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Abstract: In this paper we introduce an analytical approach for predicting the melting radius
during powder melting in selective laser melting (SLM) with minimum computation duration. The
purpose of this work is to evaluate the suggested analytical expression in determining the melt pool
geometry for SLM processes, by considering heat transfer and phase change effects with density
variation and cylindrical symmetry. This allows for rendering first findings of the melt pool numerical
prediction during SLM using a quasi-real-time calculation, which will contribute significantly in the
process design and control, especially when applying novel powders. We consider the heat transfer
problem associated with a heat source of power Q̇′ (W/m) per unit length, activated along the span
of a semi-infinite fusible material. As soon as the line heat source is activated, melting commences
along the line of the heat source and propagates cylindrically outwards. The temperature field is
also cylindrically symmetric. At small times (i.e., neglecting gravity and Marangoni effects), when
the density of the solid material is less than that of the molten material (i.e., in the case of metallic
powders), an annulus is created of which the outer interface separates the molten material from the
solid. In this work we include the effect of convection on the melting process, which is shown to be
relatively important. We also justify that the assumption of constant but different properties between
the two material phases (liquid and solid) does not introduce significant errors in the calculations. A
more important result; however, is that, if we assume constant energy input per unit length, there is
an optimum power of the heat source that would result to a maximum amount of molten material
when the heat source is deactivated. The model described above can be suitably applied in the
case of selective laser melting (SLM) when one considers the heat energy transferred to the metallic
powder bed during scanning. Using a characteristic time and length for the process, we can model
the energy transfer by the laser as a heat source per unit length. The model was applied in a set of
five experimental data, and it was demonstrated that it has the potential to quantitatively describe
the SLM process.

Keywords: selective laser melting (SLM); analytical melt pool calculation; phase change; cylindrical
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1. Introduction

Consider a semi-infinite solid slab, initially at temperature T∞. At time t = 0, a continuous line
heat source

.
Q′(W/m) is activated along the line r = 0. The temperature distribution in the semi-infinite

medium is found to be [1] (pg. 261, Equation (5))

T = T∞ +

.
Q′

2 π k
E1

[
r2

4 α t

]
(1)

where k is the thermal conductivity of the solid, and E1[x] is the exponential integral defined as
E1[x] =

∫
∞

x e−t/t dt. Similar to 1D Cartesian coordinates, there is no steady-state solution in 1D
cylindrical coordinates. The temperature field is cylindrically symmetric, ranging from infinite at
r = 0 to T∞ at the far field. In reality though, if T∞ is less than the melting temperature Tmelt of the
material, the high temperature developed around r = 0 would lead to melting of the material and a
cylindrical interface would emerge separating the solid phase (metal powder) from the liquid phase
(molten material). Hence, one has to take into consideration the different properties between the liquid
and the solid phases and, in addition, the latent heat of melting L per unit mass at the interface. For a
pure substance the interface is sharp at the melting temperature Tmelt of the material, and it moves
cylindrically outwards separating the two phases, solid and liquid. Similar arguments apply for the
solidification process.

For the case of melting or solidification of a material due to a line source/sink, with constant but
different properties between the liquid and solid phases but equal densities, an analytical solution
has been obtained by Patterson [2], who combined two expressions similar to Equation (1). The
boundary condition for the energy balance leads to an algebraic equation (characteristic equation)
where the unknown, which can be considered to be an eigenvalue, is proportional to the position of
the liquid-solid interface (i.e., the speed of melting of the material). The characteristic equation is
monotonic with respect to the eigenvalue so there is only one single solution. The analysis is valid when
the two phases have the same density. A review is given by Hu and Argyropoulos [3] and Alexiades
and Solomon [4], where they present the major methods of mathematical modeling of solidification
and melting. For the case where the two phases have different densities, the energy balance equation
is different [4,5], and furthermore a convection term must be included in the heat equation of the
liquid phase. The convection term can be obtained from the radially-symmetric continuity equation in
cylindrical coordinates with constant density [4]. A similar approach is used for the analysis of melting
of nanoparticles [6] and bubble growth and oscillations [7–11].

The major difference between bubble growth/oscillations and melting/solidification is that, for
the former case, the bubble interface is set in motion by the pressure field, hence one has to solve the
momentum equation. On the contrary, for the latter case the interface between the liquid and the
solid phase is controlled by the conduction process; hence, the heat equation is decoupled from the
momentum equation.

In this work, similar to Font et al. [6], we first solve the continuity equation in the liquid phase
to find an expression for the velocity field using mass conservation. Subsequently we solve the heat
equation in the two phases using a similarity transformation of the form r/

√
t, and through the energy

boundary condition on the interface we obtain an algebraic (characteristic) equation for the eigenvalue
λ, which is proportional to the location of the interface. Unlike Font et al. [6], we have neglected the
kinetic energy term in the energy equation because it is small compared to other terms (see Section 2.2).
Furthermore, if needed, an expression for the pressure field in the liquid phase can be obtained by
substituting the expression of the velocity field in the radial momentum equation.

In this work, we apply the melting process described above, as a simplified model to describe the
dynamics of selective laser melting (SLM) processes. Of course, for the prediction of the melt pool
when a particular SLM or selective laser sintering (SLS) process is concerned, different mathematical
approaches have been introduced and studied in the literature. Cheng and Chou [12] described an
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unsteady temperature simulation based on the finite element method (FEM) of the alloy IN718 [13],
concentrating on the effect of varying scan length on the melt pool size. Polivnikova [14] studied the
melt pool dynamics by means of a finite-element simulation for an SLS/SLM process. The numerical
model considered the interaction between laser beam and powder material and phase transformations,
while sub-models were developed to describe the capillary phenomena in the powder bed during
SLS/SLM processing. Li et al. [15] investigated the heat transfer and phase transition during an SLM
process with a moving volumetric heat source using the finite difference method. They proposed a
model incorporating a phase function to differentiate the powder phase, melting liquid phase, dense
solid phase and vaporized gas phase that also includes the volume shrinkage induced by the density
change during the melting process. Letenneur et al. proposed a three dimensional analytical model
which enables the calculation of the temperature distribution in powder for a Gaussian laser heat
source [16]. In [17], Li et al. enhanced their proposed approach by including the residual stress
field analysis. A similar numerical approach was presented by Tan et al. [18] based on a model
addressing thermal, metallurgical, and mechanical effects for selective laser melting of titanium alloy.
The aforementioned numerical models, although they consider all physical phenomena and elucidate
the physical processes involved in the melt pool formation, are computationally intensive and cannot
be used for real-time process control and optimization.

Thus, for the design of a thermal control system, the development of an efficient model is inevitable,
and an analytical or semi-analytical model is necessary. On one hand, it should contain all the necessary
physics, and on the other hand it should be characterized by the necessary computational efficiency, so
that it can be used as an in-process reference for a control algorithm. Examples are available in the
literature for pure heat transfer operations, such as scanned thermal processing [19,20] and for serial
thermal processing methods such as arc welding [21] and SLM and laser cutting [22]. The model can
be validated through an experimental apparatus via infrared camera and laser profilometry. This kind
of sensor was used for output feedback in a closed loop geometry control system in a gas metal arc
welding (GMAW) process [23]. Besides control, a simplified model can also be used to compute the
structural shape and residual stresses [24]. In what follows, we develop a simple model based on the
melting achieved due to a line heat source.

2. Mathematical Modeling

Our model is motivated by the melting achieved by a rapidly scanning laser beam moving along
the span of a powder-bed [25]. Figures 1 and 2 provide a detailed description of the model.
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Figure 2. A semi-infinite slab of fusible material melts cylindrically due to a heat source
.

Q′(W/m).
The temperature field is cylindrically symmetric. The uniformly cylindrical power distribution from
the laser source (gray color) is assumed over the inner surface of the molten material with radius Ri.

Initially, the semi-infinite bed of the fusible material (metal powder, powder-bed) is at the
temperature T∞, lower than the melting temperature Tmelt of the powder. A line heat source of strength

.
Q′(W/m) is distributed initially along r = 0 and is activated for a brief period of time τ. The release
of energy causes the temperature to increase higher than Tmelt, hence the melting commences at the
origin. Because the density of the liquid phase is higher than the density of the solid phase (powder),
an inner interface is created with radius Ri (liquid-air interface, Figure 2). Hence, an annulus is
created with an inner surface of radius Ri[t], and an outer surface of radius R[t]. The latter separates
the liquid (melted material) from the solid (powder) (i.e., T[r = R[t]] = Tmelt; Figure 2); assuming a
pure substance, and by ignoring the kinetics of phase change in melting, the interface (r = R[t]) is
sharp. Both the inner r = Ri[t] and the outer r = R[t] interfaces move in the positive r-direction with
cylindrical symmetry, as shown in Figures 1 and 2. During the time period 0 < t ≤ τ, we assume that
the laser beam is distributed evenly over the interface Ri[t] due to irradiation and reflections of the
laser beam, whereas at t = 0 the laser beam is a line heat source distributed along r = 0. For small
times we can neglect gravity and Marangoni effects, hence the process is cylindrically symmetric, and,
in addition, a radially-symmetric convection current ur[r, t] is developed in the annulus.

In order to apply this model to SLM of metallic powders a number of assumptions/parameters
were adopted as described in detail in the following sections. The metal powder, which rests on a
metal substrate, is molten by the scanning laser beam and solidifies into a metal deposit fused to the
substrate. The density and thermal properties of the deposit are significantly different from the metal
powder (see beginning of Section 3). We assume that during the initial stages of melting, the gravity
and Marangoni effects can be neglected, hence the process is cylindrically symmetric. Furthermore,
because the conductivity of the metal powder is on the order of 100 times smaller than that of the
metal substrate, we assume that the heat transfer process is controlled by the powder bed, and the heat
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transfer process is prevalent in the molten pool [1]. Hence, during the initial melting of the powder, we
neglect the presence of the metal substrate and assume a semi-infinite layer of metal powder.

The analysis that follows proceeds along the same lines as the analysis by Font et al. [6] for
melting of a nanoparticle, and the analysis by Scriven [9] for bubble growth and oscillations [7–11],
where an explicit expression for the convection term is obtained from the continuity equation and
mass conservation.

2.1. Flow Field

Assuming constant density in the liquid phase (i.e., zero thermal expansion coefficient), the
equation of continuity in cylindrical coordinates [26] takes the form 1

r
∂
∂r (ρ` r ur) = 0. Integrating with

respect to r, and enforcing the conditions at r = R[t] or r = Ri[t] we obtain:

ur[r, t] =
R[t] υ`

r
=

Ri[t]
.
Ri[t]

r
(2)

where ur[r, t] is the velocity of the fluid at radius r and time t and υ` ≡ ur[r = R[t], t] is the velocity
of the fluid perpendicular to the interface r = R[t]. Similar expressions are obtained in the case of a
moving spherical interface [6–11]. We should point out that, while the velocity of the fluid (molten
material) is

.
Ri[t] at r = Ri, its velocity is not

.
R[t] at r = R[t]. In order to find a relation for υ` we use

mass conservation in a frame moving with the interface to obtain

− ρs
.
R[t] =

(
υ` −

.
R[t]

)
ρ`,

where ρs is the density of the solid and ρ` is the density of the liquid at the melting temperature Tmelt,
which can be is resolved to

υ` =
(ρ` − ρs)

ρ`

.
R[t]. (3)

This is the equation obtained by Özişik [5] (pg. 403, Equation (10-9b)). To relate Ri[t] to R[t], we use
mass conservation [6] on a unit span of the annulus of the molten pool to obtain

1
2

d
dt

[
ρ` π

(
R[t]2 −Ri[t]

2
)]
= π ρs R[t]

.
R[t].

Integrating above expression we obtain

ρ` (R[t]2 −Ri[t]2) = ρs R[t]2

⇒ R[t]
√
ρ`−ρs
ρ`

= Ri[t]
(4)

Substituting Equation (3) or Equation (4) in Equation (2), we obtain an equation for the velocity field in
terms of the location R[t] and velocity

.
R[t] of the interface:

ur[r, t] =
(ρ` − ρs)

ρ`

R[t]
.
R[t]

r
(5)

2.2. Governing Equations

Assuming that the properties of the powder and the molten material are constant but different,
the mathematical formulation of this problem is given by

ρ` cp`
(
∂T`
∂t + ur[r, t] ∂T`

∂r

)
= 1

r
∂
∂r

(
k` r ∂T`

∂r

)
in the region Ri[t] < r < R[t], t > 0

ρs cps
∂Ts
∂t = 1

r
∂
∂r

(
ks r ∂Ts

∂r

)
in the region R[t] < r < ∞, t > 0

(6)
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where, as mentioned earlier (Equation (5)),

ur[r, t] =
(ρ` − ρs)

ρ`

R[t]
.
R[t]

r

with the initial condition
T = T∞ at t = 0

and the boundary conditions

−π r k`
∂T`
∂r =

.
Q
′

at r = Ri[t], t > 0,

Ts = T` = Tmelt at r = R[t], t > 0,

ks
∂Ts
∂r − k`

∂T`
∂r = L ρs

dR
dt at r = R[t], t > 0

Ts → T∞ as r→∞, t > 0.

(7)

In the above equations, ρ represents the density, cp the specific heat, and k the conductivity, while
the subscripts ` and s represent the liquid and the solid phases, respectively. As shown in Özişik [5] (pg.
403, Equation (10-10a)), the third boundary condition is developed by performing an energy balance
across the melting interface at r = R[t]. In a coordinate system moving with the interface the energy
balance takes the form:

.
R[t] Hs ρs + ks

∂Ts

∂r
=

(( .
R[t] − υ`

)
H`ρ` + k`

∂T`
∂r

)
If we substitute Equation (3) for υ` we obtain

ks
∂Ts

∂r
− k`

∂T`
∂r

=
.
R[t]

(
H` ρ` −

(ρ` − ρs)

ρ`
H` ρ` −Hs ρs

)

⇒ ks
∂Ts

∂r
− k`

∂T`
∂r

=
.
R[t] (H` ρ` − (ρ` − ρs) H` −Hs ρs)

which is finally simplified to

⇒ ks
∂Ts

∂r
− k`

∂T`
∂r

=
.
R[t] ρs (H` −Hs) =

.
R[t] ρs L,

where L is the latent heat, L = H` −Hs.
A common mistake that appears in phase change problems with density variations is the exclusion

of the kinetic energy term [4,6]. This term is the consequence of the density change which forces the

fluid to move, and results in a kinetic energy deficit or surplus. This term is equal to ±ρs
2

(
1− ρs

ρ`

)2( .
R[t]

)3

and it is usually excluded if it is small compared to the term related to the latent heat
( .
R[t] ρs L

)
. It is

important only at very small times and when the value of the latent heat L is small [4]; an exception is
the melting of nanoparticles [6]. In our simulation the latent heat is of the order L ∼ 105 (J/kg) and

the smaller value of the activation time τ ∼0.0001 (s). As we will show later
.
R[t] = λ

√
α`
√

t
, hence the

kinetic energy term is of the order ∼ 10−2 (kg/s3) and it does not introduce any significant error. The
important advantage of neglecting this term is that it allows for a similarity solution for the system of
equations [2,4,5] in the form z = r/R[t]. The partial derivatives transform as follows:

∂
∂r

=
1

R[t]
∂
∂z

,
∂
∂t

=
∂
∂t
−

r
.
R[t]

R[t]2
∂
∂z

.
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Substituting in the partial differential Equations (6) and the boundary conditions (7), we obtain
the following system of ordinary differential equations, which we assume that they are independent of
time (t):

ρ` cp`

 − r
.
R[t]

R[t]2
dT`
dz

+
ur[r, t]

R[t]
dT`
dz

 = 1
r R[t]

d
dz

(
k`

r
R[t]

dT`
dz

)
for

Ri[t]
R[t]

< z < 1

ρs cps

 − r
.
R[t]

R[t]2
dTs

dz

 = 1
r R[t]

d
dz

(
ks

r
R[t]

dTs

dz

)
for 1 < z < ∞

with boundary conditions

−π
r

R[t]
k`

dT`
dz

=
.

Q′ at z =
Ri[t]
R[t]

,

Ts = T` = Tmelt at z = 1

ks

R[t]
dTs

dz
−

k`
R[t]

dT`
dz

= L ρs
dR
dt

at r = 1,

Ts → T∞ at z→∞.

Note that the last equation also describes the initial condition. Multiplying by R[t]2 and substituting

the expression for ur[r, t] = (ρ`−ρs)
ρ`

R[t]
.
R[t]

r (Equation (4)) and Ri[t] = R[t]
√
ρ`−ρs
ρ`

(Equation (4)), the
above system simplifies to

ρ` cp`

 − r R[t]
.
R[t]

R[t]
dT`
dz

+
R[t]2(ρ` − ρs)

ρ`

.
R[t]

r
dT`
dz

 = R[t]
r

d
dz

(
k`

r
R[t]

dT`
dz

)
for

√
ρ` − ρs

ρ`
< z < 1

ρs cps

 − r R[t]
.
R[t]

R[t]
dTs

dz

 = R[t]
r

d
dz

(
ks

r
R[t]

dTs

dz

)
for 1 < z < ∞

with boundary conditions

−π z k`
dT`
dz

=
.

Q′ at z =

√
ρ` − ρs

ρ`
,

Ts = T` = Tmelt at z = 1,

ks
dTs

dz
− k`

dT`
dz

= L ρs R[t]
dR
dt

at z = 1,

Ts → T∞ as z→∞.

Above equations are independent of time only if R[t]
.
R[t] = c (i.e., R[t] =

√
2 c t, where c is a

constant to be determined). We finally obtain:

ρ` cp`

(
− z c

dT`
dz

+
(ρ` − ρs)

ρ`

c
z

dT`
dz

)
=

1
z

d
dz

(
k` z

dT`
dz

)
for

√
ρ` − ρs

ρ`
< z < 1

ρs cps

(
− z c

dTs

dz

)
=

1
z

d
dz

(
ks[T] z

dTs

dz

)
for 1 < z < ∞

with boundary conditions

−π z k`[T]
dT`
dz

=
.

Q′ at z =

√
ρ` − ρs

ρ`
,

Ts = T` = Tmelt at z = 1

ks[T]
dTs

dz
− k`[T]

dT`
dz

= L ρs[T] c at z = 1,
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Ts → T∞ as z→∞,

where the square brackets [T] indicate a temperature dependency of the thermal conductivity k and
the density ρ. The above system can be brought in the following form:

d2T`
dz2 +

(
1
z +

z c
α`
−

ε
α`

c
z

)dT`
dz = 0 for

√
ε < z < 1

d2Ts
dz2 +

(
1
z + z c

αs

)
dTs
dz = 0 for 1 < z < ∞

(8)

with boundary conditions
−π z k`

dT`
dz =

.
Q′ at z =

√
ε,

Ts = T` = Tmelt at z = 1,

ks
dTs
dz − k`

dT`
dz = L ρs c at z = 1,

Ts → T∞ as z→∞.

(9)

where α = k/
(
ρ cp

)
is the thermal diffusivity and ε = (ρ` − ρs)/ ρ`. Note that if we set ε = 0, the effect

of convection is “switched off”; however, the density difference is still included in the energy balance
equation (Equation (9), third equation; i.e., we obtain a result similar to Özişik [5] (pg. 415).

2.3. Characteristic Equation

The system of ordinary differential equations (ODEs) (8) can be integrated once to obtain

dT`
dz = A1e−cz2/(2α`) z(cε/α`−1),

dTs
dz = A2e−cz2/(2αs) z−1.

(10)

Using the first boundary condition from Equations (9) we obtain that

A1 = −

.
Q′ e

cε
2α` ε

−
cε

2α`

π k`
= −

.
Q′

π k`

( e
ε

) cε
2α` . (11)

An expression for T` can be obtained in the form of the incomplete gamma function and the second
boundary condition (Equation (9)); however, it is not required in order to obtain an expression
for the eigenvalue c. An expression for Ts can be obtained in the form of the exponential integral
E1[x] =

∫
∞

x e−t/t dt using the substitution ζ = cz2/(2αs):

dTs

dζ
=

A2

2
e−ζ/ ζ.

Employing the second and fourth boundary conditions we can obtain an expression for A2:

A2 =
2(T∞ − Tmelt)

E1[c/(2αs)]
(12)

Substituting (10)–(12) in the third boundary condition of Equation (9), we obtain an algebraic equation
(i.e., the characteristic equation) for c:

.
Q′

π

( e
ε

)cε/(2α`)
e−c/(2α`) + ks

2(T∞ − Tmelt)

E1[c/(2αs)]
e−c/(2αs) = L ρs c
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If we replace c with c = 2 α` λ2, we obtain a result similar to Carslaw and Jaeger [26] (pg. 296):

R[t] = 2 λ
√
α` t,

F[λ] =
.

Q′
π e−λ

2( e
ε

)(λ2ε)
+

2 ks (T∞−Tmelt)e(−λ
2α`/αs)

E1[λ2 α`/αs]
− 2 L ρs λ2 α` = 0.

(13)

The factor 1/2, instead of 1/4, is due to the fact that we have considered a semi-infinite domain
instead of an infinite domain. We can reproduce the result by Carslaw and Jaeger [1] if we neglect
the convection term (i.e., if we set ε = 0, and replace E1[x] with E1[x] = −Ei[−x]). If we know the
properties of the material and the power

.
Q′ per unit length of the heat source, the above equation can

be solved to find λ; hence the location of the liquid-solid interface R[t] can be obtained for the time
period τ that the heat source is activated.

3. Numerical Results of the Characteristic Equation

3.1. Application for Material Properties of IN718 Powder

The final result of the previous section was the transcendental equation (characteristic Equation
(13)) for the constant λ, through which we obtained the velocity of the interface (i.e., the speed of
melting of the material). Equation (13) is monotonic so there is only one single value for the eigenvalue
λ that satisfies the equation [2,5]. Furthermore, the effect of convection was to enhance the effect of the

power
.

Q′, because the term (e/ε)(λ
2ε) is always greater than one. Hence, we expect that the effect of

convection would lead to larger values of λ and, consequently, of the radius R[t] of the melted material.
The thermophysical properties of solid and liquid IN718 alloy were taken from the literature [12,13,27].
For our calculations we used the following values for the properties of the material which resembled
the average IN718 powder properties for temperature close to melting point (i.e., in the range 800–1000
◦C:

ρ` = 7756 kg/m3, cp` = 643 J/(kg·K), k` = 26.63 W/(m·K),

ρs = 3926 kg/m3, cps = 351 J/(kg·K), ks = 0.37 W/(m·K),

Tmelt = 1300 ◦C, T∞ = 20 ◦C, L = (643− 351) × (1300 + 273.15) J/kg = 459360 J/kg , ε = 0.4934.

The melting temperature Tmelt = 1300 ◦C used to model the melt pool was averaged from the
liquid-solid phase distribution ranging from 1260 to 1336 ◦C [27]. An experimental measurement of
enthalpy as a function of temperature indicating the temperature range for the liquid-solid phase
change is shown in Figure 3 [28].
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Figure 3. Liquid-solid phase distribution for IN718 powder shown on the basis of the enthalpy change
as a function of temperature based on data from [27,28].
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As an example, we set the power
.

Q′ = 10000 W/m. In Figure 4, we show a plot of the function
F[λ] vs λ. As mentioned earlier, the function F[λ] is monotonic and it is straightforward to obtain
numerically the root λ = 0.255, hence the radius of the interface is R[t] = 2 λ

√
α` t = 0.0012

√
t m.

This expression is valid while the heat source is activated (i.e., 0 ≤ t ≤ τ).
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Figure 4. The characteristic Equation (13) as a function of the eigenvalue λ. The root is at the point
where F[λ] = 0 (i.e., λ = 0.255).

To evaluate the effect of convection we set the parameter of the density ratio ε equal to zero. As
expected the eigenvalue λ decreased to λ = 0.2471. The decrease in radius was of the order of 3%,
hence the effect of convection is relatively important.

Equation (13) was derived based on the fact that the properties of both the liquid and solid phase
are constant. In order to evaluate the effect of this assumption, we increased the properties of the liquid
phase by 10%. The new root is λ = 0.2545, which is 0.1% lower from the original root λ = 0.2549,
hence we can claim that our assumption of constant properties has limited impact on the results.

The temperature distribution in the solid powder as a function of the radius r from the cylinder
center starting at the liquid-solid interface (i.e., radius of the molten pool of 0.12 mm), as calculated by
solving Equation (10), is shown in Figure 5.
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Figure 5. Temperature distribution as a function of radius r from the cylinder center with a melt pool
radius of 0.12 mm at time t = τ. The power per unit length is set to

.
Q′ = 10000 W/m.
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3.2. Optimum Value of the Line Heat Source

While the heat source is active (for the time period τ), the location of the interface of the melted
material is given by R[t] = 2 λ

√
α` t for t ≤ τ. Of course, melting may continue for a brief period of

time after the heat source is deactivated; however, this is beyond the scope of the current work. As
expected, the longer the time period τ and the higher the power

.
Q′, the larger the radius R[τ]. This

raises the question on how the power is affecting the radius of melting for a fixed value of energy input
per unit length:

Q′ =
.

Q′·τ (J/m
)
. (14)

Hence, in Equation (13), we replaced
.

Q′ with Q′/τ, and found the value of the eigenvalue λ as a
function of the activation time τ of the heat source. For each value of the eigenvalue we determined the
radius of the melted material at time τ (i.e., R[τ] = 2 λ

√
α` τ). As an example, we set the total energy

input to Q′ = 150 (J/m). For the range of τ between 0.0001 and 0.1, we obtained that there was an
optimum power per unit length

.
Q′, such that R[τ] was maximized, as shown in Figure 6.
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.
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From the numerical solution of Equation (13) for a fixed amount of energy per length Q′ = 150 J/m,
we obtained that the optimum power of the line heat source was approximately

.
Q′ = 48.4 kW/m,

which would lead to a radius R[τ = 0.0031s] = 154 microns.
However, in real SLM processes such short time periods τ (i.e., velocities in the order of 100 m/s)

are not feasible. State-of-the-art processing speeds were found in the literature to be in the order of 0.01
to 2 m/s for high performance metallic alloys with a laser power of 100 to 1000 W.

4. Application of the Model to an SLM Process

Selective laser melting (SLM) is an additive rapid manufacturing technique where a laser is used
to fuse metal powder that consists of micro- and nano-particles, into a specified three-dimensional
geometry. In this section, we will apply the results of Section 2 (Equation (13)) to experimental data
obtained in an SLM (selective laser melting) manufacturing process.

In Tables 1 and 2, we show the results of five experiments for the investigated IN718 alloy, based
on the macrographs of a real SLM process, which are shown in Figure 7. The experiments were
performed in the context of the MERLIN project on an SLM 280 HL machine (SLM solutions) with
varying scan speed and laser powder [13]. Further process parameters were kept constant: laser focus
diameter df = 90 µm (Gauss), hatch distance ∆y = 80 µm, and layer thickness D = 30 µm. The weld pool
geometry that resulted in each experiment approximates a cylindrical shape with a varying degree of
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deviation to the cylindrical shape because of surface (radiation, gas convection, Marangoni effect) and
depth effects (conduction to solid substrate, gravity etc). Whereas experiment 1, 2, and 4 proved a
marginal deviation from the cylindrical shape, a higher deviation was noticed for higher energy per
unit length, i.e., experiment 5, due to the higher laser power and lower scan speed. This phenomenon
is known as the keyhole effect during which the laser power density is so high that the metallic material
reaches temperatures beyond melting, i.e., it vaporizes. The vaporizing metal reaching the gas state
expands creating a keyhole or a capillary penetrating from the surface down to weld depth. As the
laser beam moves across the surface, the keyhole follows and creates a typically deep and narrow weld.
As long as the laser power is great enough and the travel speed is not excessive, this keyhole will
remain open. Process parameter combinations which lead to higher energy per unit length values and,
thus, higher weld pool penetration, apart from being energy costly and/or slow, are prone to higher
sensitivity to porosity [29]. In order to achieve process feasibility in SLM, keyhole effects in melt pools
are to be avoided, so that overlap with underlying layers and adjacent scan vectors during processing
can be attained without failures. For this reason, a cylindrical approach proves to be consistent for
modeling melt pool geometries for SLM applications. As the numerical/analytical results (Equation
(13)) were obtained under the assumption of cylindrical symmetry (i.e., the cross-section of the melt
pool is a semi-circle), for comparison with the experimental results we introduced the equivalent radius
R (Tables 1 and 2) (i.e., the radius of the semicircle with an area equal to the area of experimental melt
pool; Figure 7).

Table 1. SLM experiments using the alloy IN718. In the table we show the data of the five experiments,
the energy per unit length delivered by the laser, and the upper bound (i.e., the maximum possible
radius of molten material).

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
.

Q (W) 300 360 240 300 300
v (m/s) 1.6 1.6 1.6 1.92 1.28

width (µm) 147 139 110 127 140
depth (µm) 94 83 53 84 139

Q′(J/m) 188 225 150 156 234
Equivalent radius

R =
√

width/2× depth
83 76 54 73 99

Maximum radius
(Equation (15)) 183 200 164 167 205

Relative error (%) 55 62 67 56 52

Table 2. SLM experiments using the alloy IN718. In the table we show the data of the five experiments,
the equivalent heat source, the equivalent radius of the elliptical pool, and the radius calculated using
Equation (13).

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
.

Q (W) 300 360 240 300 300
v (m/s) 1.6 1.6 1.6 1.92 1.28

width (µm) 147 139 110 127 140
depth (µm) 94 83 53 84 139

Q′(J/m) 188 225 150 156 234
.

Q
′

eq(W/m) 1293 1552 1035 1078 1616
Equivalent radius

R =
√

width/2× depth
83 76 54 73 99

Numerical radius
(Equation (13)) 70 85 54 52 99

Relative error 15% 12% <1% 28% <1%
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parameters [13].

An upper bound of the radius of the melt pool was obtained by assuming no conduction, and
that all the energy per meter Q′ delivered by the laser was used to melt the powder at the melting
temperature Tmelt:

Q′(J/m) =
.

Q / v =ρs
πR2

2 cps δT + ρs
πR2

2 L

⇒ R =

√
2Q′

ρs π (cps δT+L)
=

√
2Q′

3926 π (351×1280+459360)

(15)

where R represents the equivalent radius,
.

Q (W) is the laser power and v(m/s) is the velocity of the
laser beam. In Table 1, we show the experimental data associated with the five experiments, the energy
per unit meter delivered by the laser Q′(J/m), the equivalent radius, and the maximum possible
(upper bound) radius of molten material that can be achieved, as described by Equation (15). It is
easily concluded that only a small fraction of the available laser energy is responsible for the melting of
the material. Hence, it is expected that a model that includes conduction would provide better results.
Such a model is the model developed in Section 2 of the paper.

In order to compare the experimental data (Figure 7) with the results of Section 2, a number of
assumptions/parameters were adopted. As already described in Section 2, the metal powder, which
rests on a metal substrate, is molten by the scanning laser beam and solidifies into a metal deposit fused
to the substrate. The density and the thermal material properties of the molten material during the
fusion process are significantly different from the metal powder, as presented in Section 3. Furthermore,
we assumed that during the initial stages of melting, the gravity and Marangoni effects can be neglected,
hence the process is cylindrically symmetric. Since the conductivity of the metal powder is in the
order of 100 times smaller than that of the metal substrate, we assumed that the heat transfer process
is controlled by the powder bed, and the heat transfer process is prevalent in the molten pool [1].
Hence, during the initial melting of the powder, we neglected the presence of the metal substrate and
assumed a semi-infinite layer of metal powder. The melting is achieved by a rapidly scanning laser
beam of power

.
Q(W) moving with velocity v (m/s) along the span of a powder-bed, and delivering

an amount of energy Q′(J/m) =
.

Q/ v per unit length/span [24]. The energy is conducted through
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the powder-bed, which was assumed to be a continuum medium. Since the optical or mechanical
scanning of the laser beam is much faster than the thermal dynamics in the material, the process can be
modeled as a heat source of power

.
Q′(W/m) per unit length, distributed simultaneously and evenly

along the inner surface r = Ri[t] of the molten material (Figures 1 and 2 [24]), due to irradiation and
reflections. As the heat is conducted through, a phase-change takes place. In particular, an interface
r = R[t] is developed at temperature Tmelt that separates the molten material (liquid) from the solid
material (powder), where Tmelt is the melting temperature of the material. Assuming a pure substance,
and by ignoring the kinetics of phase change in melting (i.e., the latent heat of fusion L is provided
instantaneously), the interface is sharp (r = R[t]). Furthermore, in order to relate the experimentally
obtained Q′ with the

.
Q′ of the numerical model, we defined the characteristic time tc and length `c of

the process. The characteristic parameters are process parameters that were obtained experimentally
for a set of experiments performed under similar conditions. They can be obtained by fitting the
numerical model (Equation (13)) to the available experimental data (Table 2), and can be continuously
updated in-process to obtain improved values. In order to find an equivalent power per unit length

(
.

Q
′

eq) to use in the numerical simulations (Equation (13)) and an activation time (τ), we used the
characteristic parameters as follows:

.
Q
′

eq(W/m) = Q′/tc =
.

Q/(v× tc),
τ = `c/v,

where the energy delivered to the powder bed per unit length is equal to

Q′(J/m) =
.

Q/ v.

Hence, in the characteristic equation for the eigenvalue λ and radius R[τ] (Equation (13)), we replaced
.

Q′ with
.

Q
′

eq and τ with `c/v. Furthermore, the experimentally-determined melt pool is not circular,
hence, for comparison with the numerical results, we used the equivalent radius, described earlier.

Using the data of the experiments and Equation (13) we performed a best fit, and estimated a
characteristic time tc(s) = 0.121 s and length `c = 0.099 m. The numerically calculated radius is shown
in the second to last row of Table 2. Out of the five sets of data, we obtained an excellent fit for two sets,
a reasonable fit for the other two sets, and a poor fit for one data set among experimental and numerical
results as illustrated in Figures 8 and 9. The fact that our model required two fitted parameters, it was
expected to fit at least two sets of data well. Although the fitting (Table 2) looks promising, a larger
amount of experimental data is necessary in order to justify its applicability to an SLM process. For
example, we used a far field temperature of T∞ = 20 ◦C. However, temperature changed during the
course of the experiment due to pre-heating, which occurred in the processed layer due the conduction
during laser scanning of the adjacent powder (i.e., previously deposited and underlying beads). This
was because in actual SLM there is no time for previous deposits and the substrate to cool down to room
temperature before the current new bead is processed. Furthermore, the deviation from the circular
shape, although it should be avoided for an SLM process, is a dominant effect in the experimental
data. Finally, although the power of the laser was known, the total energy delivered to the melt pool
was unknown (i.e., the duration of the laser scanning was not reported). Hence, although the results
shown in Table 1 prove that the aforementioned model and assumptions could provide reliable results
in a very efficient manner in terms of computation time, further controlled experiments are necessary
in order to improve, justify, and extend the applicability of the model.
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Figure 9. Numerical vs. experimental results of the melt pool dimensions with varying laser power
(a), laser speed (b), and energy per unit length (c). The deviation of the proposed analytical model
compared to real melt pool dimensions for all five experiments is summarized in (d).

A comprehensive illustration of the results in Table 2 is provided in Figure 8. The numerical
results of the melt pool cylindrical shape on the right of the figure are compared with the experimental
measurements of the melt pool on the left of the figure for all five experiments.

Figure 9 summarizes the numerical and experimental results of the melt pool dimensions in terms
of the variation of (a) the laser power, (b) the laser speed, and (c) the energy per unit length. The results
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for all five experiments (d) demonstrate the deviation of the proposed analytical model compared to
real melt pool dimensions.

5. Summary and Conclusions

We address the classical problem of a heat source activated along the span of a semi-infinite
material. The material is solid (metal powder) and the melting commences immediately at the
location of the line heat source due to the singular nature of the heat input. The temperature profile is
cylindrically symmetric and the liquid-solid interface propagates radially outwards. The contribution
of the current work is that we have included convection effects due to the density difference between
the solid (metal powder) and the liquid (molten powder). Because the liquid has higher density than
the powder, an annulus is developed with a radially-symmetric flow field; at small times we neglect
gravitational and Marangoni effects. We show analytically that the convection enhances the melting
speed and it is relatively important. We also show that if the properties of both the liquid and the
solid phases of the material are varied by 10%, that does not affect significantly the results, hence
constant properties can be used in numerical simulations. An important result of this work; however,
is that, for a fixed amount of input energy per unit length, there exists an optimum combination of
power input and time period of activation of the line heat source, which would lead to a maximum
radius of the liquid-solid interface (i.e., a maximum amount of material would have melted during the
activation time).

Finally, we use the analysis of the heat source per unit length to model an SLM process. We show
that the point heat source associated with an SLM process can be represented with an equivalent heat
source per unit length using an experimentally-determined characteristic time and length. The benefit
of using a heat source model of this kind is twofold. On one hand, a rapid in-process computation
of the melt pool can be achieved which can facilitate a real-time process parameter observation and
optimization within the feasible process window, and on the other hand it can be applied for process
control purposes during the SLM process. Additionally, such a simplified heat source model can be
transferred comfortably in a subsequent thermo-mechanical model for computation of the structural
shape and residual stresses. A comparison with experimental results has shown that the numerical
results could provide a quantitative description of the process. However, further experiments are
necessary in order to determine the conditions of applicability of the analytical model.
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Nomenclature

cp specific heat (J/(kg K))
k thermal conductivity (W/(m K))
.

Q laser power (W)
.

Q′ continuous line heat source (W/m)
Q′ energy per unit length (J/m)
T temperature (◦C)
r radius of half cylinder (m)
Ri(t) inner radius of melted material where laser heat source is applied (i.e., liquid-air interface) (m)

http://www.merlin-project.eu
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R(t) outer radius of melted material (i.e., liquid-solid interface)
.
R(t) rate of change of outer radius (i.e., radial velocity) (m/s)
ur[r,t] radial velocity of the fluid (m/s)
υ` velocity of the fluid perpendicular to the interface r = R[t] (m/s)
L latent heat (J/kg)
H enthalpy (J/kg)
z normalized radius r/R[t] (-)
c constant
R equivalent radius (m)
v laser scan velocity (m/s)
`c characteristic length of scan vector (m)
tc characteristic time (s)
d f laser focus diameter (m)
D layer thickness (mm)
Greek symbols
α thermal diffusivity (m2/s)
ρ density (kg/m3)
τ time period (s)
ε ratio (ρ` − ρs)/ ρ`
λ eigenvalue
∆y hatch distance (m)
Subscripts
s solid phase
` liquid phase
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