
Manufacturing and
Materials Processing

Journal of

Article

Automated Unsupervised 3D Tool-Path Generation
Using Stacked 2D Image Processing Technique

Tadele Belay Tuli 1,* and Andrea Cesarini 2

1 Department of Electromechanical Engineering, Addis Ababa Science and Technology University, P.O. Box,
Addis Ababa 16417, Ethiopia

2 Andrea Cesarini, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via B. Rossi, 1,
I-50019 Sesto Fiorentino, FI, Italy; andrea.cesarini@fi.infn.it

* Correspondence: tadele.belay@aastu.edu.et

Received: 30 June 2019; Accepted: 5 September 2019; Published: 1 October 2019
����������
�������

Abstract: Tool-path, feed-rate, and depth-of-cut of a tool determine the machining time, tool wear,
power consumption, and realization costs. Before the commissioning and production, a preliminary
phase of failure-mode identification and effect analysis allows for selecting the optimal machining
parameters for cutting, which, in turn, reduces machinery faults, production errors and, ultimately,
decreases costs. For this, scalable high-precision path generation algorithms requiring a low amount of
computation might be advisable. The present work provides such a simplified scalable computationally
low-intensive technique for tool-path generation. From a three dimensional (3D) digital model,
the presented algorithm extracts multiple two dimensional (2D) layers. Depending on the required
resolution, each layer is converted to a spatial image, and an algebraic analytic closed-form solution
provides a geometrical tool path in Cartesian coordinates. The produced tool paths are stacked after
processing all object layers. Finally, the generated tool path is translated into a machine code using
a G-code generator algorithm. The introduced technique was implemented and simulated using
MATLAB® pseudocode with a G-code interpreter and a simulator. The results showed that the
proposed technique produced an automated unsupervised reliable tool-path-generator algorithm and
reduced tool wear and costs, by allowing the selection of the tool depth-of-cut as an input.

Keywords: tool path; 3D modeling; CAD/CAM; image processing; G-code

1. Introduction

Computer numerical controlled (CNC) machinery opened a window, decades ago, for automating
the machining system. The primary function of the CNC machine tool is to execute a sequence of
multi-axis motions following part geometry [1]. At present, digital manufacturing is transforming
the method of generating and simulating the tool-path movement of automated and computerized
machinery tools. Particularly, computer-aided design (CAD) and computer-aided manufacturing
(CAM) tools are commonly used to simulate and visualize what the real-time operation would look
like. Safe, optimal, and accurate machining processes demand for automated, robust but low-intensity
computation tool-path planning, to lower machinery vibration, tool wear or breakage, and thermal
deformation of the machine tools [2]. In this context, much work is being done in order to allow
the machinery tools to perform numerous complex and constrained tasks [3–6] in the optimization
of cutting-tool parameters, such as feed rate, cutting speed, depth-of-cut, and feeding distance [7,8],
which are provided as input. On the other hand, image processing techniques are mainly used for
recognition, detection, and tracking objects [9]. In CAM systems, tool-path generation is mainly
implemented either in design and modeling tools (e.g., Solidworks®) or tool-path generation tools

J. Manuf. Mater. Process. 2019, 3, 84; doi:10.3390/jmmp3040084 www.mdpi.com/journal/jmmp

http://www.mdpi.com/journal/jmmp
http://www.mdpi.com
https://orcid.org/0000-0002-6769-0646
https://orcid.org/0000-0002-8611-8610
http://dx.doi.org/10.3390/jmmp3040084
http://www.mdpi.com/journal/jmmp
https://www.mdpi.com/2504-4494/3/4/84?type=check_update&version=2

J. Manuf. Mater. Process. 2019, 3, 84 2 of 14

(e.g., Mastercam®); where, unfortunately, time is wasted while transcoding file formats. Moreover,
a STEP based tool-generation approach was implemented in [10], to minimize the file exchange time.

The present work was aimed to present a reliable, automated, and unsupervised technique to
generate tool paths for numerically controlled machining tools, by slicing 3D models into 2D layers.
Each layer was discretized and converted to a binarized image. In each 2D layer, a start point was
selected, a tool path was generated in the Cartesian coordinates between the image contiguous pixels
and finally, it was translated into a machine language like G-code.

2. State of the Art

Recently, realistic modeling, together with the optimization of the production process, were paired
together in order to analyze the process parameters for a minimum cycle time [5,10]. This enables
numerically controlled devices—such as CNC machine tools, 3D printers, robots, 3D scanners, and
coordinate sampling machines—to successfully perform their desired task [11–14]. In [15], contour
parallel tool-path optimization was presented for the milling operation of 2D pocket regions. In this
work, the pocket boundary of an object was converted into a binary image to extract the tool-path
information. Multiple cutters and hybrid tool-path patterns were considered in [2], for complex islands
and curvilinear pockets, by introducing the machining time as a constraint. Moreover, a high accuracy
could be obtained by using continuous-motion data and a small depth-of-cut. In this context, time
and material waste is a crucial factor to be considered. Reference [16] presented an automatic G-code
generating approach for the milling process, based on the MATLAB environment. In [17], a new
geometry was represented for the CAD/CAM for a highly parallel scalable environment. In this method,
parallel computing was considered to solve big computational problems that are usually related to
the CAM process. In general, computational time, tool path-generation cost, and virtual simulation
environments are barriers between researchers and small companies. Automated machine tools require
a concept for process realization of manufacturing processes. According to [18,19], models such as
STL could simplify path-generation difficulty at the early stages. Similarly, feature-detection using
a classical approach from a binary image is also well-investigated [20]. However, there is a lack of
a common and generalized approach for automatic generation of a tool-path based on any 3D model,
without any human supervision. Existing solutions either are coupled to CAD tools and are expensive
or are not so easy to be applied. Therefore, adoption of a simple, computationally low-intensity but
accurate path-generation approach is advisable. Notably, for small companies that need to verify what
their product would look like, before the actual realization.

3. Materials and Methods

CNC machinery tools operation processes are usually defined using CAD/CAM tools. In this phase,
product design, and manufacturing processes were defined by following the functional requirements.
In this section, we present the materials and methods utilized to realize the concept of design for the
manufacturing processes. Figure 1 shows the concept of a tool-path generation approach based on a 3D
model design. The approach considered a 3D CAD model of the final product to generate a tool-path
using a predefined billet size. Depth-of-cut, cutting speed, cutting length, and number of passes were
the parameters considered.

According to Figure 1, we considered two stages for the design and workflow of this research.
Geometric modeling deals with product design and functional features identification. Whereas
analytical modeling is the analytical and logical processing of the CAD model using analytical and
logical approaches.

J. Manuf. Mater. Process. 2019, 3, 84 3 of 14

J. Manuf. Mater. Process. 2019, 3, 84 3 of 14

Figure 1. Diagram of research design and workflow. In this workflow, a geometric model was
imported into a simulation environment and processed into numerical values.

According to Figure 1, we considered two stages for the design and workflow of this research.
Geometric modeling deals with product design and functional features identification. Whereas
analytical modeling is the analytical and logical processing of the CAD model using analytical and
logical approaches.

3.1. Geometric Modeling and Parameter Identification

CAD is the use of computer systems to assist the creation, modification, analysis, and
optimization of a geometric design [16]. Various CAD software packages used data formats such as
interchangeable graphics exchange (IGES), standard for the exchange of product model data (STEP),
stereolithography (STL), drawing exchange format (DXF), and object file format (OFF). These data
exchanging formats convey geometric data in different structures as well as varying in memory size,
vertices, and facet numbers. We compared how these parameters vary using a constant cube of 10
mm size (see Figure 2 and Table 1). In Table 1, the STL file format is simple for computation.

Figure 2. A cube model (10 × 10 × 10 mm3).

Table 1. Comparison of different CAD file formats

Parameter STEP STL IGES
Memory (Bytes) 16.7 K 684 21.3 K

3D Yes Yes Yes
Vertices 18 36 18

Faces 6 12 6

Figure 1. Diagram of research design and workflow. In this workflow, a geometric model was imported
into a simulation environment and processed into numerical values.

3.1. Geometric Modeling and Parameter Identification

CAD is the use of computer systems to assist the creation, modification, analysis, and optimization
of a geometric design [16]. Various CAD software packages used data formats such as interchangeable
graphics exchange (IGES), standard for the exchange of product model data (STEP), stereolithography
(STL), drawing exchange format (DXF), and object file format (OFF). These data exchanging formats
convey geometric data in different structures as well as varying in memory size, vertices, and facet
numbers. We compared how these parameters vary using a constant cube of 10 mm size (see Figure 2
and Table 1). In Table 1, the STL file format is simple for computation.

J. Manuf. Mater. Process. 2019, 3, 84 3 of 14

Figure 1. Diagram of research design and workflow. In this workflow, a geometric model was
imported into a simulation environment and processed into numerical values.

According to Figure 1, we considered two stages for the design and workflow of this research.
Geometric modeling deals with product design and functional features identification. Whereas
analytical modeling is the analytical and logical processing of the CAD model using analytical and
logical approaches.

3.1. Geometric Modeling and Parameter Identification

CAD is the use of computer systems to assist the creation, modification, analysis, and
optimization of a geometric design [16]. Various CAD software packages used data formats such as
interchangeable graphics exchange (IGES), standard for the exchange of product model data (STEP),
stereolithography (STL), drawing exchange format (DXF), and object file format (OFF). These data
exchanging formats convey geometric data in different structures as well as varying in memory size,
vertices, and facet numbers. We compared how these parameters vary using a constant cube of 10
mm size (see Figure 2 and Table 1). In Table 1, the STL file format is simple for computation.

Figure 2. A cube model (10 × 10 × 10 mm3).

Table 1. Comparison of different CAD file formats

Parameter STEP STL IGES
Memory (Bytes) 16.7 K 684 21.3 K

3D Yes Yes Yes
Vertices 18 36 18

Faces 6 12 6

Figure 2. A cube model (10 × 10 × 10 mm3).

Table 1. Comparison of different CAD file formats

Parameter STEP STL IGES

Memory (Bytes) 16.7 K 684 21.3 K
3D Yes Yes Yes

Vertices 18 36 18
Faces 6 12 6

Most CAD modeling software supports standard tessellation language (STL). It is a representation
of triangulation in the 3D surface, where three vertices describe each facet (see Figure 3). STL file format
supports only surface features like colors, textures, scales, and units. The file formats are arranged
as a combination of facets, vertices, and edges. Generating the tool path based on STL file format is

J. Manuf. Mater. Process. 2019, 3, 84 4 of 14

initially challenging as vertices are located in a disordered way and demand further processing in
order to sort and rearrange—as it is illustrated in Figure 3 (for a cube has 36 vertices and 12 facets).

Vertices =

0 0 10
0 0 0
...

...
...

10 10 10
0 10 10

, Facets =

1 2 3
4 5 6
...

...
...

31 32 33
34 35 36

J. Manuf. Mater. Process. 2019, 3, 84 4 of 14

Most CAD modeling software supports standard tessellation language (STL). It is a
representation of triangulation in the 3D surface, where three vertices describe each facet (see Figure
3). STL file format supports only surface features like colors, textures, scales, and units. The file
formats are arranged as a combination of facets, vertices, and edges. Generating the tool path based
on STL file format is initially challenging as vertices are located in a disordered way and demand
further processing in order to sort and rearrange—as it is illustrated in Figure 3 (for a cube has 36
vertices and 12 facets).

Figure 3. A cube with vertices and facets indices. A triangulation of vertices is represented using
edges, and these combinations can be given in matrices form.

Vertices = ⎣⎢⎢⎢
⎡ 0 0 100 0 0⋮ ⋮ ⋮10 10 100 10 10⎦⎥⎥⎥

⎤
, Facets = ⎣⎢⎢⎢

⎡ 1 2 34 5 6⋮ ⋮ ⋮31 32 3334 35 36⎦⎥⎥⎥
⎤

Geometric modeling of 3D modeling is performed using CAD tools and the file is imported to
MATLAB® software by using STL file reader. The imported model was re-sampled and discretized
into (n, m, k) dimension (see Figure 4).

(a) (b) (c)

Figure 4. (a) CAD model in STL file. (b) 3D model in MATLAB environment. (c) The discretization
approach.

3.2. Model Segmentation and Reconstruction

Essential features such as three-dimensional sizes, segmentation size, and model logics are
identified to create a slicing algorithm [21,22] which recursively slice a model into several pieces. This
algorithm is used to map the sliced layer with cutting depth. The slicer is used to create a two-
dimensional layer model. If multiple tool pass is desired, the slicer will be configured accordingly.
Therefore, a generic approach is implemented to segment the model into finite segments. In this
process, each segment is localized by their respective position and orientation as point clouds. A line
segmentation that is given by Equation (1) takes the maximum and minimum values from the model.
We applied three times to generate point clouds for all orientations (e.g., 3D space). 𝑆 = 𝑆 + 𝑆 − 𝑆𝑛 − 1 (1)

where N and n are the current point and number of segmentations, respectively. Here, ‘S’ represents
x, y, and z. After the segmentation of an object, we determined if the vertices of the segmentation lie

Figure 3. A cube with vertices and facets indices. A triangulation of vertices is represented using edges,
and these combinations can be given in matrices form.

Geometric modeling of 3D modeling is performed using CAD tools and the file is imported to
MATLAB® software by using STL file reader. The imported model was re-sampled and discretized
into (n, m, k) dimension (see Figure 4).

J. Manuf. Mater. Process. 2019, 3, 84 4 of 14

Most CAD modeling software supports standard tessellation language (STL). It is a
representation of triangulation in the 3D surface, where three vertices describe each facet (see Figure
3). STL file format supports only surface features like colors, textures, scales, and units. The file
formats are arranged as a combination of facets, vertices, and edges. Generating the tool path based
on STL file format is initially challenging as vertices are located in a disordered way and demand
further processing in order to sort and rearrange—as it is illustrated in Figure 3 (for a cube has 36
vertices and 12 facets).

Figure 3. A cube with vertices and facets indices. A triangulation of vertices is represented using
edges, and these combinations can be given in matrices form.

Vertices = ⎣⎢⎢⎢
⎡ 0 0 100 0 0⋮ ⋮ ⋮10 10 100 10 10⎦⎥⎥⎥

⎤
, Facets = ⎣⎢⎢⎢

⎡ 1 2 34 5 6⋮ ⋮ ⋮31 32 3334 35 36⎦⎥⎥⎥
⎤

Geometric modeling of 3D modeling is performed using CAD tools and the file is imported to
MATLAB® software by using STL file reader. The imported model was re-sampled and discretized
into (n, m, k) dimension (see Figure 4).

(a) (b) (c)

Figure 4. (a) CAD model in STL file. (b) 3D model in MATLAB environment. (c) The discretization
approach.

3.2. Model Segmentation and Reconstruction

Essential features such as three-dimensional sizes, segmentation size, and model logics are
identified to create a slicing algorithm [21,22] which recursively slice a model into several pieces. This
algorithm is used to map the sliced layer with cutting depth. The slicer is used to create a two-
dimensional layer model. If multiple tool pass is desired, the slicer will be configured accordingly.
Therefore, a generic approach is implemented to segment the model into finite segments. In this
process, each segment is localized by their respective position and orientation as point clouds. A line
segmentation that is given by Equation (1) takes the maximum and minimum values from the model.
We applied three times to generate point clouds for all orientations (e.g., 3D space). 𝑆 = 𝑆 + 𝑆 − 𝑆𝑛 − 1 (1)

where N and n are the current point and number of segmentations, respectively. Here, ‘S’ represents
x, y, and z. After the segmentation of an object, we determined if the vertices of the segmentation lie

Figure 4. (a) CAD model in STL file. (b) 3D model in MATLAB environment. (c) The
discretization approach.

3.2. Model Segmentation and Reconstruction

Essential features such as three-dimensional sizes, segmentation size, and model logics are identified
to create a slicing algorithm [21,22] which recursively slice a model into several pieces. This algorithm is
used to map the sliced layer with cutting depth. The slicer is used to create a two-dimensional layer
model. If multiple tool pass is desired, the slicer will be configured accordingly. Therefore, a generic
approach is implemented to segment the model into finite segments. In this process, each segment is
localized by their respective position and orientation as point clouds. A line segmentation that is given
by Equation (1) takes the maximum and minimum values from the model. We applied three times to
generate point clouds for all orientations (e.g., 3D space).

SN+1 = SN +
Sn − S1

n− 1
(1)

J. Manuf. Mater. Process. 2019, 3, 84 5 of 14

where N and n are the current point and number of segmentations, respectively. Here, ‘S’ represents x,
y, and z. After the segmentation of an object, we determined if the vertices of the segmentation lie
inside or outside a 3D model using binary logic. We created a container that has a specific position
and orientation and assigned a Boolean logic at each element. Figure 5 elaborates this approach.
In this figure, an original model (Figure 5a) contains enclosing grids. The spatial representation is
shown in Figure 5b. Moreover, Figure 5c,d displayed the output of the voxelized space. This stage is,
a reconstructed model after we performed the slicing and triangulation processes.

J. Manuf. Mater. Process. 2019, 3, 84 5 of 14

inside or outside a 3D model using binary logic. We created a container that has a specific position
and orientation and assigned a Boolean logic at each element. Figure 5 elaborates this approach. In
this figure, an original model (Figure 5a) contains enclosing grids. The spatial representation is shown
in Figure 5b. Moreover, Figure 5c,d displayed the output of the voxelized space. This stage is, a
reconstructed model after we performed the slicing and triangulation processes.

(a) (b)

(c) (d)

Figure 5. A model contained in a grid (a) 2D; (b) 3D; (c) 3D discretized and voxelized; (d) 2D projection
of (c).

In order to enclose the point into the center of the cube, we applied linear translation of the
coordinate points from both initial and endpoints to compress the outmost boundary of the model.
Equations (2) and (3) explain how such translation is used to shift the enclosing grid. 𝑥 = 𝑥 − 𝑥 − 𝑥2 (2) 𝑥 = 𝑥 + 𝑥 − 𝑥2 (3)

where xgi and xgf are the initial and final grid points that are shifted from the center of cube cells [23].
According to Algorithm 1, the voxel model is created by combining neighbor triangulations. It

works by checking if the neighbors lay inside or outside of the objects. If the neighbors are outside
the object, the algorithm continues by drawing a boundary which finally converges to the cube cells
(given in Figure 5d). By repeating the same procedure for the three directions, it creates three-
dimensional arrays. The pseudocode is implemented using a MATLAB script.

The geometric accuracy of Algorithm 1 is adjusted by selecting an appropriate segmentation
resolution. Increasing the sampling size will pull the cube into the center of the point. This makes the
model converge into an accurate dimension. However, computation becomes intensive for complex
objects. However, this can be significantly reduced by converting CAD models into two-dimensional
binary images. Taking advantage of a bitmap image file, it is possible to develop a simplified path
planner algorithm. Moreover, it neglects color information. In our case, the value of color is described
by 1 bit for black and white. This is the smallest possible color information that can be described by
the monochrome bitmap image file. In this case, pixels with 0 values are referred to as black, whereas
pixels with a value of 1 are white colors.

Algorithm 1: Pseudocode for voxelization as a binary logic
grid_data = zeros(rx,ry,rz);
P0 = Facet position
Nf = Array for normal facets
for nz = 1 : rz
 for ny = 1 : ry

Figure 5. A model contained in a grid (a) 2D; (b) 3D; (c) 3D discretized and voxelized; (d) 2D projection
of (c).

In order to enclose the point into the center of the cube, we applied linear translation of the
coordinate points from both initial and endpoints to compress the outmost boundary of the model.
Equations (2) and (3) explain how such translation is used to shift the enclosing grid.

xgi = xi −
xi+1 − xi

2
(2)

xg f = x f +
xi+1 − xi

2
(3)

where xgi and xgf are the initial and final grid points that are shifted from the center of cube cells [23].
According to Algorithm 1, the voxel model is created by combining neighbor triangulations.

It works by checking if the neighbors lay inside or outside of the objects. If the neighbors are outside the
object, the algorithm continues by drawing a boundary which finally converges to the cube cells (given
in Figure 5d). By repeating the same procedure for the three directions, it creates three-dimensional
arrays. The pseudocode is implemented using a MATLAB script.

The geometric accuracy of Algorithm 1 is adjusted by selecting an appropriate segmentation
resolution. Increasing the sampling size will pull the cube into the center of the point. This makes the
model converge into an accurate dimension. However, computation becomes intensive for complex
objects. However, this can be significantly reduced by converting CAD models into two-dimensional
binary images. Taking advantage of a bitmap image file, it is possible to develop a simplified path
planner algorithm. Moreover, it neglects color information. In our case, the value of color is described
by 1 bit for black and white. This is the smallest possible color information that can be described by the
monochrome bitmap image file. In this case, pixels with 0 values are referred to as black, whereas
pixels with a value of 1 are white colors.

J. Manuf. Mater. Process. 2019, 3, 84 6 of 14

Algorithm 1: Pseudocode for voxelization as a binary logic

grid_data = zeros(rx,ry,rz);
P0 = Facet position
Nf = Array for normal facets
for nz = 1 : rz

for ny = 1 : ry
for nx = 1 : rx

% Get the point
p = [xa(nx) ; ya(ny) ; za(nz)];
% Find the closest Facet
vertices_distance =

∑
(([P0(1,:)-p(1) ; P0(2,:)-p(2) ; P0(3,:)-p(3)])2);

[v,ind] = min(vertices_distance);
% Add Point if it is enclosed inside an object
data = dot(N_f(:,ind),p-P0(:,ind));
grid_data(nx,ny,nz) = (data>=0);% logical array size of NxMxK

end
end

end

3.3. Point Cloud Generation Using Image Processing Techniques

Clouds of points carry proper information regarding position and orientation in the space. It is
necessary to generate such points starting from a tessellated 3D model. Slicing a 3D model is applied to
generate an array matrix of vertices and normal directions which is further converted into binary 2D
images. Then, each binary scale image is provided of two-dimensional information which can be
interpreted using pixel data. Pixels and geometric dimensions are used to map and transform binary
image and 3D model. Figure 6 presents a conceptual functional diagram for mapping 3D model in
a stacked pile of 2D images.

J. Manuf. Mater. Process. 2019, 3, 84 6 of 14

 for nx = 1 : rx
 % Get the point
 p = [xa(nx) ; ya(ny) ; za(nz)];
 % Find the closest Facet
 vertices_distance = (([P0(1,:)-p(1) ; P0(2,:)-p(2) ; P0(3,:)-p(3)])2);
 [v,ind] = min(vertices_distance);
 % Add Point if it is enclosed inside an object
 data = dot(N_f(:,ind),p-P0(:,ind));
 grid_data(nx,ny,nz) = (data>=0);% logical array size of NxMxK
 end
 end
end

3.3. Point Cloud Generation Using Image Processing Techniques

Clouds of points carry proper information regarding position and orientation in the space. It is
necessary to generate such points starting from a tessellated 3D model. Slicing a 3D model is applied
to generate an array matrix of vertices and normal directions which is further converted into binary
2D images. Then, each binary scale image is provided of two-dimensional information which can be
interpreted using pixel data. Pixels and geometric dimensions are used to map and transform binary
image and 3D model. Figure 6 presents a conceptual functional diagram for mapping 3D model in a
stacked pile of 2D images.

Figure 6. Block diagram of CAD to BMP processing. The STL reader imports CAD model into the
MATLAB working space and extracts vertice, edge, and facet data. The image processing algorithm
function further processes CAD data and creates a BMP output.

Converting an STL file into a BMP image file implies the transformation of vectors of facets and
vertices of the part model into a scalar cloud of points. In the Figure 7, the process flow is shown. The
logic template helps to identify the region of the work which has to be removed and/or has to remain
during machining processes. The process of 2D discretization and image conversion is elaborated
using Figure 8.

Figure 7. Process flow for CAD model into point cloud processes.

Figure 6. Block diagram of CAD to BMP processing. The STL reader imports CAD model into the
MATLAB working space and extracts vertice, edge, and facet data. The image processing algorithm
function further processes CAD data and creates a BMP output.

Converting an STL file into a BMP image file implies the transformation of vectors of facets and
vertices of the part model into a scalar cloud of points. In the Figure 7, the process flow is shown.
The logic template helps to identify the region of the work which has to be removed and/or has
to remain during machining processes. The process of 2D discretization and image conversion is
elaborated using Figure 8.

Using Algorithm 1 and a concept presented in Figure 7, the output of segmentation is shown in
Figure 8.

Hence, converting the STL model into a BMP image file, on the other hand, is equivalent to
converting vectors of facets and vertices of the part model into a scalar cloud of points and creates
a part model which has two dimensions (see Figure 9).

J. Manuf. Mater. Process. 2019, 3, 84 7 of 14

J. Manuf. Mater. Process. 2019, 3, 84 6 of 14

 for nx = 1 : rx
 % Get the point
 p = [xa(nx) ; ya(ny) ; za(nz)];
 % Find the closest Facet
 vertices_distance = (([P0(1,:)-p(1) ; P0(2,:)-p(2) ; P0(3,:)-p(3)])2);
 [v,ind] = min(vertices_distance);
 % Add Point if it is enclosed inside an object
 data = dot(N_f(:,ind),p-P0(:,ind));
 grid_data(nx,ny,nz) = (data>=0);% logical array size of NxMxK
 end
 end
end

3.3. Point Cloud Generation Using Image Processing Techniques

Clouds of points carry proper information regarding position and orientation in the space. It is
necessary to generate such points starting from a tessellated 3D model. Slicing a 3D model is applied
to generate an array matrix of vertices and normal directions which is further converted into binary
2D images. Then, each binary scale image is provided of two-dimensional information which can be
interpreted using pixel data. Pixels and geometric dimensions are used to map and transform binary
image and 3D model. Figure 6 presents a conceptual functional diagram for mapping 3D model in a
stacked pile of 2D images.

Figure 6. Block diagram of CAD to BMP processing. The STL reader imports CAD model into the
MATLAB working space and extracts vertice, edge, and facet data. The image processing algorithm
function further processes CAD data and creates a BMP output.

Converting an STL file into a BMP image file implies the transformation of vectors of facets and
vertices of the part model into a scalar cloud of points. In the Figure 7, the process flow is shown. The
logic template helps to identify the region of the work which has to be removed and/or has to remain
during machining processes. The process of 2D discretization and image conversion is elaborated
using Figure 8.

Figure 7. Process flow for CAD model into point cloud processes. Figure 7. Process flow for CAD model into point cloud processes.

J. Manuf. Mater. Process. 2019, 3, 84 7 of 14

Using Algorithm 1 and a concept presented in Figure 7, the output of segmentation is shown in
Figure 8.

(a) (b) (c)

Figure 8. Converted CAD model from STL to BMP image file. (a) 2D projection of a 3D model on 2D
grid container, (b) Intensity image for contained models, (c) Binary scale of image (b).

Hence, converting the STL model into a BMP image file, on the other hand, is equivalent to
converting vectors of facets and vertices of the part model into a scalar cloud of points and creates a
part model which has two dimensions (see Figure 9).

(a) (b)

Figure 9. (a) CAD model imported as STL file format and (b) Converted CAD model from STL to
BMP image file.

3.4. Tool Path Motion Parameters

Billet dimension: A billet is a length of metal that has a round or square cross-section, with an
area less than 230 cm2. Actually, it is essential to select the billet dimension with a minimum amount
of material removal because it minimizes the machining time, power consumption, and waste of
material. In this paper, the billet size is automatically computed by adding an offset value to the
absolute difference of maximum and minimum value in both radial and longitudinal motions. 𝑏 = |𝑥 − 𝑥 | × |𝑧 − 𝑧 | (4)

where 𝑏 is billet size given as M × N, where M is the length of billet along longitudinal (z-axis) and
N is the diameter of the billet which supports a motion along the radial axis (x-axis).

Once the dimension of the billet is determined, and the part geometry of the final product is
modeled in section (CAD model), now what is left before the generation of the tool path is
determining the material which is going to be removed from the work material. This portion is
essential particularly to determine the depth-of-cut, number of passes, spindle speed, and feed rate.

Cutting speed: Cutting speed is the speed difference between the cutting tool and the surface of
the work piece it is operating on. It is expressed in units of distance along the work piece surface per
unit of time. 𝑁 = 𝐾 × 𝑉𝜋 × 𝐷 (5)

where 𝑁 is machine speed in revolutions per minute (RPM), 𝐾 is a constant to correct speed (𝑉) and
part diameter (𝐷) units, and 𝑉is desired cutting speed, a handbook value. Figure 10 shows the
physical meaning of motion parameters and the corresponding symbols.

Figure 8. Converted CAD model from STL to BMP image file. (a) 2D projection of a 3D model on 2D
grid container, (b) Intensity image for contained models, (c) Binary scale of image (b).

J. Manuf. Mater. Process. 2019, 3, 84 7 of 14

Using Algorithm 1 and a concept presented in Figure 7, the output of segmentation is shown
in

(a) (b) (c)

Figure 8. Converted CAD model from STL to BMP image file. (a) 2D projection of a 3D model on 2D
grid container, (b) Intensity image for contained models, (c) Binary scale of image (b).

Hence, converting the STL model into a BMP image file, on the other hand, is equivalent to
converting vectors of facets and vertices of the part model into a scalar cloud of points and creates

(a) (b)

Figure 9. (a) CAD model imported as STL file format and (b) Converted CAD model from STL to
BMP image file.

3.4. Tool Path Motion Parameters

Billet dimension: A billet is a length of metal that has a round or square cross-section, with an
area less than 230 cm2. Actually, it is essential to select the billet dimension with a minimum amount
of material removal because it minimizes the machining time, power consumption, and waste of
material. In this paper, the billet size is automatically computed by adding an offset value to the
absolute difference of maximum and minimum value in both radial and longitudinal motions. 𝑏 = |𝑥 − 𝑥 | × |𝑧 − 𝑧 | (4)

where 𝑏 is billet size given as M × N, where M is the length of billet along longitudinal (z-axis) and
N is the diameter of the billet which supports a motion along the radial axis (x-axis).

Once the dimension of the billet is determined, and the part geometry of the final product is
modeled in section (CAD model), now what is left before the generation of the tool path is
determining the material which is going to be removed from the work material. This portion is
essential particularly to determine the depth-of-cut, number of passes, spindle speed, and feed rate.

Cutting speed: Cutting speed is the speed difference between the cutting tool and the surface of
the work piece it is operating on. It is expressed in units of distance along the work piece surface per
unit of time. 𝑁 = 𝐾 × 𝑉𝜋 × 𝐷 (5)

where 𝑁 is machine speed in revolutions per minute (RPM), 𝐾 is a constant to correct speed (𝑉) and
part diameter (𝐷) units, and 𝑉is desired cutting speed, a handbook value. Figure 10 shows the
physical meaning of motion parameters and the corresponding symbols.

Figure 9. (a) CAD model imported as STL file format and (b) Converted CAD model from STL to BMP
image file.

3.4. Tool Path Motion Parameters

Billet dimension: A billet is a length of metal that has a round or square cross-section, with an
area less than 230 cm2. Actually, it is essential to select the billet dimension with a minimum amount
of material removal because it minimizes the machining time, power consumption, and waste of
material. In this paper, the billet size is automatically computed by adding an offset value to the
absolute difference of maximum and minimum value in both radial and longitudinal motions.

bs = |xmax − xmin|×|zmax − zmin| (4)

where bs is billet size given as M × N, where M is the length of billet along longitudinal (z-axis) and N
is the diameter of the billet which supports a motion along the radial axis (x-axis).

Once the dimension of the billet is determined, and the part geometry of the final product is
modeled in section (CAD model), now what is left before the generation of the tool path is determining
the material which is going to be removed from the work material. This portion is essential particularly
to determine the depth-of-cut, number of passes, spindle speed, and feed rate.

J. Manuf. Mater. Process. 2019, 3, 84 8 of 14

Cutting speed: Cutting speed is the speed difference between the cutting tool and the surface of
the work piece it is operating on. It is expressed in units of distance along the work piece surface per
unit of time.

N =
K ×V
π×D0

(5)

where N is machine speed in revolutions per minute (RPM), K is a constant to correct speed (V) and
part diameter (D0) units, and V is desired cutting speed, a handbook value. Figure 10 shows the
physical meaning of motion parameters and the corresponding symbols.J. Manuf. Mater. Process. 2019, 3, 84 8 of 14

(a) (b)

Figure 10. Schematic diagram of turning parameters and demonstration. (a) Geometric description
and parameter definitions for turning operation, (b) Axis assignment convention and demonstration
of motion types.

Cutting time: Cutting time is the time taken per operation 𝑡 = 𝐿 + 𝐴𝑓 × 𝑁 (6)

where 𝑡 is the cutting operation, L is the length of the cut, A is the approach allowance distance to
the starting point, and 𝑓 is the machine feed rate which is read from a handbook.

Depth-of-cut: It is the difference of material removed from the initial diameter to the final
diameter 𝑑 = 𝐷 − 𝐷2 (7)

where d is the depth-of-cut, Df is the final diameter, and Do is the initial diameter.

3.5. Tool-Path Generation and Parsing

Cutting operations can be turning, milling, drilling, or boring processes. In this work, minimal
cutting and milling processes are considered. The tool-path generation typically refers to many line
segments representing one linear movement of the cutter. Each linear movement, the start, and the
endpoint should be accurately positioned. More line segments in tool path generation influence not
only computation time but also affects the efficiency of the production process [16]. Tool-path
generation by the extraction of pixel-level image information is essential to identify the part to be
removed. Subtraction of two images, the billet image and the final product, yields the image of
material to be removed (see equation 8 and Figure 11). 𝐼 = 𝐼 − 𝐼 (8)

where 𝐼 is the image of the material to be removed and 𝐼 is an image of billet that is user-
defined and 𝐼 is the final product image file.

Figure 11. Conceptual demonstration of image subtraction technique for turning the process.

Using a mapping function between 3D model geometry and BMP images, tool path coordinate
points are generated using Algorithm 2. This algorithm is implemented using the MATLAB script.
For milling operation, for instance, the process is given by three-axis motion. However, one of the

Billet removable

product

Figure 10. Schematic diagram of turning parameters and demonstration. (a) Geometric description
and parameter definitions for turning operation, (b) Axis assignment convention and demonstration of
motion types.

Cutting time: Cutting time is the time taken per operation

tc =
L + A
fr ×N

(6)

where tc is the cutting operation, L is the length of the cut, A is the approach allowance distance to the
starting point, and fr is the machine feed rate which is read from a handbook.

Depth-of-cut: It is the difference of material removed from the initial diameter to the final diameter

d =
D f −Do

2
(7)

where d is the depth-of-cut, Df is the final diameter, and Do is the initial diameter.

3.5. Tool-Path Generation and Parsing

Cutting operations can be turning, milling, drilling, or boring processes. In this work, minimal
cutting and milling processes are considered. The tool-path generation typically refers to many line
segments representing one linear movement of the cutter. Each linear movement, the start, and the
endpoint should be accurately positioned. More line segments in tool path generation influence
not only computation time but also affects the efficiency of the production process [16]. Tool-path
generation by the extraction of pixel-level image information is essential to identify the part to be
removed. Subtraction of two images, the billet image and the final product, yields the image of material
to be removed (see Equation (8) and Figure 11).

Im = Ibillet − Ipart (8)

where Im is the image of the material to be removed and Ibillet is an image of billet that is user-defined
and Ipart is the final product image file.

J. Manuf. Mater. Process. 2019, 3, 84 9 of 14

J. Manuf. Mater. Process. 2019, 3, 84 8 of 14

(a) (b)

Figure 10. Schematic diagram of turning parameters and demonstration. (a) Geometric description
and parameter definitions for turning operation, (b) Axis assignment convention and demonstration
of motion types.

Cutting time: Cutting time is the time taken per operation 𝑡 = 𝐿 + 𝐴𝑓 × 𝑁 (6)

where 𝑡 is the cutting operation, L is the length of the cut, A is the approach allowance distance to
the starting point, and 𝑓 is the machine feed rate which is read from a handbook.

Depth-of-cut: It is the difference of material removed from the initial diameter to the final
diameter 𝑑 = 𝐷 − 𝐷2 (7)

where d is the depth-of-cut, Df is the final diameter, and Do is the initial diameter.

3.5. Tool-Path Generation and Parsing

Cutting operations can be turning, milling, drilling, or boring processes. In this work, minimal
cutting and milling processes are considered. The tool-path generation typically refers to many line
segments representing one linear movement of the cutter. Each linear movement, the start, and the
endpoint should be accurately positioned. More line segments in tool path generation influence not
only computation time but also affects the efficiency of the production process [16]. Tool-path
generation by the extraction of pixel-level image information is essential to identify the part to be
removed. Subtraction of two images, the billet image and the final product, yields the image of
material to be removed (see equation 8 and Figure 11). 𝐼 = 𝐼 − 𝐼 (8)

where 𝐼 is the image of the material to be removed and 𝐼 is an image of billet that is user-
defined and 𝐼 is the final product image file.

Figure 11. Conceptual demonstration of image subtraction technique for turning the process.

Using a mapping function between 3D model geometry and BMP images, tool path coordinate
points are generated using Algorithm 2. This algorithm is implemented using the MATLAB script.
For milling operation, for instance, the process is given by three-axis motion. However, one of the

Billet removable

product

Figure 11. Conceptual demonstration of image subtraction technique for turning the process.

Using a mapping function between 3D model geometry and BMP images, tool path coordinate
points are generated using Algorithm 2. This algorithm is implemented using the MATLAB script.
For milling operation, for instance, the process is given by three-axis motion. However, one of the
axes denotes depth-of-cut. Therefore, using a user-defined variable for depth-of-cut, it is possible to
calibrate x- and y-components along with horizontal and vertical image pixel information. On the
other hand, turning operation which is characterized only by x-axis and z-axis due to x- and y-axis
symmetry can be represented with a simplified path planning method. In this situation, a case function
is created to identify if the process is turning or milling operation as user input.

Algorithm 2: Pseudocode for image processed path generator

[z,x] = pixels data from image along(z,x) axis
Pcor = []; % Initializing the dynamic coordinate array
k = 0; % Counter
t = 0; % Counter
for i = From Zo to Zf

t = t + 1; % Able to count the number of tool passes
for j = From Xf to Xo % Holds true for materials to be removed

if image(i,j)>0;
Pnew = [j,i];
k = k + 1; % Counts the true pixels to be removed

else
Pnew = []; % Final product pixels

end
P = Pnew;
Pcor = [Pcor;P]; % Creates a vector of tool path

end
end

To differentiate, in both processes—i.e., turning and milling operation—there are two-dimensional
cutting processes. The remaining one dimension denotes a depth-of-cut which can be either user-defined
or programmatically generated using slicing algorithms. In this paper, the main task is to develop
a proof of concept that can be generalizable using a single step user-defined depth-of-cut.

The tool path planner given by Algorithm 2 generates the machine tool path for both feed and
crossfeed motions. The algorithm iterates along the x-axis from maximum to the minimum value
whereas, iterates from the minimum value to maximum value along the z-axis. What comes next is
to develop an algorithm used to create G-code, which is readable by any CNC machine tools and
simulation software packages.

3.6. G-Code Generation

In any CNC machine, there are three basic motions G-codes. These are: G00 for rapid point to
point positioning, G01 for linear interpolation code, and G02/03 for circular interpolations.

J. Manuf. Mater. Process. 2019, 3, 84 10 of 14

G00—Rapid Positioning: This is the point-to-point motion used to position the cutter from one
point to another without having to coordinate the velocities of any of the moving axes. It is used for
the rapid positioning of the cutter without cutting.

xi =
x f − xo

z f − z0
(zi − zo) + xo (9)

where (xi,zi) are the running position of the cutter, (x f ,z f) are the desired position of the cutter, and
(xi,zi) are the reference position of the cutter.

G01—Linear Interpolation Code: This is the code that involves continuous manipulations of
velocities of each axis during contour machining. At the same time, the velocities of the axes are
controlled to keep the tool on a straight path in a plane of motion. By adopting constant displacement
varying interpolation, which is given in [1], it is easier to develop the algorithm that interpolates the
linear motions.

Let us assume that the cutting tool center is to follow the linear path shown in Figure 8 given by
G00. By considering two points—i.e., the starting and end point, the time law (Ti)—the sampling size
(N), it is possible to have the Equations (10) and (11).

x(k) = x(k− 1) + fx(k)Ti(k) (10)

z(k) = z(k− 1) + fz(k)Ti(k) (11)

where fx and fz are axis velocities at time interval k are given by

fx(k) =
∆x

Ti(k)
, fz(k) =

∆y
Ti(k)

(12)

Manipulating the time Ti is, on the other hand, refers to the manipulation of the axis feeds
according to the vector feed and velocity profiles. However, the incremental displacements are constant
and given by

∆x =
x f − xo

N
, ∆z =

z f − zo

N
(13)

G02, G03—Circular Interpolation Codes: The velocities of two axes on a plane of motion are
varied to keep the tool following the given arc at the specified feed velocity. Two types of circular
interpolation commands are used in CNC systems. These are clockwise motion (G02) and counter
clock motion (G03).

Assuming constant displacement varying interpolation methods (for detail derivation, refer [1]),
we can compute the tool paths Cartesian coordinates using Equations (14) and (15).

xn+1 = R× sin(θ0 + n∆θ+ ∆θ) (14)

zn+1 = R× cos(θ0 + n∆θ+ ∆θ) (15)

where R is the radius of the arc, θ is angular position, and n is the index of a coordinate point.
For example:

• G00 X45 Y20 Z00: Rapid movement to coordinates of (45, 20, 0)
• G01 X45 Y20 Z00 F3.5: Linear movement to coordinates of (45, 20, 0)
• G02/G03 X45 Y20 R1.0: Circular motion to coordinates of (45, 20) with a radius of 1.0

4. Result and Discussion

Methods that we presented in this work generates tool path coordinate systems in Cartesian space
based on 3D models using image processing technique. Data such as vertices and facets are extracted from

J. Manuf. Mater. Process. 2019, 3, 84 11 of 14

the STL file format. The vertices are rearranged in a three-dimensional array, before they are converted
into a two-dimensional monochrome bitmap image. Based on the geometric configuration, either
milling or turning operation shall be performed. In turning operations, we considered a symmetrical
model and therefore, only half of the model is required to generate a tool-path. In milling operations,
three-dimensional motion planning is required, but one axis is dedicated to depth-of-cut, which
determines the layer thickness. Full functionalities of G-codes such as coordinate systems, offsets, tools,
lubricants, spindle speed, units, rapid movement, controlled feed, and so on are not implemented.
However, we tested motions for rapid, linear, and circular as a proof of concept. The output result from the
milling process is visualized and shown in Figure 12. In this process, the CAD model provides a quarter
of a circle with a square cross-sectional area. The surface is not as smooth as the 3D model. This happens
due to the smaller size of the sample during the slicing and discretization process. We investigated how
increasing the number of samples which is given by Equations (2) and (3) significantly improved the
smoothness for the edges.

1

Figure 12. Image processing technique based milling operation simulation. (a) Hypersurface visualization
and process definition for milling operation of circular path. (b) Tool-path planning and plotting.

A 3D model segmentation and reconstruction algorithm (refer Algorithm 1) returned geometrical
errors for low-resolution variables. The higher sampling size, the better geometric accuracy is achieved.
However, it reduced the performance of the processor for larger number of samples. In milling
operation, a sequence of operation and geometric construction affected the auto-tool-path generation
(see Figure 12). In this case, tool-path generation takes place along x,y-plane where the z-axis is
dedicated to depth-of-cut.

The turning operation, unlike milling, a workpiece has a symmetric feature. This makes the tool-path
generation and planning easier. Only path generation for depth-of-cut and feeding which are along x-
and z-axes respectively are required. The output of Algorithm 2 is described using Figure 13. In this
figure, tool-path motion for very small depth-of-cut is shown. Still, accuracy is affected by the sampling
size. The tool-path which is shown here is the region of a part to be removed in which a machine tool is
in contact. Finally, the motion is translated into machine language (G-code). We simulated the whole
process using MATLAB® and we adopted the source code of [16] for turning and milling operations.

J. Manuf. Mater. Process. 2019, 3, 84 11 of 14

(a) (b)

Figure 12. Image processing technique based milling operation simulation. (a) Hypersurface
visualization and process definition for milling operation of circular path. (b) Tool-path planning and
plotting

A 3D model segmentation and reconstruction algorithm (refer Algorithm 1) returned
geometrical errors for low-resolution variables. The higher sampling size, the better geometric
accuracy is achieved. However, it reduced the performance of the processor for larger number of
samples. In milling operation, a sequence of operation and geometric construction affected the auto-
tool-path generation (see Figure 12). In this case, tool-path generation takes place along x,y-plane
where the z-axis is dedicated to depth-of-cut.

The turning operation, unlike milling, a workpiece has a symmetric feature. This makes the tool-
path generation and planning easier. Only path generation for depth-of-cut and feeding which are
along x- and z-axes respectively are required. The output of Algorithm 2 is described using Figure
13. In this figure, tool-path motion for very small depth-of-cut is shown. Still, accuracy is affected by
the sampling size. The tool-path which is shown here is the region of a part to be removed in which
a machine tool is in contact. Finally, the motion is translated into machine language (G-code). We
simulated the whole process using MATLAB® and we adopted the source code of [16] for turning

(a) (b) (c)

Figure 13. Image processing technique based turning operation simulation. (a) 3D model (front view),
(b) 2D binary image, (c) path generated model).

We measure the accuracy of the generated tool-path by comparing to the 3D model. A carbide
cutter tip with a length of 10 mm is geometrically modeling using surface filling in order to realize
by simulation how the process takes place. In this regard, only the half model is simulated,
particularly for turning operation using linear interpolation. Errors caused during the transformation
of the 3D model into a 2D binary image affected the quality of the motion. However, this can be still
improved by optimizing parameters such as depth-of-cut, segmentation quality, and filtering
techniques. Moreover, the result can be qualitatively described using visual observation as it is shown
in Figure 14.

Figure 13. Image processing technique based turning operation simulation. (a) 3D model (front view),
(b) 2D binary image, (c) path generated model).

J. Manuf. Mater. Process. 2019, 3, 84 12 of 14

We measure the accuracy of the generated tool-path by comparing to the 3D model. A carbide
cutter tip with a length of 10 mm is geometrically modeling using surface filling in order to realize by
simulation how the process takes place. In this regard, only the half model is simulated, particularly
for turning operation using linear interpolation. Errors caused during the transformation of the 3D
model into a 2D binary image affected the quality of the motion. However, this can be still improved by
optimizing parameters such as depth-of-cut, segmentation quality, and filtering techniques. Moreover,
the result can be qualitatively described using visual observation as it is shown in Figure 14.J. Manuf. Mater. Process. 2019, 3, 84 12 of 14

(a) (b) (c)

Figure 14. How accuracy of models can be affected by segmentation size. (a) 16 divisions, (b) 32
divisions, (c) 64 divisions.

We segmented the model into 32,000 nodes, to obtain high accurate path motion. This process
yields a highly accurate turning operation which has a cutting depth of 180/32000 mm size. In this
regard, the motion is computationally costly. During the simulation, this takes up to 32000 × 32000 ×
1 milliseconds. However, this can be re-configured to different depth-of-cut if we do not consider
regular segmentation in both horizontal and vertical planes.

Figure 15 shows the visualization of the tool path (a) for half model and (b) the process of tool
pass. This clearly shows, a minimum depth-of-cut can be achieved if the geometry of the product is
not complicated. In general, the presented approach yields an automated approach to improve cost
and production error.

(a) (b)

Figure 15. Simulation for the turning process using MATLAB script; (a) Path visualization for tool
pass; (b) Simulation processes for turning operations.

5. Conclusions and Future Work

For noncomplex geometry, image processing based tool-path generation has the potential to
simulate and visualize machining tool operations. Processing STL file format is selected due to its
simplicity and reliability to generate and parse tool path coordinate points. Two different
manufacturing processes, such as milling and turning operations, are considered to develop the
concept of automated tool-path generation using multilevel processing. In general, parametric model
segmentation, point cloud generations from the segmented and sliced model, binary logic container
creation, 2D projection, and transformation of the 2D projected model into the binary image are the
main procedures we applied. In the meantime, production process variables and parameters are
formulated and abstracted into the main algorithm to generate a machine-readable language like G-
code. The result showed, the accuracy of the path is affected by segmentation and 3D to 2D
conversion processes. The grid container which has a logic to discriminate a part of an object which
is enclosed inside the object depends on sample size. The higher the sample, the better the result, but
the slower the process. This research will benefit both academia and smaller companies to realize a
more reliable and smaller depth-of-cut. In future work, higher-order motion generation techniques
should be investigated for jerk and undesired vibrations during the cutting process.

Figure 14. How accuracy of models can be affected by segmentation size. (a) 16 divisions, (b) 32
divisions, (c) 64 divisions.

We segmented the model into 32,000 nodes, to obtain high accurate path motion. This process
yields a highly accurate turning operation which has a cutting depth of 180/32,000 mm size. In this
regard, the motion is computationally costly. During the simulation, this takes up to 32,000 × 32,000
× 1 milliseconds. However, this can be re-configured to different depth-of-cut if we do not consider
regular segmentation in both horizontal and vertical planes.

Figure 15 shows the visualization of the tool path (a) for half model and (b) the process of tool
pass. This clearly shows, a minimum depth-of-cut can be achieved if the geometry of the product is
not complicated. In general, the presented approach yields an automated approach to improve cost
and production error.

J. Manuf. Mater. Process. 2019, 3, 84 12 of 14

(a) (b) (c)

Figure 14. How accuracy of models can be affected by segmentation size. (a) 16 divisions, (b) 32
divisions, (c) 64 divisions.

We segmented the model into 32,000 nodes, to obtain high accurate path motion. This process
yields a highly accurate turning operation which has a cutting depth of 180/32000 mm size. In this
regard, the motion is computationally costly. During the simulation, this takes up to 32000 × 32000 ×
1 milliseconds. However, this can be re-configured to different depth-of-cut if we do not consider
regular segmentation in both horizontal and vertical planes.

Figure 15 shows the visualization of the tool path (a) for half model and (b) the process of tool
pass. This clearly shows, a minimum depth-of-cut can be achieved if the geometry of the product is
not complicated. In general, the presented approach yields an automated approach to improve

(a) (b)

Figure 15. Simulation for the turning process using MATLAB script; (a) Path visualization for tool
pass; (b) Simulation processes for turning operations.

5. Conclusions and Future Work

For noncomplex geometry, image processing based tool-path generation has the potential to
simulate and visualize machining tool operations. Processing STL file format is selected due to its
simplicity and reliability to generate and parse tool path coordinate points. Two different
manufacturing processes, such as milling and turning operations, are considered to develop the
concept of automated tool-path generation using multilevel processing. In general, parametric model
segmentation, point cloud generations from the segmented and sliced model, binary logic container
creation, 2D projection, and transformation of the 2D projected model into the binary image are the
main procedures we applied. In the meantime, production process variables and parameters are
formulated and abstracted into the main algorithm to generate a machine-readable language like G-
code. The result showed, the accuracy of the path is affected by segmentation and 3D to 2D
conversion processes. The grid container which has a logic to discriminate a part of an object which
is enclosed inside the object depends on sample size. The higher the sample, the better the result, but
the slower the process. This research will benefit both academia and smaller companies to realize a
more reliable and smaller depth-of-cut. In future work, higher-order motion generation techniques
should be investigated for jerk and undesired vibrations during the cutting process.

Figure 15. Simulation for the turning process using MATLAB script; (a) Path visualization for tool pass;
(b) Simulation processes for turning operations.

5. Conclusions and Future Work

For noncomplex geometry, image processing based tool-path generation has the potential to
simulate and visualize machining tool operations. Processing STL file format is selected due to its
simplicity and reliability to generate and parse tool path coordinate points. Two different manufacturing
processes, such as milling and turning operations, are considered to develop the concept of automated

J. Manuf. Mater. Process. 2019, 3, 84 13 of 14

tool-path generation using multilevel processing. In general, parametric model segmentation, point
cloud generations from the segmented and sliced model, binary logic container creation, 2D projection,
and transformation of the 2D projected model into the binary image are the main procedures we
applied. In the meantime, production process variables and parameters are formulated and abstracted
into the main algorithm to generate a machine-readable language like G-code. The result showed,
the accuracy of the path is affected by segmentation and 3D to 2D conversion processes. The grid
container which has a logic to discriminate a part of an object which is enclosed inside the object
depends on sample size. The higher the sample, the better the result, but the slower the process.
This research will benefit both academia and smaller companies to realize a more reliable and smaller
depth-of-cut. In future work, higher-order motion generation techniques should be investigated for
jerk and undesired vibrations during the cutting process.

Author Contributions: This research was initially conducted at the University of Trento, Italy, and extended at
Addis Ababa Science and Technology University, Ethiopia. For this research article, initial writing is done by T.B.T.
under the supervision of A.C.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge the University of Trento, Italy, for providing
research facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Altintas, Y. Manufacturing Automation by Yusuf Altintas. Camb. Core 2012. [CrossRef]
2. Zhou, M.; Zheng, G.; Chen, Z.C. An automated CNC programming approach to machining pocket with

complex islands and boundaries by using multiple cutters in hybrid tool path patterns. Int. J. Adv. Manuf.
Technol. 2016, 83, 407–420. [CrossRef]

3. Wang, X.; Fu, X.; Li, C.; Kang, M. Tool path generation for slow tool servo turning of complex optical surfaces.
Int. J. Adv. Manuf. Technol. 2015, 79, 437–448. [CrossRef]

4. Filice, L.; Ambrogio, G.; Gaudioso, M. Optimised tool-path design to reduce thinning in incremental sheet
forming process. Int. J. Mater. Form. 2013, 6, 173–178. [CrossRef]

5. Lechevalier, D.; Shin, S.-J.; Rachuri, S.; Foufou, S.; Lee, Y.T.; Bouras, A. Simulating a virtual machining model
in an agent-based model for advanced analytics. J. Intell. Manuf. 2019, 30, 1937–1955. [CrossRef] [PubMed]

6. Jouandeau, N. Rapidly-exploring Sorted Random Tree: A Self Adaptive Random Motion Planning Algorithm.
In Informatics in Control, Automation and Robotics: Selected Papers from the International Conference on Informatics
in Control, Automation and Robotics 2007; Filipe, J., Cetto, J.A., Ferrier, J.-L., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 63–73.

7. Liu, Y.; Guo, X.; Li, W.; Yamazaki, K.; Kashihara, K.; Fujishima, M. An intelligent NC program processor for
CNC system of machine tool. Robot. Comput. Integr. Manuf. 2007, 23, 160–169. [CrossRef]

8. Ridwan, F.; Xu, X.; Ho, F.C.L. Adaptive execution of an NC program with feed rate optimization. Int. J. Adv.
Manuf. Technol. 2012, 63, 1117–1130. [CrossRef]

9. Tönshoff, H.K.; Janocha, H.; Seidel, M. Image Processing in a Production Environment. CIRP Ann. 1988, 37,
579–590. [CrossRef]

10. Reduction of Production Cycle Time by Optimising Production and Non-Production Components of Time in
the Metalworking Industry: A Case Study. Available online: http://www.scielo.org.za/scielo.php?script=sci_
arttext&pid=S2224-78902016000100015 (accessed on 10 August 2019).

11. Ullah, A.S.; Harib, K.H. Tutorials for Integrating CAD/CAM in Engineering Curricula. Educ. Sci. 2018, 8, 151.
[CrossRef]

12. Mikołajczyk, T.; Kłodowski, A.; Mrozinski, A. Camera-based Automatic System for Tool Measurements and
Recognition. Procedia Technol. 2016, 22, 1035–1042. [CrossRef]

13. Posada, J.R.D.; Schneider, U.; Sridhar, A.; Verl, A. Automatic Motion Generation for Robotic Milling
Optimizing Stiffness with Sample-Based Planning. Machines 2017, 5, 3. [CrossRef]

14. Dupont, P.E.; Derby, S. An Algorithm for CAD-Based Generation of Collision-Free Robot Paths. In CAD
Based Programming for Sensory Robots; Springer: Berlin/Heidelberg, Germany, 1988; pp. 433–465.

http://dx.doi.org/10.1017/CBO9780511843723
http://dx.doi.org/10.1007/s00170-015-7506-3
http://dx.doi.org/10.1007/s00170-015-6846-3
http://dx.doi.org/10.1007/s12289-011-1065-4
http://dx.doi.org/10.1007/s10845-017-1363-x
http://www.ncbi.nlm.nih.gov/pubmed/31080320
http://dx.doi.org/10.1016/j.rcim.2006.04.003
http://dx.doi.org/10.1007/s00170-012-3959-9
http://dx.doi.org/10.1016/S0007-8506(07)60755-0
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2224-78902016000100015
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2224-78902016000100015
http://dx.doi.org/10.3390/educsci8030151
http://dx.doi.org/10.1016/j.protcy.2016.01.141
http://dx.doi.org/10.3390/machines5010003

J. Manuf. Mater. Process. 2019, 3, 84 14 of 14

15. Xu, K.; Li, Y.; Xiang, B. Image processing-based contour parallel tool path optimization for arbitrary pocket
shape. Int. J. Adv. Manuf. Technol. 2019, 102, 1091–1105. [CrossRef]

16. Chitsaart, C.; Rianmora, S.; Rattana-Areeyagon, M.; Namjaiprasert, W. Automatic Generating CNC-Code for
Milling Machine. World Acad. Sci. Eng. Technol. J. Ind. Manuf. Eng. 2013, 7, 2607–2613.

17. Konobrytskyi, D. Automated CNC Tool Path Planning and Machining Simulation on Highly Parallel
Computing Architectures. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2013.

18. Zhao, Q.; Huang, X.; Wang, C.; Yao, Y.; Hu, Q. NC tool path generation approach based on STL. In Proceedings
of the 2011 IEEE International Symposium on IT in Medicine and Education, Guangzhou, China, 9–11
December 2011; pp. 228–231.

19. Qu, X. Raster milling tool-path generation from STL files. Rapid Prototyp. J. 2006, 12, 4–11. [CrossRef]
20. Hassaballah, M.; Abdelmgeid, A.A.; Alshazly, H.A. Image Features Detection, Description and Matching.

In Image Feature Detectors and Descriptors: Foundations and Applications; Awad, A.I., Hassaballah, M., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 11–45.

21. Vatani, M.; Rahimi, A.R.; Brazandeh, F. An Enhanced Slicing Algorithm Using Nearest Distance Analysis for
Layer Manufacturing. Proc. World Acad. Sci. Eng. Technol. 2009, 3, 6.

22. Eragubi, M. Slicing 3D CAD Model in STL Format and Laser Path Generation. Int. J. Innov. Manag. Technol.
2013, 4, 410–413. [CrossRef]

23. Szucki, M.; Suchy, J. A voxelization based mesh generation algorithm for numerical models used in foundry
engineering. Metall. Foundry Eng. 2012, 38, 43. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00170-018-3016-4
http://dx.doi.org/10.1108/13552540610637219
http://dx.doi.org/10.7763/IJIMT.2013.V4.431
http://dx.doi.org/10.7494/mafe.2012.38.1.43
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	Materials and Methods
	Geometric Modeling and Parameter Identification
	Model Segmentation and Reconstruction
	Point Cloud Generation Using Image Processing Techniques
	Tool Path Motion Parameters
	Tool-Path Generation and Parsing
	G-Code Generation

	Result and Discussion
	Conclusions and Future Work
	References

