion of Modern Plastics Products. In INTROPica; Institute of Tropical Forestry and Forest Products: Serdang, Malaysia, 2008; Volume 2, pp. 6–7. [Google Scholar]
- Karuppannan Gopalraj, S.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 433. [Google Scholar] [CrossRef] [Green Version]
- Perry, N.; Mantaux, O.; Leray, D.; Lorriot, T. Composite recycling: Design for environment approach requirements. In Proceedings of the IDMME-Virtual Concept 2010, Bordeaux, France, 20–22 October 2010. GEDI P69. [Google Scholar]
- Rybicka, J.; Tiwari, A.; Leeke, G.A. Technology readiness level assessment of composites recycling technologies. J. Clean. Prod. 2016, 112, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Howarth, J.; Mareddy, S.S.R.; Mativenga, P.T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. J. Clean. Prod. 2014, 81, 46–50. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Dandy, L.O.; Leeke, G.A. Degradation of a model epoxy resin by solvolysis routes. Polym. Degrad. Stab. J. 2015, 118, 96–103. [Google Scholar]
- Perry, N.; Bernard, A.; Laroche, F.; Pompidou, S. Improving design for recycling–Application to composites. CIRP Ann. 2012, 61, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Perry, N.; Pompidou, S.; Mantaux, O.; Gillet, A. Composite Fiber Recovery: Integration into a Design for Recycling Approach. In Technology and Manufacturing Process Selection; Springer: London, UK, 2014; pp. 281–296. [Google Scholar]
- Pompidou, S.; Princaud, M.; Perry, N.; Leray, D. Recycling of Carbon Fiber: Identification of Bases for a Synergy between Recyclers and Designers. In Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers Digital Collection, Nantes, France, 2–4 July 2012; pp. 551–560. [Google Scholar]
- Li, J.; Xu, P.L.; Zhu, Y.K.; Ding, J.P.; Xue, L.X.; Wang, Y.Z. A promising strategy for chemical recycling of carbon fiber/thermoset composites: Self-accelerating decomposition in a mild oxidative system. Green Chem. 2012, 14, 3260–3263. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Ge, H.; Yang, Y.; Wang, Y.; Zhang, C.; Li, J.; Deng, T.; Qin, Z.; Hou, X. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of carbon -nitrogen bound. ACS Sustain. Chem. Eng. 2015, 3, 3332–3337. [Google Scholar] [CrossRef]
- Liu, Y.; Farnsworth, M.; Tiwari, A. A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2017, 140, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.O. Assessing the role of green marketing in small and medium enterprises. Int. J. Sci. Res. Publ. 2019, 9, 693–699. [Google Scholar] [CrossRef]
- Mitra, B.C. Environment Friendly composite materials: Biocomposites and Green composites. Def. Sci. J. 2014, 64, 244–261. [Google Scholar] [CrossRef]
- Sharath Shekar, H.S.; Ramachandra, M. Green Composites: A Review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Mofidi, A.; Abila, J.; Ng, J.T.M. Novel Advanced Composite Bamboo Structural Members with Bio-Based and Synthetic Matrices for Sustainable Construction. Sustainability 2020, 12, 2485. [Google Scholar] [CrossRef] [Green Version]
- Plackett, D.; Vázquez, A. Natural polymer sources. Green Composites-Polymer Composites and the Environment. In Green Composites: Polymer Composites and the Environment; Baillie, C., Ed.; Woodhead: Cambridge, UK, 2004; pp. 123–153. [Google Scholar]
- Liu, W.; Fei, M.-E.; Ban, Y.; Jia, A.; Qiu, R.; Qiu, J. Concurrent improvements in crosslinking degree and interfacial adhesion of hemp fibers reinforced acrylated epoxidized soybean oil composites. Compos. Sci. Technol. 2018, 160, 60–68. [Google Scholar] [CrossRef]
- Liu, W.; Fei, M.-E.; Ban, Y.; Jia, A.; Qiu, R. Preparation and Evaluation of Green Composites from Microcrystalline Cellulose and a Soybean-Oil Derivative. Polymers 2017, 9, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.S.; Erhan, S.Z.; Akin, D.E.; Barton, F.E. “Green” composites from renewable resources: Preparation of epoxidized soybean oil and flax fiber composites. J. Agric. Food Chem. 2006, 54, 2134–2137. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.D.A.; Chawla, N.; Filho, R.D.D.T. Tensile behaviour of high performance natural (sisal) fibers. Compos. Sci. Technol. 2008, 68, 3438–3443. [Google Scholar] [CrossRef]
- Dey, P.; Ray, S. An Overview of the Recent Trends in Manufacturing of Green Composites—Considerations and Challenges. Mater. Today Proc. 2018, 5, 19783–19789. [Google Scholar] [CrossRef]
- Cestari, S.P.; Freitas, D.F.S.; Rodrigues, D.C.; Mendes, L.C. Recycling processes and issues in natural fiber-reinforced polymer composites. In Green Composites for Automotive Applications; Elsevier Ltd.: London, UK, 2019; pp. 289–297. [Google Scholar]
- Ramzy, A. Recycling Aspects of Natural Fiber Reinforced Polypropylene Composites. Ph.D. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2018. [Google Scholar]
- Cicala, G.; Tosto, C.; Latteri, A.; La Rosa, A.D.; Blanco, I.; Elsabbagh, A.; Russo, P.; Ziegmann, G. Green Composites Based on Blends of Polypropylene with Liquid Wood Reinforced with Hemp Fibers: Thermomechanical Properties and the Effect of Recycling Cycles. Materials 2017, 10, 998. [Google Scholar] [CrossRef] [Green Version]
- Deepa, B.; Pothan, L.A.; Mavelil-Sam, R.; Thomas, S. Structure, properties and recyclability of natural fibre reinforced polymer composites. In Recent Developments in Polymer Recycling; Fainleib, A., Grigoryeva, O., Eds.; Transworld Research Network: Kerala, India, 2011; pp. 101–120. [Google Scholar]
- Weetman, C.A. Circular Economy Handbook for Business and Supply Chains: Repair, Remake, Redesign, Rethink; Kogan Page Publishers: London, UK, 2016; p. 18. [Google Scholar]
- Lee, S.M. Reference Book for Composites Technology; Technomic Publishing Company: Lancaster, PA, USA, 1989. [Google Scholar]
- Maya, M.G.; Soney, C.G.; Thomasukutty, J.; Sreekala, M.S.; Sabu, T. Mechanical properties of short sisal fibre reinforced phenol formaldehyde eco-friendly composites. Polym. Renew. Resour. 2017, 8, 71–78. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical-and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
Family | Solvent | BP (°C) | FP (°C) | Safety Score | Health Score | Env. Score | Ranking after Discussion |
---|---|---|---|---|---|---|---|
Alcohol | Ethanol | 78 | 13 | 4 | 3 | 3 | Recommended |
1-Butanol | 118 | 29 | 3 | 4 | 3 | Recommended | |
Ketones | Acetone | 56 | −18 | 5 | 3 | 5 | Recommended |
Ester | Methyl Acetate | 57 | −10 | 5 | 3 | 5 | Problematic |
Ethyl Acetate | 77 | −4 | 5 | 3 | 3 | Recommended | |
Halogenated | Dichloromethane | 40 | − | 1 | 7 | 7 | Hazardous |
Chloroform | 61 | − | 2 | 7 | 5 | Highly hazardous |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seabra, C.P.; Sousa, A.C.; Bragança, I.M.F.; Silva, C.M.A.; Robalo, M.P.; Loja, M.A.R.; Martins, P.A.F. On the Performance and Recyclability of a Green Composite Based on AESO Resin. J. Manuf. Mater. Process. 2020, 4, 65. https://doi.org/10.3390/jmmp4030065
Seabra CP, Sousa AC, Bragança IMF, Silva CMA, Robalo MP, Loja MAR, Martins PAF. On the Performance and Recyclability of a Green Composite Based on AESO Resin. Journal of Manufacturing and Materials Processing. 2020; 4(3):65. https://doi.org/10.3390/jmmp4030065
Chicago/Turabian StyleSeabra, Cláudio P., Ana Catarina Sousa, Ivo M. F. Bragança, Carlos M. A. Silva, M. Paula Robalo, M. Amélia R. Loja, and Paulo A. F. Martins. 2020. "On the Performance and Recyclability of a Green Composite Based on AESO Resin" Journal of Manufacturing and Materials Processing 4, no. 3: 65. https://doi.org/10.3390/jmmp4030065
APA StyleSeabra, C. P., Sousa, A. C., Bragança, I. M. F., Silva, C. M. A., Robalo, M. P., Loja, M. A. R., & Martins, P. A. F. (2020). On the Performance and Recyclability of a Green Composite Based on AESO Resin. Journal of Manufacturing and Materials Processing, 4(3), 65. https://doi.org/10.3390/jmmp4030065